JPS63245867A - Molten carbonate fuel cell - Google Patents
Molten carbonate fuel cellInfo
- Publication number
- JPS63245867A JPS63245867A JP62078656A JP7865687A JPS63245867A JP S63245867 A JPS63245867 A JP S63245867A JP 62078656 A JP62078656 A JP 62078656A JP 7865687 A JP7865687 A JP 7865687A JP S63245867 A JPS63245867 A JP S63245867A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte layer
- side edge
- gas passage
- fuel
- grooves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 64
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims description 26
- 239000003792 electrolyte Substances 0.000 claims abstract description 70
- 239000007789 gas Substances 0.000 claims abstract description 42
- 239000011521 glass Substances 0.000 claims abstract description 16
- 239000002737 fuel gas Substances 0.000 claims abstract description 9
- 239000000155 melt Substances 0.000 claims abstract description 9
- 239000003566 sealing material Substances 0.000 claims description 19
- 239000004327 boric acid Substances 0.000 claims description 8
- 239000007800 oxidant agent Substances 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 125000005619 boric acid group Chemical group 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 abstract description 20
- 239000000565 sealant Substances 0.000 abstract 3
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000005394 sealing glass Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、溶融炭酸塩燃料電池に係り、特に。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to molten carbonate fuel cells, and more particularly to molten carbonate fuel cells.
複数の単位電池を積層した積層体におけるシール構造を
改良した溶融炭酸塩燃料電池に関する。This invention relates to a molten carbonate fuel cell with an improved seal structure in a laminate in which a plurality of unit cells are stacked.
(従来の技術)
溶融炭酸塩燃料電池は、アルカリ炭酸塩からなる電解質
を高温下で溶融状態にし、電極反応を起こさせるもので
、他の燃料電池、たとえばリン酸燃料電池に比べ、高価
な貴金属触媒を必要とせずに発電熱効率が高い等の大き
な特徴を有している。(Prior art) Molten carbonate fuel cells are made by melting an electrolyte made of alkali carbonates at high temperatures to cause an electrode reaction. It has great features such as high heat generation efficiency without the need for a catalyst.
溶融炭酸塩燃料電池の単位電池の出力は微弱である。し
たがって2通常は複数の単位電池を直列に積層して大出
力の発電プラントを構成している。The output of a unit cell of a molten carbonate fuel cell is weak. Therefore, a large output power generation plant is usually constructed by stacking a plurality of unit batteries in series.
単位電池は、アルカリ炭酸塩からなる電解質層と。The unit battery has an electrolyte layer made of alkali carbonate.
この電解質層の両面に当てがわれた一対のガス拡散電極
とで構成されている。そして、積層体を構成するときに
は9通常、単位電池間に2両面に反応性ガスの通路を有
した導電性の隔離板を介在させるようにしている。It consists of a pair of gas diffusion electrodes applied to both sides of this electrolyte layer. When constructing a laminate, a conductive separator plate having reactive gas passages on two surfaces is usually interposed between the unit cells.
ところで、このような溶融炭酸塩燃料電池において、各
電解質層に含まれるアルカリ炭酸塩は。By the way, in such a molten carbonate fuel cell, the alkali carbonate contained in each electrolyte layer is...
反応ガスによる外部への持ち出しや、電池系外への漏出
などによって時間の経過にしたがって減少する傾向があ
る。電解質層内の電解質が減少すると、電解質層のイオ
ン抵抗が増大するので電池性能が徐々に低下する。した
がって、電池性能を長時間に亙って維持させるには、何
等かの手段で電解質の保持量を多くする必要がある。こ
のようなことから、従来、一対のガス拡散電極が多孔質
材で形成されることに着目し、燃料極側を厚肉に形成し
、この燃料極にも電解質を保持させるようにした溶融炭
酸塩燃料電池が考えられている。It tends to decrease over time due to reaction gases taking it outside or leaking out of the battery system. When the electrolyte in the electrolyte layer decreases, the ionic resistance of the electrolyte layer increases, resulting in a gradual decline in battery performance. Therefore, in order to maintain battery performance over a long period of time, it is necessary to increase the amount of electrolyte retained by some means. For this reason, conventionally, we focused on the fact that a pair of gas diffusion electrodes are made of a porous material, and created a molten carbon dioxide solution by forming a thick wall on the fuel electrode side so that the fuel electrode also retains the electrolyte. Salt fuel cells are being considered.
このように、燃料極にも電解質を保持させるようにした
溶融炭酸塩燃料電池の積層体Xは1通常。As described above, the laminate X of a molten carbonate fuel cell in which the fuel electrode also holds an electrolyte is usually 1.
第4図に示すように構成されている。すなわち。It is constructed as shown in FIG. Namely.
この積層体Xは、単位電池1を導電性の隔離板2を介し
て複数積層したものとなっている。単位電池1は、アル
カリ炭酸塩を含んだ平板状の電解質層3と、厚肉の多孔
質材で形成され電解質層3の一方の面に当てがわれる上
記電解質層3と同じ縦横寸法の燃料極(アノード)4と
、この燃料極4の反電解質層側に位置する面に複数条平
行に形成され図中太矢印Pで示すように燃料ガスを通流
させるためのガス通路溝5と、薄肉の多孔質$4で形成
され電解質層3の他方の面に当てがわれる酸化剤極(カ
ソード)6とで構成されている。一方。This laminate X is made up of a plurality of unit batteries 1 stacked with conductive separators 2 interposed therebetween. The unit cell 1 includes a flat electrolyte layer 3 containing an alkali carbonate, and a fuel electrode formed of a thick porous material and having the same vertical and horizontal dimensions as the electrolyte layer 3, which is applied to one surface of the electrolyte layer 3. (anode) 4, a plurality of gas passage grooves 5 formed in parallel on the surface of the fuel electrode 4 located on the anti-electrolyte layer side and for allowing fuel gas to flow therethrough as shown by thick arrows P in the figure; and an oxidizer electrode (cathode) 6 formed of a porous material 4 and applied to the other surface of the electrolyte layer 3. on the other hand.
隔離板2は、ステンレス鋼などの導電性金属材で形成さ
れたもので、縦横寸法が電解質層3のそれと等しく形成
された隔離板本体7と、この隔離板本体7の一方の面の
対向する2辺部にたとえばろう付は固定されて図中太矢
印Qで示すように酸化剤ガスを通流させるためのガス通
路溝8を構成する側壁部材9a、9bとで構成されてい
る。そして、この隔離板2は、ガス通路溝8内に酸化剤
ガスを分流させる機能と集電機能とを発揮する導電性の
波板10を装着した状態で酸化剤極6を嵌入させ、この
状態で電解質層3の前記他方の面に当てがわれている。The separator 2 is made of a conductive metal material such as stainless steel, and includes a separator main body 7 whose vertical and horizontal dimensions are equal to those of the electrolyte layer 3, and one surface of the separator main body 7 that faces opposite to the separator main body 7. It is comprised of side wall members 9a and 9b which are fixed by brazing, for example, to the two sides and form gas passage grooves 8 for passing the oxidizing gas, as shown by thick arrows Q in the figure. The separator plate 2 is fitted with a conductive corrugated plate 10 that has a function of dividing the oxidant gas into the gas passage groove 8 and a current collecting function, and then the oxidizer electrode 6 is fitted therein. is applied to the other surface of the electrolyte layer 3.
このように構成された積層体Xでは、燃料極4のガス通
路溝5間においても電解質を保持するようにしている。In the stacked body X configured in this manner, the electrolyte is retained even between the gas passage grooves 5 of the fuel electrode 4.
このように主要部が構成される溶融炭酸塩燃料電池にあ
っては、ガス通路溝5およびガス通路溝8を通流する各
ガスが外部へ漏れるのを防止するために、(1)燃料極
4のガス通路溝5と平行する側縁部分11と電解質層3
の側縁部分12とが直接接触する部分、(2)燃料極4
の側縁部分11と隔離板本体7の側縁部分とが直接接触
する部分、(3)電解質層3の側縁部分と側壁部材9a
、9bとが直接接触する部分をガスシールする必要があ
る。このシール手段としては9通常、積層体Xを形成し
た後、電池作動温度(Li2CO3/ K 2 CO3
からなる2元素電解質の場合には一般に650℃)まで
昇温させ、この昇温によって溶融した電解質でシールす
るようにしている。すなわち、電解質は昇温途」二の4
88℃で溶融し、この溶融物が前記接触部分に存在する
間隙に侵入し、これによってガスシールが行なわれる。In the molten carbonate fuel cell whose main parts are configured in this way, in order to prevent each gas flowing through the gas passage grooves 5 and 8 from leaking to the outside, (1) the fuel electrode 4 and the side edge portion 11 parallel to the gas passage groove 5 and the electrolyte layer 3
(2) a portion in direct contact with the side edge portion 12 of the fuel electrode 4;
(3) a portion where the side edge portion 11 of the electrolyte layer 3 and the side edge portion of the separator body 7 directly contact; (3) the side edge portion of the electrolyte layer 3 and the side wall member 9a;
, 9b, it is necessary to gas-seal the parts that come into direct contact with the parts. As this sealing means, after forming the laminate X, the battery operating temperature (Li2CO3/K2CO3
In the case of a two-element electrolyte, the temperature is generally raised to 650° C., and the temperature is raised to seal with the molten electrolyte. In other words, the electrolyte is heating up.
It melts at 88° C. and this melt penetrates the gap present in the contact area, thereby creating a gas seal.
しかしながら、上記のように構成され、上記のようなガ
スシール方式を採用した従来の溶融炭酸塩燃料電池にあ
っては次のような問題があった。However, the conventional molten carbonate fuel cell configured as described above and employing the gas seal method as described above has the following problems.
すなわち、ガスシール部を電解質を使ってウェットシー
ルしているので、側壁部材9a、9bと電解質層3の側
縁部分との平坦な接触部については良好にシールするこ
とができるが、特に、燃料極4の側縁部分11と電解質
層3の側縁部分12との接触部については、電解質を充
分に浸透させることが困難であった。このため、この接
触部のシールが不十分となって反応性ガスの有効利用が
図れず、これに伴う反応性ガスの供給不足が原因して電
池電圧が低下する問題があった。また、このようなウェ
ットシール方式であると、電池降温時に電解質層3と燃
料極4との熱膨張率の差によって、電解質層3の特に側
縁部分12にクラックが生じ易く、耐熱サイクル性が低
いと言う問題もあった。That is, since the gas seal portion is wet-sealed using the electrolyte, the flat contact portions between the side wall members 9a and 9b and the side edge portions of the electrolyte layer 3 can be well sealed. It was difficult to sufficiently penetrate the electrolyte into the contact area between the side edge portion 11 of the pole 4 and the side edge portion 12 of the electrolyte layer 3. For this reason, the sealing of this contact portion is insufficient, and the effective use of the reactive gas cannot be achieved, resulting in a problem that the battery voltage decreases due to the insufficient supply of the reactive gas. In addition, with such a wet seal method, cracks are likely to occur in the electrolyte layer 3, especially in the side edge portions 12, due to the difference in thermal expansion coefficient between the electrolyte layer 3 and the fuel electrode 4 when the temperature of the battery decreases, resulting in poor thermal cycle resistance. There was also the problem that it was low.
(発明が解決しようとする問題点)
上述の如く、厚肉の燃料極を用い、この燃料極にも電解
質を保持させるようにした従来の溶融炭酸塩燃料電池で
は、電解質層の側縁部分と燃料極の側縁部分との間のガ
スシールを良好に行なうことが困難で、この結果2反応
性ガスの有効利用を図れないばかりか、電池電圧の低下
をもたらし。(Problems to be Solved by the Invention) As described above, in the conventional molten carbonate fuel cell that uses a thick-walled fuel electrode and holds electrolyte also in this fuel electrode, the side edge portion of the electrolyte layer and It is difficult to achieve a good gas seal between the fuel electrode and the side edge portion of the fuel electrode, and as a result, it is not only impossible to effectively utilize the two reactive gases, but also a drop in cell voltage is caused.
しかも耐熱サイクル性も劣ると言う問題があった。Moreover, there was a problem that the heat cycle resistance was also poor.
そこで本発明は、上述した不具合を解消できる溶融炭酸
塩燃料電池を提供することを目的としている。Therefore, an object of the present invention is to provide a molten carbonate fuel cell that can eliminate the above-mentioned problems.
[発明の構成]
(問題点を解決するための手段)
本発明に係る溶融炭酸塩燃料電池では、電解質層の側縁
部分と燃料極の側縁部分との間のガスシール部分を次の
ように構成している。すなわち。[Structure of the Invention] (Means for Solving the Problems) In the molten carbonate fuel cell according to the present invention, the gas seal portion between the side edge portion of the electrolyte layer and the side edge portion of the fuel electrode is constructed as follows. It is composed of Namely.
燃料極の側縁部分て、電解質層側に位置する面に。At the side edge of the fuel electrode, on the side facing the electrolyte layer.
燃料ガス通路溝と平行に一条以上の溝を設け、この溝内
にホウ酸系ガラスを主成分とし、リチウム含有酸化物を
副成分とし、加熱されたとき溶融して」二記電解質層に
密着するとともに上記側縁部分に浸透するシール材を装
着している。One or more grooves are provided parallel to the fuel gas passage grooves, and in these grooves, boric acid glass is the main component and lithium-containing oxide is the sub-component, which melts when heated and adheres to the electrolyte layer. At the same time, a sealing material that penetrates into the side edge portion is attached.
(作用)
上記のように装着されたシール材は、加熱されると溶融
して電解質層に密着するばかりか、圧力の加わらない溝
内を溝の内面に充分馴染みながら溝の幅方向へと広がり
、良好なシール機能を発揮する。また、ホウ酸系ガラス
を主成分としたシール祠は電解質との相溶性が低いため
、長期に亙って使用しても相互での溶解による移動がな
く安定したシール性能を発揮する。さらに、ホウ酸系ガ
ラスは、電解質との相互溶解性が低いため、電池降温時
にシール部分で起こり易い電解質層と燃料極との融着現
象を抑制する。このため、電池降温時に、電解質層と燃
料極との熱膨張差によってシール部の電解質層側に起こ
り易いクラックの発生を抑制でき、これによって耐熱サ
イクル性の向」二にも寄与する。(Function) When the sealing material installed as described above is heated, it not only melts and adheres to the electrolyte layer, but also spreads in the width direction of the groove while fully fitting into the inner surface of the groove where no pressure is applied. , exhibits good sealing function. In addition, since the sealing cage mainly composed of boric acid glass has low compatibility with the electrolyte, it exhibits stable sealing performance without movement due to mutual dissolution even after long-term use. Furthermore, since boric acid glass has low mutual solubility with the electrolyte, it suppresses the phenomenon of fusion between the electrolyte layer and the fuel electrode, which tends to occur at the sealing part when the temperature of the battery decreases. Therefore, it is possible to suppress the occurrence of cracks that tend to occur on the electrolyte layer side of the sealing portion due to the difference in thermal expansion between the electrolyte layer and the fuel electrode when the battery temperature is lowered, thereby contributing to improved heat cycle resistance.
(実施例) 以下、本発明の実施例を図面を参照しながら説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
本発明に係る溶融炭酸塩燃料電池は外観的には従来のも
のと変わりないが、単位電池を構成する要素、特に電解
質を保持する機能を有した厚肉の燃料極部分が改良され
ている。The molten carbonate fuel cell according to the present invention does not differ from the conventional one in appearance, but the elements constituting the unit cell, particularly the thick-walled fuel electrode portion that has the function of retaining the electrolyte, have been improved.
第1図には本発明によって改良された燃料極4aと、こ
の燃料極4aの一方の面に密接して設けられる隔離板2
とが示されている。FIG. 1 shows a fuel electrode 4a improved according to the present invention and a separator 2 provided closely on one side of the fuel electrode 4a.
is shown.
燃料極4aは、厚肉の多孔質料で図示しない電解質層の
縦横寸法と等しい寸法に形成されており。The fuel electrode 4a is made of a thick porous material and has dimensions equal to the length and width dimensions of an electrolyte layer (not shown).
隔離板2側に位置する面には燃料ガスを通流させるため
のガス通路溝5が複数条形成されている。A plurality of gas passage grooves 5 are formed on the surface located on the side of the separator 2 to allow fuel gas to flow therethrough.
そして、電解質層側に位置する面で、ガス通路溝5と平
行する側縁部分11.つまり電解質層の両側縁部分に接
触してシール部を形成する部分には。A side edge portion 11. which is parallel to the gas passage groove 5 on the surface located on the electrolyte layer side. In other words, the parts that contact both side edge parts of the electrolyte layer to form a seal part.
たとえば幅5mm、深さ1.5mmの溝15が形成され
ている。For example, a groove 15 with a width of 5 mm and a depth of 1.5 mm is formed.
一方、隔離板2は、従来のものと同様に、隔離板本体7
と、この隔離板本体7の反燃料極側に位置する面でガス
通路溝5が延びる方向とは直交する両側部に固定されて
酸化剤ガスを通流させるためのガス通路溝8を形成する
側壁部材9a、9bとで構成されている。単位電池を構
成する他の要素は全て第4図に示した従来のものと同様
に構成されている。On the other hand, the separator 2 has a separator main body 7 similar to the conventional one.
A gas passage groove 8 is fixed to the surface of the separator body 7 located on the side opposite to the fuel electrode, which is perpendicular to the direction in which the gas passage groove 5 extends, to form a gas passage groove 8 for passing the oxidizing gas therethrough. It is composed of side wall members 9a and 9b. All other elements constituting the unit battery are constructed in the same manner as the conventional one shown in FIG.
そして9本発明に係る溶融炭酸塩燃料電池では。and 9 in the molten carbonate fuel cell according to the present invention.
上記のように構成された燃料極4aを構成要素の一部と
する単位電池を次のようにして積層して第4図に示すよ
うな積層体Xを構成している。すなわち、燃料極4aの
各溝15内に、ホウ酸系ガラスを主成分としたシール材
、たとえばB203−ZnO−8iO3ガラス(軟化点
500’C)粉末に、保持材としてのアルミン酸リチウ
ム粉末(ガラス9部に対して1部)および粘度調整用溶
媒としてのシリコーンオイル(ガラス、アルミナ混合粉
10部に対して4部)を添加してなる混合物を混練し。A laminate X as shown in FIG. 4 is constructed by stacking unit cells having the fuel electrode 4a constructed as described above as a component in the following manner. That is, in each groove 15 of the fuel electrode 4a, a sealing material mainly composed of boric acid glass, such as B203-ZnO-8iO3 glass (softening point 500'C) powder, and lithium aluminate powder ( A mixture obtained by adding silicone oil (1 part to 9 parts of glass) and silicone oil (4 parts to 10 parts of glass and alumina mixed powder) as a viscosity adjusting solvent was kneaded.
引き続いてロール成形し、これを紐状に切断加工してな
るシール材16を装着した状態で単位電池を順次組立て
積層して積層体Xを構成している。Subsequently, the unit batteries are successively assembled and stacked to form a laminate X with a sealing material 16 formed by roll forming and cutting into a string shape attached thereto.
そして、この積層体Xを締付はバー等で締付けた後、外
部加熱によって電池運転温度(650’C)まで一旦昇
温させている。この加熱によって、シール材16が軟化
点近傍(500’C)で溶融し、最終的に電解質層に密
着するとともに溝15内に充分染み込む。After this laminate X is tightened with a bar or the like, the temperature is once raised to the battery operating temperature (650'C) by external heating. Due to this heating, the sealing material 16 is melted near its softening point (500'C), and finally comes into close contact with the electrolyte layer and penetrates into the grooves 15 sufficiently.
このように昇温させた後、積層体Xの4つの側面に通常
の方法で反応性ガス供給用のマニホールドを取付けて最
終的な燃料電池を構成したものとなっている。After raising the temperature in this manner, manifolds for supplying reactive gas were attached to the four sides of the stacked body X in a conventional manner to construct the final fuel cell.
上記のように構成された燃料電池について、シール部の
シール性能を確認するために、マニホールドを介してガ
ス通路溝5に水素ガスを、またガス通路溝8に窒素ガス
をそれぞれ流すとともにガス通路溝8を通った窒素ガス
中の水素ガス含有量を触媒燃焼式水素計で測定すること
によって燃料ガス通路のシール性能を調べてみた。また
逆に。Regarding the fuel cell configured as described above, in order to confirm the sealing performance of the seal portion, hydrogen gas was flowed through the gas passage groove 5 and nitrogen gas was flowed through the gas passage groove 8 through the manifold. The sealing performance of the fuel gas passage was investigated by measuring the hydrogen gas content in the nitrogen gas that passed through No. 8 using a catalytic combustion hydrogen meter. And vice versa.
ガス通路溝8に水素ガスを、ガス通路溝5に窒素ガスを
流し、ガス通路溝5を通った窒素ガス中の水素含有量を
同様に測定することによって酸化剤ガス通路のシール性
能を調べてみた。また、参考例として各部寸法および段
数が等しく、かつ溝15およびシール材16を使わずに
シールしたものについても同様の測定を行なってみた。The sealing performance of the oxidizing gas passage was investigated by flowing hydrogen gas into the gas passage groove 8 and nitrogen gas through the gas passage groove 5, and measuring the hydrogen content in the nitrogen gas that passed through the gas passage groove 5. saw. Further, as a reference example, similar measurements were performed on a case in which each part had the same dimensions and the same number of steps, and was sealed without using the groove 15 or the sealing material 16.
その結果、燃料ガス通路のシール性能(酸化剤ガス通路
における水素含有ff1vo1%)は、実施例において
は1.5%であったが、参考例では10.5%であった
。このことから判かるように、本発明の構造を採用する
ことによってガスシール性能を大幅に向」ニさせること
ができることが確認された。As a result, the sealing performance of the fuel gas passage (hydrogen content ff1vo1% in the oxidant gas passage) was 1.5% in the example, but 10.5% in the reference example. As can be seen from this, it was confirmed that by employing the structure of the present invention, gas sealing performance could be significantly improved.
また、実施例の積層電池を50℃/hの速度で室温まで
降温し、マニホールド側面から見える部分の電解質層に
形成されたクラック数を確認したところ、シール材16
を使用しない場合に比べて1/3に減少していることが
確認された。In addition, when the temperature of the laminated battery of the example was lowered to room temperature at a rate of 50°C/h and the number of cracks formed in the electrolyte layer visible from the side of the manifold was confirmed, it was found that the sealing material 16
It was confirmed that the amount was reduced to 1/3 compared to when not using.
このように、ホウ酸系ガラスを主成分とするシール材1
6を前記関係に装着しているので、このシール材16の
溶融物の燃料極4aへの馴染み作用および電解質層への
密着作用によて良好なシール機能を発揮させることがで
きる。また、ホウ酸系ガラスを主成分としたシール材1
6は電解質との相溶性が低いため、長期に亙って使用し
ても相互での溶解による移動がない。したがって、長期
に亙って安定したシール性能を発揮させることができる
。さらに、ホウ酸系ガラスは、電解質との相互溶解性が
低いため、電池降温時にシール部分で起こり易い電解質
層と燃料極との融着現象を抑制する。このため、電池降
温時に、電解質層と燃料極との熱膨張差によってシール
部の電解質層側に起こり易いクラックの発生を抑制でき
、これによって耐熱サイクル性の向上化も図ることがで
きる。In this way, the sealing material 1 whose main component is boric acid glass
Since the sealing material 16 is installed in the above-mentioned relationship, a good sealing function can be exhibited by the action of the sealing material 16 adapting the molten material to the fuel electrode 4a and adhering to the electrolyte layer. In addition, sealing material 1 whose main component is boric acid glass
Since 6 has low compatibility with the electrolyte, there is no movement due to mutual dissolution even after long-term use. Therefore, stable sealing performance can be exhibited over a long period of time. Furthermore, since boric acid glass has low mutual solubility with the electrolyte, it suppresses the phenomenon of fusion between the electrolyte layer and the fuel electrode, which tends to occur at the sealing part when the temperature of the battery decreases. Therefore, it is possible to suppress the occurrence of cracks that tend to occur on the electrolyte layer side of the sealing portion due to the difference in thermal expansion between the electrolyte layer and the fuel electrode when the battery temperature is lowered, and thereby it is also possible to improve heat cycle resistance.
なお9本発明は上述した実施例に限定されるものではな
い。すなわち、上述した実施例では溝15内に装着する
シール材16の副成分としてLiA102を使用してい
るが、ジルコン酸リチウム。Note that the present invention is not limited to the embodiments described above. That is, in the embodiment described above, LiA102 is used as a subcomponent of the sealing material 16 installed in the groove 15, but lithium zirconate.
チタン酸リチウムを用いてもよい。また、上述した実施
例では、シール用ガラスとして、ガラス粉末をシリコー
ンオイルで混練したパテ状のものを用い、これをシール
用の溝に装着するようにしているが、溝に内接する多孔
質の丸棒または角棒にガラスを溶融含浸させたものを溝
内に装着するようにしてもよい。この場合、多孔質棒と
して、アルミナ、高気孔率金属に溶融アルミメッキを施
したもの、あるいは硬質ガラスを用いることができる。Lithium titanate may also be used. In addition, in the above-mentioned embodiment, a putty-like material made by kneading glass powder with silicone oil is used as the sealing glass, and this is attached to the sealing groove, but the porous material inscribed in the groove A round rod or a square rod fused and impregnated with glass may be installed in the groove. In this case, alumina, a high-porosity metal plated with hot-dip aluminum, or hard glass can be used as the porous rod.
また、上述した実施例では、シール材を装着するための
溝を燃料極の側縁部分に一条ずつ設けているが、複数条
ずつ設けてもよい。また、実施例では、燃料極の電解質
層側に位置する面に溝15を設け、この溝15にシール
材16を装着しているが、第3図に示すように隔離板7
側に位置する面にも溝]5を設け、この溝15にシール
材16を装着するようにしてもよい。この場合9図示の
如く両面の溝が幅方向に交互に位置するように条溝を配
置してもよい。両面にシール用の溝]5を設ける場合に
は、隔離板本体7のシール材16に接触する面に浅い筋
条の溝(深さ0.1mm。Further, in the above embodiment, one groove for attaching the sealing material is provided on the side edge portion of the fuel electrode, but a plurality of grooves may be provided. In addition, in the embodiment, a groove 15 is provided on the surface of the fuel electrode located on the electrolyte layer side, and a sealing material 16 is attached to this groove 15. As shown in FIG.
A groove] 5 may also be provided on the side surface, and a sealing material 16 may be attached to this groove 15. In this case, the grooves may be arranged so that the grooves on both sides are alternately located in the width direction as shown in Figure 9. When sealing grooves 5 are provided on both sides, shallow striated grooves (depth 0.1 mm) are provided on the surface of the separator body 7 that contacts the sealing material 16.
幅0.05mm)を多数設け、この面にシール用のガラ
スが馴染むようにすることか望ましい。また、積層電池
を分解して一部の単位電池を取替える際に。It is preferable to provide a large number of 0.05 mm wide holes so that the sealing glass can fit into these surfaces. Also, when disassembling a stacked battery and replacing some unit batteries.
電極と波板との固着が原因して抜き出しセル以外のセル
の破損を防止するために波板の表面にBN粉末を塗布す
るようにしてもよい。また、波板にスリット状の孔を多
数設けるようにしてもよい。さらに、波板および隔離板
の耐食性を向上させるために、これらの酸化剤極側に位
置する表面にNiFc204層を薄く形成してもよい。In order to prevent cells other than the extracted cells from being damaged due to adhesion between the electrode and the corrugated sheet, BN powder may be applied to the surface of the corrugated sheet. Further, a large number of slit-like holes may be provided in the corrugated plate. Furthermore, in order to improve the corrosion resistance of the corrugated plate and the separator plate, a thin NiFc204 layer may be formed on the surface located on the oxidizing agent electrode side.
[発明の効果]
以」二述べたように1本発明によれば、燃料極を使った
電解質の保持機能に同等悪影響を与えることなく、積層
体の確実なシールを実現でき、これによって反応性ガス
の有効利用化を図れ、電池電圧の低下を防止できるばか
りか、耐熱サイクル性を向上させ得る溶融炭酸塩燃料電
池を提供できる。[Effects of the Invention] As mentioned above, according to the present invention, it is possible to achieve reliable sealing of the laminate without having the same adverse effect on the electrolyte retention function using the fuel electrode, thereby reducing reactivity. It is possible to provide a molten carbonate fuel cell that not only can effectively utilize gas and prevent a drop in battery voltage, but also can improve heat cycle resistance.
第1図は本発明の一実施例に係る溶融炭酸塩燃料電池に
組み込まれた燃料極および隔離板の斜視図、第2図は同
燃料電池の積層体を局部的に取出して示す縦断面図、第
3図は積層体の変形例を説明するための図、第4図は従
来の溶融炭酸塩燃料電池における積層体の分解斜視図で
ある。
X・・・積層体、1・・・単位電池、2・・・隔離板、
3・・・電解質層、4.4a・・・燃料極、5・・・ガ
ス通路溝。
6・・・酸化剤極、8・・・ガス通路溝、10・・・波
板。
11.12・・・側縁部分、15・・・溝、16・・・
シール材。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
年 3 図
第4図FIG. 1 is a perspective view of a fuel electrode and a separator incorporated in a molten carbonate fuel cell according to an embodiment of the present invention, and FIG. 2 is a vertical sectional view showing a partially taken out stack of the same fuel cell. , FIG. 3 is a diagram for explaining a modified example of the laminate, and FIG. 4 is an exploded perspective view of the laminate in a conventional molten carbonate fuel cell. X... Laminated body, 1... Unit battery, 2... Separation plate,
3... Electrolyte layer, 4.4a... Fuel electrode, 5... Gas passage groove. 6... Oxidizer electrode, 8... Gas passage groove, 10... Corrugated plate. 11.12...Side edge portion, 15...Groove, 16...
Seal material. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Year 3 Figure 4
Claims (3)
質層と、この電解質層の一方の面に当てがわれる上記電
解質層と縦横寸法が等しい多孔質材製の燃料極と、この
燃料極の反電解質層側に位置する面に複数条平行に形成
された燃料ガス通路溝と、前記電解質層の他方の面に当
てがわれる多孔質材製の酸化剤極とからなる単位電池を
、一方の面に酸化剤ガス通路溝を有し、このガス通路溝
内に前記酸化剤極を嵌入させた状態で前記電解質層の前
記他方の面に当てがわれる導電性の隔離板を介して複数
積層した積層体を備え、前記燃料極の前記燃料ガス通路
溝と平行する側縁部分と前記電解質層の側縁部分および
前記隔離板の側縁部分とが直接接触する部分を溶融電解
質を使ってシールするようにした溶融炭酸塩燃料電池に
おいて、前記燃料極の前記側縁部分で、前記電解質層側
に位置する面に、前記燃料ガス通路溝と平行に一条以上
の溝を設け、この溝内にホウ酸系ガラスを主成分とし、
リチウム含有酸化物を副成分とし、加熱されたとき溶融
して上記電解質層に密着するとともに上記側縁部分に浸
透するシール材を装着してなることを特徴とするとする
溶融炭酸塩燃料電池。(1) A flat electrolyte layer containing carbonate that melts at operating temperature, a fuel electrode made of a porous material and having the same vertical and horizontal dimensions as the electrolyte layer applied to one side of the electrolyte layer, and this fuel A unit cell comprising a plurality of fuel gas passage grooves formed in parallel on a surface of the electrode located on the side opposite to the electrolyte layer, and an oxidizer electrode made of a porous material applied to the other surface of the electrolyte layer, One surface has an oxidizing gas passage groove, and the oxidizing agent electrode is fitted into the gas passage groove, and a plurality of conductive separators are connected to each other through a conductive separator plate applied to the other surface of the electrolyte layer. A molten electrolyte is used to form a portion in which a side edge portion of the fuel electrode parallel to the fuel gas passage groove, a side edge portion of the electrolyte layer, and a side edge portion of the separator plate are in direct contact with each other. In a sealed molten carbonate fuel cell, one or more grooves are provided in the side edge portion of the fuel electrode on the surface located on the electrolyte layer side in parallel with the fuel gas passage groove, and The main component is boric acid glass,
A molten carbonate fuel cell characterized in that it is equipped with a sealing material containing a lithium-containing oxide as a subcomponent, which melts when heated and comes into close contact with the electrolyte layer, and also penetrates into the side edge portions.
に設定されていることを特徴とする特許請求の範囲第1
項記載の溶融炭酸塩燃料電池。(2) The composition of the sealing material is set such that it can be melted and sealed.
The molten carbonate fuel cell described in Section 1.
は、LiAlO_2であることを特徴とする特許請求の
範囲第1項記載の溶融炭酸塩燃料電池。(3) The molten carbonate fuel cell according to claim 1, wherein the lithium-containing oxide that is a subcomponent of the sealing material is LiAlO_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62078656A JP2621863B2 (en) | 1987-03-31 | 1987-03-31 | Molten carbonate fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62078656A JP2621863B2 (en) | 1987-03-31 | 1987-03-31 | Molten carbonate fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63245867A true JPS63245867A (en) | 1988-10-12 |
JP2621863B2 JP2621863B2 (en) | 1997-06-18 |
Family
ID=13667903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62078656A Expired - Fee Related JP2621863B2 (en) | 1987-03-31 | 1987-03-31 | Molten carbonate fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2621863B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0426265A2 (en) * | 1989-09-12 | 1991-05-08 | Mitsubishi Jukogyo Kabushiki Kaisha | Solid electrolyte fuel cell |
EP0921583A1 (en) * | 1997-12-05 | 1999-06-09 | Siemens Aktiengesellschaft | Sealing of high temperature fuel cells and high temperature fuel cell stacks |
EP2377191A2 (en) * | 2008-12-17 | 2011-10-19 | Saint-Gobain Ceramics & Plastics, Inc. | Electrode gas channel supports and methods for forming internal channels |
JP2014216119A (en) * | 2013-04-24 | 2014-11-17 | 株式会社ノリタケカンパニーリミテド | Green sheet for solid oxide fuel cell and manufacturing method therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5996670A (en) * | 1982-11-26 | 1984-06-04 | Agency Of Ind Science & Technol | Fused-carbonate fuel cell |
JPS61292862A (en) * | 1985-06-20 | 1986-12-23 | Toshiba Corp | Molten carbonate type fuel cell |
-
1987
- 1987-03-31 JP JP62078656A patent/JP2621863B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5996670A (en) * | 1982-11-26 | 1984-06-04 | Agency Of Ind Science & Technol | Fused-carbonate fuel cell |
JPS61292862A (en) * | 1985-06-20 | 1986-12-23 | Toshiba Corp | Molten carbonate type fuel cell |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0426265A2 (en) * | 1989-09-12 | 1991-05-08 | Mitsubishi Jukogyo Kabushiki Kaisha | Solid electrolyte fuel cell |
EP0921583A1 (en) * | 1997-12-05 | 1999-06-09 | Siemens Aktiengesellschaft | Sealing of high temperature fuel cells and high temperature fuel cell stacks |
EP2377191A2 (en) * | 2008-12-17 | 2011-10-19 | Saint-Gobain Ceramics & Plastics, Inc. | Electrode gas channel supports and methods for forming internal channels |
EP2377191A4 (en) * | 2008-12-17 | 2013-05-22 | Saint Gobain Ceramics | Electrode gas channel supports and methods for forming internal channels |
JP2014216119A (en) * | 2013-04-24 | 2014-11-17 | 株式会社ノリタケカンパニーリミテド | Green sheet for solid oxide fuel cell and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2621863B2 (en) | 1997-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5232792A (en) | Cell separator plate used in fuel cell stacks | |
BRPI0610685A2 (en) | sofc batteries | |
JPH0775167B2 (en) | Molten carbonate fuel cell and manufacturing method thereof | |
US8420278B2 (en) | Solid oxide fuel cell having a glass composite seal | |
JPS63245867A (en) | Molten carbonate fuel cell | |
JPS625569A (en) | Molten carbonate type fuel cell stack | |
KR20030032310A (en) | Molten Carbonate Fuel Cell | |
JPH0158832B2 (en) | ||
JPS63133457A (en) | Fuel cell of molten carbonate | |
JPH0775166B2 (en) | Molten carbonate fuel cell | |
JP3244310B2 (en) | Solid oxide fuel cell | |
JPH10321245A (en) | Molten carbonate type fuel cell | |
JPH0358153B2 (en) | ||
JPS5996668A (en) | Bipolar separator for fuel cell | |
JPS61248369A (en) | Fused carbonate fuel cell | |
JPS5933763A (en) | Molten salt fuel cell | |
JPS61292862A (en) | Molten carbonate type fuel cell | |
JPH0777133B2 (en) | Molten carbonate fuel cell | |
JPH07326374A (en) | Fuel cell | |
JPS63116369A (en) | Fuel cell | |
JPH0782866B2 (en) | Molten carbonate fuel cell | |
JPH02121265A (en) | Molten carbonate type fuel cell laminate body | |
JPH036624B2 (en) | ||
KR101180228B1 (en) | Sealant for planar solid oxide fuel cell and sealing method using the same | |
JPS62202465A (en) | Molten carbonate fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |