JPS625569A - Molten carbonate type fuel cell stack - Google Patents

Molten carbonate type fuel cell stack

Info

Publication number
JPS625569A
JPS625569A JP60142111A JP14211185A JPS625569A JP S625569 A JPS625569 A JP S625569A JP 60142111 A JP60142111 A JP 60142111A JP 14211185 A JP14211185 A JP 14211185A JP S625569 A JPS625569 A JP S625569A
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
side wall
electrolyte layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60142111A
Other languages
Japanese (ja)
Other versions
JPH0793146B2 (en
Inventor
Yoichi Seta
瀬田 曜一
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60142111A priority Critical patent/JPH0793146B2/en
Publication of JPS625569A publication Critical patent/JPS625569A/en
Publication of JPH0793146B2 publication Critical patent/JPH0793146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To surely seal the periphery of unit cell and the space between a stack and a manifold by forming a side wall member which prevents leakage and mixing of reaction gasses with the same material as an electrolyte layer. CONSTITUTION:A conductive end plate is placed on the upper part of a fuel cell stack, and the fuel cell stack is fastened in a usual way, and manifolds 37a, 37b, 38a, and 38b for conducting reaction gasses are fixed to each side. Zirconium felt impregnated with molten carbonate having the same composition as electrolyte is placed between a frange of the manifold and the stack to serve as the sealant. The side of the fuel cell stack is covered with the electrolyte, and affinity between the stack and the manifold is improved. Since side walls 32a and 32b are formed with carbonate, they are corrosion-free and gas sealing is surely performed.

Description

【発明の詳細な説明】 C発明の技術分野〕 本発明は、溶融炭酸塩型燃料電池積層体に係わり、特に
反応ガスのシール性能の向上化を図れるようにした燃料
電池積層体に関する。
DETAILED DESCRIPTION OF THE INVENTION C. Technical Field of the Invention The present invention relates to a molten carbonate fuel cell stack, and particularly to a fuel cell stack that is capable of improving reaction gas sealing performance.

〔発明の技術的青用とその問題点〕[Technical uses of inventions and their problems]

近年、馬脂率のエネルギー変換装置として溶融炭酸塩型
燃料電池の開発が進められている。溶融炭酸塩型燃料電
池は、アルカリ炭酸塩からなる電解質を高温下で溶融状
態にし、電極反応を起こさせるものでリン酸型、固体電
解質型等の他の燃料電池に比べ電極反応が起り易く、高
価な貴金属触媒を必要とせず、また、発電熱効率が高い
などの大きな特徴を有している。
In recent years, molten carbonate fuel cells have been developed as an energy conversion device for horse fat. A molten carbonate fuel cell is one in which an electrolyte made of alkali carbonate is molten at high temperatures to cause electrode reactions, and electrode reactions occur more easily than other fuel cells such as phosphoric acid and solid electrolyte types. It has great features such as not requiring expensive precious metal catalysts and high heat generation efficiency.

ところで、溶融炭酸塩型燃料電池で高出力の発電プラン
トを構成するには、単位電池の出力が微弱であることか
ら、複数の単位電池を直列に積層して積層体を構成し、
各単位電池の加算出力を得る必要がある。このため、従
来、溶融炭酸塩型燃料電池は第7図に示すような積層構
造に構成されていた。
By the way, in order to construct a high-output power generation plant using molten carbonate fuel cells, since the output of the unit cells is weak, it is necessary to stack a plurality of unit cells in series to form a laminate.
It is necessary to obtain the summed output of each unit battery. For this reason, conventionally, molten carbonate fuel cells have been constructed in a stacked structure as shown in FIG.

すなわち、各単位電池上は、一対の多孔質電極2a、2
bとこれらの間に介在させた炭酸塩からなる電解質R3
とで構成される。これら単位電池上は、単位電池1間の
電気的な接続様能と各電極板への反応ガスの通路を形成
する機能とを兼ね備えた導電性のセパレータ4を介して
積層される。
That is, on each unit cell, a pair of porous electrodes 2a, 2
Electrolyte R3 consisting of b and carbonate interposed between them
It consists of These unit cells are laminated with conductive separators 4 interposed therebetween, which have both the function of electrical connection between the unit cells 1 and the function of forming passages for reaction gas to each electrode plate.

すなわち、セパレータ4は、導電性のセパレータ板本体
5と、このセパレータ板本体5の一方の面の対向する2
辺部に例えばろう付は固定されたステンレス鋼製の側壁
部材6aと、前記セパレータ板本体5の他方の面で上記
側壁部材6aと直交する方向の対向する2辺部に例えば
ろう付は固定されたステンレス鋼製の側壁部材6bと、
これら側壁部材6a、6bで形成された反応ガスの通路
A。
That is, the separator 4 includes a conductive separator plate main body 5 and two opposing surfaces on one side of the separator plate main body 5.
A side wall member 6a made of stainless steel is fixed, for example, by brazing, on the side portion, and a side wall member 6a made of stainless steel is fixed, for example, by brazing, on the other side of the separator plate main body 5, on two opposing sides in a direction orthogonal to the side wall member 6a. a stainless steel side wall member 6b;
A reaction gas passage A is formed by these side wall members 6a and 6b.

Bに嵌合されて反応ガスを分流させる波板7a。A corrugated plate 7a is fitted to B to separate the reaction gas.

7bとで構成されている。7b.

このように構成された燃料電池積層体Xの4つの側面に
は、反応ガスの分配、回収機能を有する図示しないマニ
ホールドが当てがわれる。そして、これらマニホールド
のうちの一つに酸化剤ガスPを供給するとともに隣接す
るマニホールドに燃料ガスQを供給し、燃料電池積層体
×の内部で両ガスを電極反応に寄与させ直流出力を得た
後、それぞれの対向するマニホールドからガスを排出し
得る構成となっている。
Manifolds (not shown) having functions of distributing and collecting reactive gases are applied to the four sides of the fuel cell stack X configured in this manner. Then, oxidant gas P was supplied to one of these manifolds, and fuel gas Q was supplied to the adjacent manifold, and both gases contributed to the electrode reaction inside the fuel cell stack to obtain a DC output. Afterwards, the gas can be discharged from the respective opposing manifolds.

このように構成された燃料電池では、各側壁部材6a、
6bと電解質層3との間でウェットシール部が形成され
、両反応ガスP、Qが燃料電池の内部の意図しない側へ
漏洩、混入をするのを防止している。また、燃料電池積
層体Xの各側面と各マニホールドとの間にも、例えばセ
ラミックフェルトなどに溶融炭酸塩を含浸させてウェッ
トシールが形成される。
In the fuel cell configured in this way, each side wall member 6a,
A wet seal portion is formed between the electrolyte layer 6b and the electrolyte layer 3, and prevents the reaction gases P and Q from leaking or mixing into an unintended side of the fuel cell. Wet seals are also formed between each side surface of the fuel cell stack X and each manifold by impregnating ceramic felt with molten carbonate, for example.

しかしながら、燃料電池積層体Xとマニホールドとの間
にセラミックフェルトなどを介在させてウェットシール
部を構成するようにしたものにあっては、ステンレス鋼
製の側壁部材6a、6bとフェルトとの間のなじみが悪
いことに加え、側壁部材6a、6bの溶融炭酸塩による
腐蝕減量によって積層体Xとマニホールドとの間のシー
ル性能が経時的に低下するという問題があった。
However, in the case where a wet seal is formed by interposing ceramic felt or the like between the fuel cell stack X and the manifold, the gap between the stainless steel side wall members 6a, 6b and the felt is In addition to poor compatibility, there was a problem in that the sealing performance between the laminate X and the manifold deteriorated over time due to corrosion loss of the side wall members 6a and 6b due to molten carbonate.

また、側壁部材6a、6bとセパレータ板本体5との溶
接若しくはろう付は部15が、側壁部材6a、6bの表
面を移動してくる炭酸塩等によって冒され、側壁部材6
a、6bとセパレータ板本体5との間に隙間を生じてし
まう。このような隙間は、反応ガスの漏洩や混合が生じ
させ、発電効率の低下を招くという問題があった。
In addition, the welding or brazing portion 15 between the side wall members 6a, 6b and the separator plate main body 5 may be affected by carbonate or the like moving on the surface of the side wall members 6a, 6b,
A gap is created between a, 6b and the separator plate main body 5. Such gaps have the problem of causing leakage and mixing of reactant gases, resulting in a decrease in power generation efficiency.

また、セパレータ4を製作するに際し、セパレータ板本
体5の端部に側壁部材6a、6bをろう付は若しくは溶
接するという工程を含み、さらには側壁部材6a、6b
のマニホールドフランジ部に当たる面の加工精度をガス
の気密の面から十分に仕上げる必要があり、製作の繁雑
化および歩留りの低下を招くという問題があった。
Further, when manufacturing the separator 4, a step of brazing or welding the side wall members 6a, 6b to the ends of the separator plate main body 5 is included, and further, the side wall members 6a, 6b are
The surface that corresponds to the manifold flange needs to be finished with sufficient machining accuracy from the viewpoint of gas tightness, which poses a problem of complicating manufacturing and reducing yield.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に基づきなされたもので、単
位電池周縁部のシール、積層体とマニホールドとの間の
シールを確実に行なうことができ、しかも製作性の容易
な溶融炭酸塩型燃料電池積層体を提供することを目的と
する。
The present invention has been made based on the above circumstances, and provides a molten carbonate fuel that can reliably seal the periphery of the unit cell and the seal between the stacked body and the manifold, and is easy to manufacture. The purpose is to provide a battery laminate.

〔発明の概要〕[Summary of the invention]

本発明は、炭酸塩電解質層の両面に一対の多孔質電極板
を配してなる単位電池を導電性のセパレータ板を介して
複数積層するとともに、前記電解質層の周辺部と前記セ
パレータ板の周辺部との間に介装されて前記単位電池の
積層方向とは直交する方向に反応ガスを導くガス通路を
形成する側壁部材を備えた溶融炭酸塩型燃料電池積層体
において、前記側壁部材を前記電解質層と同様の材質で
形成するようにしたことを特徴としている。
The present invention includes stacking a plurality of unit cells each having a pair of porous electrode plates arranged on both sides of a carbonate electrolyte layer with conductive separator plates interposed therebetween. In the molten carbonate fuel cell stack, the side wall member is interposed between the side wall member and the side wall member to form a gas passage for guiding a reaction gas in a direction perpendicular to the stacking direction of the unit cells. It is characterized by being made of the same material as the electrolyte layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電解質層の周縁部とセパレータ板の周
縁との間に配冒された反応ガスの漏洩、混合を防止する
側壁部材を、電解質層と同様の材質で形成するようにし
ているので、燃料電池積層体の側面部に現れる部分はほ
とんどがN解質となる。このため、燃料電池積層体とマ
ニホールドとの間のなじみが良好になり、しかも側壁部
材が炭酸塩で形成されていることから腐蝕するという問
題がなく、ガスシールが確実に行なえることになる。
According to the present invention, the side wall member that prevents leakage and mixing of the reaction gas distributed between the peripheral edge of the electrolyte layer and the peripheral edge of the separator plate is formed of the same material as the electrolyte layer. Therefore, most of the portion appearing on the side surface of the fuel cell stack becomes N solute. Therefore, the fit between the fuel cell stack and the manifold is good, and since the side wall members are made of carbonate, there is no problem of corrosion, and gas sealing can be ensured.

また、この発明によれば、セパレータ板が単なる板状体
で良く、従来のように側壁部材をろう付けや溶接する必
要もないうえ、側壁部材に高い面積度を要求されない。
Further, according to the present invention, the separator plate may be a simple plate-like body, there is no need to braze or weld the side wall members as in the conventional case, and the side wall members are not required to have a high surface area.

このため、製作性が良好になるとともに、溶接部やろう
付は部がなくなることにより、その部分での腐蝕による
隙間の発生という問題も解決される。
Therefore, the manufacturing efficiency is improved, and since there are no welded or brazed parts, the problem of the occurrence of gaps due to corrosion at those parts is also solved.

(発明の実施例〕 以下、図面を参照しながら本発明の実施例について説明
する。
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〈実施例〉 第1図に示すような燃料電池積層体Yを構成した。<Example> A fuel cell stack Y as shown in FIG. 1 was constructed.

複数の単位電池1二はセパレータ板12を介して積層さ
れている。単位電池1二は、後述する工程で形成された
電解質層13の一方の面にアノード14aと波板15a
とをこの順に配し、他方にカソード14bと波板15b
とをこの順に配して構成される。電解質層13は、中央
反応部分である電解質板13aの一方の面の対向する2
辺部に側壁部材となる突条13bを形成するとともに、
他方の面の上記突条13bとは直交する方向に対向する
2辺部にやはり側壁部材となる突条13cを突設したも
のである。この電解質層13は、リチウムアルミネート
/炭酸リチウム/炭酸カリウム−40:28:32(w
%)の混合粉末を金型に充填し、プレスにより約300
Kg/iの圧力、460℃の温度でホットプレスして得
た。金型の形状は、電解質板13aの厚みが2 m 、
突条131)、13Gの厚みが6mとなるように決めた
。アノード14aは、ニッケル合金多孔質体で形成し、
前記電解質1113の突条13a、13bで形成される
溝Cに嵌合させた。カソード14bは、ニッケル多孔質
体で形成し、前記電解質層14bの突条13cで形成さ
れる溝りに嵌合させた。また、これらアノード14aお
よびカソード14bにそれぞれ添設される2つのガス分
流用の波板15a。
A plurality of unit batteries 12 are stacked with separator plates 12 in between. The unit battery 12 has an anode 14a and a corrugated plate 15a on one side of an electrolyte layer 13 formed in a process described later.
are arranged in this order, and the cathode 14b and the corrugated plate 15b are placed on the other side.
are arranged in this order. The electrolyte layer 13 consists of two opposing surfaces on one side of the electrolyte plate 13a, which is the central reaction part.
A protrusion 13b serving as a side wall member is formed on the side part, and
On the other side, protrusions 13c, which also serve as side wall members, are protrudingly provided on two sides facing in a direction orthogonal to the protrusions 13b. This electrolyte layer 13 is composed of lithium aluminate/lithium carbonate/potassium carbonate -40:28:32 (w
%) mixed powder is filled into a mold, and pressed to about 300%
It was obtained by hot pressing at a pressure of Kg/i and a temperature of 460°C. The shape of the mold is such that the thickness of the electrolyte plate 13a is 2 m,
The thickness of the protrusions 131) and 13G was determined to be 6 m. The anode 14a is made of a porous nickel alloy,
It was fitted into the groove C formed by the protrusions 13a and 13b of the electrolyte 1113. The cathode 14b was formed of a porous nickel material and fitted into the groove formed by the protrusion 13c of the electrolyte layer 14b. Furthermore, two corrugated plates 15a for gas diversion are attached to the anode 14a and the cathode 14b, respectively.

15bは、ステンレス鋼で形成した。また、単位電池1
1間に介装されるセパレータ板12は、厚み0.2mで
縦横寸法を上記電解質層13と同じにしたステンレス鋼
(SUS316)を用い、電解質層13の各突条15a
、15bが当接する部分に予めプラズマスプレーによっ
て1oo譚の厚みのアルミナ防食層16を形成しておい
た。
15b was made of stainless steel. Also, unit battery 1
The separator plate 12 interposed between the ridges 15a of the electrolyte layer 13 is made of stainless steel (SUS316) with a thickness of 0.2 m and the same length and width as the electrolyte layer 13.
, 15b were in contact with each other, an alumina anti-corrosion layer 16 having a thickness of 1 mm was previously formed by plasma spraying.

このように構成された燃料電池積層体Yを、上下から図
示しない導電性のエンドプレートを当てがって通常の方
法で締付けた後、各側面に反応ガス案内用の図示しない
マニホールドを圧接した。
After the fuel cell stack Y constructed in this manner was tightened in the usual manner by applying conductive end plates (not shown) from above and below, manifolds (not shown) for guiding reaction gas were pressed into contact with each side surface.

なお、各マニホールドの周辺フランジ部には従来と同様
、電解質組成と同じ組成の溶融炭酸塩を含浸したジルコ
ニアフェルトを介装し、これをシール材とした。
Note that, as in the conventional case, zirconia felt impregnated with molten carbonate having the same composition as the electrolyte was inserted into the peripheral flange of each manifold, and this was used as a sealing material.

このように構成された燃料電池を通常の方法により65
0℃まで昇温し、酸化剤ガスQとして炭酸ガスを、また
燃料ガスPとして水素ガスを通流させ、供給ガスit 
F o と排出ガスJ21Ftとの差ΔF (=F1−
Fo )の供給ガス量FDに対する比〈減少量ΔF/F
O)を測定した。なお、同時に酸化剤ガス側および燃料
側相互のガスの混合による寄与をみるため、排出ガスの
ガス組成を調べたところ、いずれの極側からも他方の極
のガスが検出されなかった。したがって、減少量はマニ
ホールドシールからの漏洩間とみなすことにした。
The fuel cell constructed in this way is heated at 65°C by a normal method.
The temperature is raised to 0°C, and carbon dioxide gas is passed through as the oxidant gas Q and hydrogen gas is passed through as the fuel gas P.
Difference ΔF between F o and exhaust gas J21Ft (=F1−
Fo) to the supplied gas amount FD (decrease amount ΔF/F
O) was measured. At the same time, when the gas composition of the exhaust gas was examined to see the contribution of gas mixing between the oxidant gas side and the fuel side, no gas from the other pole was detected from either pole side. Therefore, it was decided that the amount of decrease was due to leakage from the manifold seal.

なお、比較例として、第7図に示した従来の燃料電池積
層体Xを用いて同様にマニホールドシールからの漏洩量
を測定した。その結果を次表に示す。
As a comparative example, the amount of leakage from the manifold seal was similarly measured using the conventional fuel cell stack X shown in FIG. The results are shown in the table below.

以上の結果から明らかなように、本実施例のものはマニ
ホールドからの反応ガスの漏洩量が減少しており、本実
施例での電池構造が有効であることが確認された。
As is clear from the above results, in this example, the amount of reaction gas leaking from the manifold was reduced, and it was confirmed that the battery structure of this example was effective.

また、上記実施例と比較例の両燃料電池を200時間運
転させたのち、降温して分解したところ、比較例では側
壁部材6a、6bどセパレータ板本体5との間の溶接部
の腐蝕による隙間が10セル当り3か所みられ、降温直
前ではこれら隙間を生じた3つの単位電池の電流電圧特
性が他の単位電池よりも0.2〜0.3V低かった。こ
れに対し、本実施例による燃料電池積層体Yには、この
ような腐蝕によるガスの漏洩路の形成が見られず、単位
電池11間の電流−電圧特性のばらつきも±5%以内に
収まっていた。
In addition, after operating both the fuel cells of the above example and comparative example for 200 hours, the temperature was lowered and the fuel cells were disassembled. In the comparative example, gaps due to corrosion of the welded parts between the side wall members 6a, 6b and the separator plate main body 5 were found. were observed at 3 locations per 10 cells, and the current-voltage characteristics of the three unit batteries with these gaps were 0.2 to 0.3 V lower than the other unit batteries immediately before the temperature fell. On the other hand, in the fuel cell stack Y according to the present example, no formation of gas leakage paths due to such corrosion was observed, and the variation in current-voltage characteristics between the unit cells 11 was within ±5%. was.

また、本実施例においてセパレータ板12は金属平板の
みで形成されており、従来のようなシール用側壁部材5
a、6bの溶接が不要となるため、製造性が極めて良好
であった。
In addition, in this embodiment, the separator plate 12 is formed only of a metal flat plate, and the sealing side wall member 5 is different from the conventional sealing side wall member 5.
Manufacturability was extremely good because welding of parts a and 6b was not required.

以上のように、本実施例の溶融炭酸塩型燃料電池積層体
Yによれば、シール性および製造性が良好でかつ経時的
性能の劣化を十分に抑制することができる。
As described above, the molten carbonate fuel cell stack Y of this example has good sealing performance and manufacturability, and can sufficiently suppress deterioration of performance over time.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、上記の実施例では電解質層の組成としてリ
チウムアルミネート/炭酸リチウム/炭酸カリウム−4
0/28/32 (W%)としたが、電解質層に補強7
割れ低減のため、リチウム化アルミナ繊維やジルコン酸
リチウムの繊維を混入させても良い。また、少量の有機
バインダーや可塑剤を混入し、電解質層に柔軟性を付与
して製作性を高め、有機バインダーや可塑剤は燃料電池
積層体の昇温途上に揮散させてるようにしても良い。
Note that the present invention is not limited to the embodiments described above. For example, in the above example, the composition of the electrolyte layer is lithium aluminate/lithium carbonate/potassium carbonate-4.
0/28/32 (W%), but reinforcement 7 was added to the electrolyte layer.
To reduce cracking, lithiated alumina fibers or lithium zirconate fibers may be mixed. Alternatively, a small amount of an organic binder or plasticizer may be mixed in to impart flexibility to the electrolyte layer and improve manufacturability, and the organic binder or plasticizer may be volatilized during heating of the fuel cell stack. .

また電解質層13は、側壁部材を一体に形成せずに、第
2図に示すように側壁部材21a、21bを電解質板本
体22とは別個に製作し、少量の有機接着剤でこれを上
記電解質板本体22に固定し、燃料電池の昇温途上に上
記有機接着剤を揮散させるようにして形成しても良い。
In addition, the electrolyte layer 13 is not formed by integrally forming the side wall members 21a and 21b, but as shown in FIG. It may also be formed by fixing it to the plate body 22 and volatilizing the organic adhesive while the temperature of the fuel cell is rising.

また、側壁部材には炭酸塩イオン(CO32−)のイオ
ン伝導性は必要とされないので、燃料電池運転温度で可
塑性を示すガラスと、その保持体としてのアルミナIl
帷とを混合して短冊状に形成した板を用いるようにして
も良い。
In addition, since the side wall member does not require ionic conductivity of carbonate ions (CO32-), it is necessary to use glass that exhibits plasticity at the fuel cell operating temperature and alumina Il as its support.
It is also possible to use a plate formed into a strip by mixing it with a strip.

ざらに前述の実施例ではセパレータ板12の平面寸法と
電解質層13の平面寸法とを同じにしたが、セパレータ
板12が電解質層13よりも少々小さくて良い。また、
セパレータ板12周縁部の防食処理は、アルミナのプラ
ズマスプレーに限らず、第3図および第4図に示すよう
に、金、アルミ含有ステンレス等の耐食金属の箔25で
第3図および第4図のように、覆うようにしても良い。
Roughly speaking, in the above-described embodiment, the planar dimensions of the separator plate 12 and the electrolyte layer 13 were made the same, but the separator plate 12 may be slightly smaller than the electrolyte layer 13. Also,
The anti-corrosion treatment of the peripheral edge of the separator plate 12 is not limited to plasma spraying of alumina, but can also be done with a foil 25 of corrosion-resistant metal such as gold or aluminum-containing stainless steel, as shown in FIGS. 3 and 4. You can also cover it, like this.

なお、この場合において、第3図は集電およびガス分流
用に波板14aを使用した例であり、第4図はガス分流
用に気孔率の高い多孔質金属板26を利用した例である
In this case, FIG. 3 shows an example in which a corrugated plate 14a is used for current collection and gas diversion, and FIG. 4 shows an example in which a porous metal plate 26 with high porosity is used for gas diversion. .

なお本発明は、第5図および第6図に示すように、燃料
ガスPと酸化剤ガスQを燃料電池積層体Zの内部を積層
方向と直交する方向でかつ対角方向に互いに交差するよ
うに通流させるようにしたものにも適用可能である。
In addition, as shown in FIGS. 5 and 6, the present invention allows the fuel gas P and the oxidizing gas Q to cross each other inside the fuel cell stack Z in a direction perpendicular to the stacking direction and in a diagonal direction. It can also be applied to devices in which the flow is caused to flow.

すなわち、電解質板本体31の両面周縁部には、燃料ガ
スPと酸化剤ガスQとが互いに斜交するようにクランク
状の溝E、Fをそれぞれ形成するとともに、電解質板本
体31と同一材質でL字状に形成された側壁部材32a
、32bが添設されている。また、上記電解質板本体3
1の両面には、上記溝E、Fに嵌合するようにアノード
33a1カソード33bを配し、さらにこれら電極上に
ガス通路と集電機能とを兼ね備えた多孔質金属板34a
、34bを配置する。このように構成された単位電池1
1を導電性のセパレータ板36を介して複数積層し、燃
料電池積層体Zを構成する。
That is, crank-shaped grooves E and F are formed in the peripheral edges of both sides of the electrolyte plate main body 31 so that the fuel gas P and the oxidizing gas Q cross each other obliquely, and grooves E and F are formed in the same material as the electrolyte plate main body 31. Side wall member 32a formed in an L shape
, 32b are attached. In addition, the electrolyte plate main body 3
An anode 33a and a cathode 33b are arranged on both sides of the electrode 1 so as to fit into the grooves E and F, and a porous metal plate 34a having both a gas passage and a current collecting function is disposed on these electrodes.
, 34b are arranged. Unit battery 1 configured in this way
1 are laminated in plurality with conductive separator plates 36 interposed therebetween to form a fuel cell stack Z.

このようにして構成された燃料電池積層体Zの、対向す
る2つの側面の一方の側に燃料ガス供給・排出用のマニ
ホールド37a、37bを配し、他方の側に酸化剤ガス
供給・排出用のマニホールド38a、38bを配するこ
とにより燃料電池を構成する。
The manifolds 37a and 37b for supplying and discharging fuel gas are arranged on one side of the two opposing sides of the fuel cell stack Z constructed in this way, and the manifolds 37a and 37b for supplying and discharging oxidizing gas are arranged on the other side. A fuel cell is constructed by arranging the manifolds 38a and 38b.

このような構成の燃料電池であっても本発明の効果を得
ることができることは言うまでもない。
It goes without saying that the effects of the present invention can be obtained even with a fuel cell having such a configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
積層体の分解斜視図、第2図は同燃料電池積層体におけ
る電解質層の他の構成例を示す分解斜視図、第1図およ
び第V図はそれぞれ同燃料電池積層体における単位電池
およびセパレータ板防食層の他の構成例を示す分解側面
図、第5図は本発明の他の実施例における燃料電池積層
体の構成を示す分解斜視図、第6図は同燃料電池積層体
を用いた燃料N池の斜視図、第7図は従来の溶融炭酸塩
型燃料電池積層体の分解斜視図である。 1.11.35・・・単位電池、2a、2b−・・多孔
質電極板、3.13a、13b・・・電解質層、4・・
・セパレータ、5・・・セパレータ板本体、6a、、6
b。 21 a、21 b、32a、32b−・・側壁部材、
7a、7b、15a、 15’o−・・波板、12.3
6・・・セパレータ板、13a・・・電解質板本体、1
3b。 13 G−・・突条、14a、33a−・・アノード、
14’b、33b・・・カソード、16・・・防食層、
25・・・箔、26.34a、34b・・・多孔質金属
板、37a、37b、38a、38b=・vニホールド
、A−F・・・溝、P・・・燃料ガス、Q・・・酸化剤
ガス。 出願人代理人 弁理士 鈴江武彦 第2図 第3図 第4図
FIG. 1 is an exploded perspective view of a molten carbonate fuel cell stack according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing another example of the structure of the electrolyte layer in the same fuel cell stack. Figures 1 and 5 are exploded side views showing other configuration examples of unit cells and separator plate anti-corrosion layers in the same fuel cell stack, respectively, and Figure 5 shows the configuration of a fuel cell stack in another embodiment of the present invention. FIG. 6 is a perspective view of a fuel N pond using the same fuel cell stack, and FIG. 7 is an exploded perspective view of a conventional molten carbonate fuel cell stack. 1.11.35... Unit battery, 2a, 2b-... Porous electrode plate, 3.13a, 13b... Electrolyte layer, 4...
・Separator, 5... Separator plate body, 6a, 6
b. 21 a, 21 b, 32 a, 32 b - side wall member,
7a, 7b, 15a, 15'o--corrugated plate, 12.3
6... Separator plate, 13a... Electrolyte plate main body, 1
3b. 13 G--Protrusion, 14a, 33a--Anode,
14'b, 33b... cathode, 16... anticorrosion layer,
25...Foil, 26.34a, 34b...Porous metal plate, 37a, 37b, 38a, 38b=-v nifold, A-F...groove, P...fuel gas, Q... Oxidizing gas. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 炭酸塩電解質層の両面に一対の多孔質電極板を配してな
る単位電池を導電性のセパレータ板を介して複数積層す
るとともに、前記電解質層の周辺部と前記セパレータ板
の周辺部との間に介装されて前記単位電池の積層方向と
は直交する方向に反応ガスを導くガス通路を形成する側
壁部材を備えた溶融炭酸塩型燃料電池積層体において、
前記側壁部材を前記電解質層と同様の材質で形成したこ
とを特徴とする溶融炭酸塩型燃料電池積層体。
A plurality of unit cells each having a pair of porous electrode plates arranged on both sides of a carbonate electrolyte layer are stacked with conductive separator plates interposed therebetween, and between the peripheral part of the electrolyte layer and the peripheral part of the separator plate. A molten carbonate fuel cell stack comprising a side wall member interposed in the unit cell to form a gas passage for guiding a reaction gas in a direction perpendicular to the stacking direction of the unit cells,
A molten carbonate fuel cell stack, wherein the side wall member is made of the same material as the electrolyte layer.
JP60142111A 1985-06-28 1985-06-28 Molten carbonate fuel cell stack Expired - Fee Related JPH0793146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142111A JPH0793146B2 (en) 1985-06-28 1985-06-28 Molten carbonate fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142111A JPH0793146B2 (en) 1985-06-28 1985-06-28 Molten carbonate fuel cell stack

Publications (2)

Publication Number Publication Date
JPS625569A true JPS625569A (en) 1987-01-12
JPH0793146B2 JPH0793146B2 (en) 1995-10-09

Family

ID=15307672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142111A Expired - Fee Related JPH0793146B2 (en) 1985-06-28 1985-06-28 Molten carbonate fuel cell stack

Country Status (1)

Country Link
JP (1) JPH0793146B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056161B2 (en) 2001-02-20 2006-06-06 Newfrey Llc Grounding stud
WO2007032442A1 (en) * 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. Membrane-membrane stiffening member union, membrane-catalyst layer union, membrane-electrode union, and polymer electrolyte type fuel cell
JP2007242637A (en) * 2005-09-15 2007-09-20 Matsushita Electric Ind Co Ltd Membrane-membrane stiffening member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte type fuel cell
WO2008056661A1 (en) * 2006-11-07 2008-05-15 Panasonic Corporation Film-film reinforcing film assembly, film-catalyst layer assembly, film-electrode assembly, and polymer electrolyte fuel cell
WO2008090778A1 (en) * 2007-01-22 2008-07-31 Panasonic Corporation Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
WO2008093658A1 (en) * 2007-01-29 2008-08-07 Panasonic Corporation Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
WO2008126350A1 (en) * 2007-03-14 2008-10-23 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and process for producing membrane-electrode assembly
US8287219B2 (en) 2006-11-20 2012-10-16 Newfrey Llc Fastening arrangement
JP6122202B1 (en) * 2015-12-24 2017-04-26 日本碍子株式会社 Manifold and fuel cell stack structure
US9680239B2 (en) 2014-04-23 2017-06-13 Ramco Specialties, Inc. Grounding stud and electrical connections

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933763A (en) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd Molten salt fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933763A (en) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd Molten salt fuel cell

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056161B2 (en) 2001-02-20 2006-06-06 Newfrey Llc Grounding stud
WO2007032442A1 (en) * 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. Membrane-membrane stiffening member union, membrane-catalyst layer union, membrane-electrode union, and polymer electrolyte type fuel cell
JP2007242637A (en) * 2005-09-15 2007-09-20 Matsushita Electric Ind Co Ltd Membrane-membrane stiffening member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte type fuel cell
US8663872B2 (en) 2005-09-15 2014-03-04 Panasonic Corporation Method for manufacturing membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2008056661A1 (en) * 2006-11-07 2008-05-15 Panasonic Corporation Film-film reinforcing film assembly, film-catalyst layer assembly, film-electrode assembly, and polymer electrolyte fuel cell
JP5340738B2 (en) * 2006-11-07 2013-11-13 パナソニック株式会社 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
US8192893B2 (en) 2006-11-07 2012-06-05 Panasonic Corporation Membrane-membrane reinforcing membrane assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
US8523505B2 (en) 2006-11-20 2013-09-03 Newfrey Llc Fastening arrangement
US8287219B2 (en) 2006-11-20 2012-10-16 Newfrey Llc Fastening arrangement
US8192895B2 (en) 2007-01-22 2012-06-05 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5214470B2 (en) * 2007-01-22 2013-06-19 パナソニック株式会社 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2008090778A1 (en) * 2007-01-22 2008-07-31 Panasonic Corporation Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
US8182958B2 (en) 2007-01-29 2012-05-22 Panasonic Corporation Membrane membrane-reinforcement-member assembly, membrane catalyst-layer assembly, membrane electrode assembly and polymer electrolyte fuel cell
JP5214471B2 (en) * 2007-01-29 2013-06-19 パナソニック株式会社 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2008093658A1 (en) * 2007-01-29 2008-08-07 Panasonic Corporation Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
US8192896B2 (en) 2007-03-14 2012-06-05 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and method for manufacturing membrane-electrode assembly
JP5214591B2 (en) * 2007-03-14 2013-06-19 パナソニック株式会社 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and method for producing membrane-electrode assembly
WO2008126350A1 (en) * 2007-03-14 2008-10-23 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and process for producing membrane-electrode assembly
US9680239B2 (en) 2014-04-23 2017-06-13 Ramco Specialties, Inc. Grounding stud and electrical connections
JP6122202B1 (en) * 2015-12-24 2017-04-26 日本碍子株式会社 Manifold and fuel cell stack structure
JP2017120768A (en) * 2015-12-24 2017-07-06 日本碍子株式会社 Manifold, and stack structure for fuel cell

Also Published As

Publication number Publication date
JPH0793146B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
KR20070050054A (en) Sofc stack concept
US5811202A (en) Hybrid molten carbonate fuel cell with unique sealing
JPS625569A (en) Molten carbonate type fuel cell stack
JPS61216257A (en) Separator for fuel cell
JPH0775166B2 (en) Molten carbonate fuel cell
JPH04149966A (en) Solid electrolyte-type fuel battery
JPH036624B2 (en)
JPS62122070A (en) Molten carbonate fuel cell stack
JPH0418433B2 (en)
JPH07161365A (en) Separator for fuel cell
JP2011198704A (en) Fuel cell
JPS63116369A (en) Fuel cell
JP2010231902A (en) Fuel cell
JP3339720B2 (en) Molten carbonate fuel cell
JP2000067885A (en) Fuel cell
JPS6386359A (en) Molten carbonate fuel cell stack
JPS5933763A (en) Molten salt fuel cell
JPS5829583B2 (en) Matrix fuel cell
JPH0290470A (en) Lamination type fuel battery
JPH0777133B2 (en) Molten carbonate fuel cell
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JPS63245867A (en) Molten carbonate fuel cell
JP3110902B2 (en) Fuel cell
JPH0679492B2 (en) Molten carbonate fuel cell
JPH0414854Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees