JPS61292862A - Molten carbonate type fuel cell - Google Patents

Molten carbonate type fuel cell

Info

Publication number
JPS61292862A
JPS61292862A JP60134655A JP13465585A JPS61292862A JP S61292862 A JPS61292862 A JP S61292862A JP 60134655 A JP60134655 A JP 60134655A JP 13465585 A JP13465585 A JP 13465585A JP S61292862 A JPS61292862 A JP S61292862A
Authority
JP
Japan
Prior art keywords
fuel cell
molten carbonate
manifold
boric acid
manifolds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60134655A
Other languages
Japanese (ja)
Other versions
JPH0815094B2 (en
Inventor
Hakaru Ogawa
斗 小川
Kenji Murata
謙二 村田
Hideyuki Ozu
秀行 大図
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60134655A priority Critical patent/JPH0815094B2/en
Publication of JPS61292862A publication Critical patent/JPS61292862A/en
Publication of JPH0815094B2 publication Critical patent/JPH0815094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent molten carbonate from touching the manifolds and the manifold seal contact surfaces of the separators thus to prevent corrosion of the seal part by using a material mainly composed of boracic acid system glass as a seal body between the manifolds and the sides of a fuel cell proper. CONSTITUTION:A fuel cell proper 1 comprises laminated plural unit cells 3 through separators 4 between the end plates 2a and 2b. Felts 7a-7d formed of angular and annular alumina fibers are stuck together to the flange parts of manifolds 8a-8d respectively while boracic acid glass powder is applied to the surfaces of said felts 7a-7d. The manifolds 8a-8d provided with said bodies are fitted to each side of the fuel cell proper 1 for forming the fuel cell. The thus constituted fuel cell generates no corrosion even when its temperature is raised up to 650 deg.C while being operated for 200hr.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、経時的な性能劣化を抑制した溶融炭酸塩型燃
料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a molten carbonate fuel cell that suppresses performance deterioration over time.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年開発が進められている溶融炭酸塩型燃料電池は、ア
ルカリ炭酸塩からなる電解質を高温下で溶融状態にし、
電極反応を起こさせるもので、リン酸型、固体電解質型
等の他の燃料電池に比べ、電極反応か起り易く、発電熱
効率が高いという利点を有する。
Molten carbonate fuel cells, which have been under development in recent years, use an electrolyte made of alkali carbonate that is molten at high temperatures.
It causes an electrode reaction, and compared to other fuel cells such as phosphoric acid type and solid electrolyte type, it has the advantage that electrode reaction occurs more easily and heat generation efficiency is higher.

このような溶融炭酸塩型燃料電池で高出力の発電プラン
トを構成するには、単位電池の出力が微弱であることか
ら複数の単位電池を直列に積層して燃料電池本体を構成
し、各単位電池の加算出力を得る必要がある。このため
、通常、この種の燃料電池は次のように構成される。
In order to construct a high-output power generation plant using such a molten carbonate fuel cell, since the output of the unit cell is weak, the fuel cell body is constructed by stacking multiple unit cells in series, and each unit It is necessary to obtain the additive output of the battery. For this reason, this type of fuel cell is usually configured as follows.

すなわち、各単位電池は一対の多孔質電極板と、これら
の間に介在させた炭酸塩からなる電解質層とで構成され
る。これら単位電池は単位電池間の電気的な接続機能と
各電極板への反応ガスの通路を提供する機能とを兼ね備
えた導電性のセパレータを介して積層される。
That is, each unit cell is composed of a pair of porous electrode plates and an electrolyte layer made of carbonate interposed between them. These unit cells are stacked with conductive separators interposed therebetween, which have both the function of electrical connection between the unit cells and the function of providing a passage for reactant gas to each electrode plate.

このように構成された燃料電池本体の4つの側面には、
反応ガスの分配・回収機能を有するマニホールドが当て
がわれる。そして、これらマニホールドのうちの一つに
酸化剤ガスを供給するとともに隣接するマニホールドに
燃料ガスを供給し、燃料電池本体内部で両ガスを電極反
応に寄与させ直流出力を得た後、それぞれの対向するマ
ニホールドからガスを排出する構成をとる。
The four sides of the fuel cell main body configured in this way are as follows:
A manifold with the function of distributing and collecting reaction gases is used. Oxidizing gas is then supplied to one of these manifolds and fuel gas is supplied to the adjacent manifold, and both gases contribute to electrode reactions inside the fuel cell main body to obtain DC output, and then The structure is such that the gas is exhausted from the manifold.

各単位電池の周縁部には、両支店ガスが燃料電池本体の
内部の意図しない側へ漏洩、混入するのを防止するため
のウェットシール部が形成される。
A wet seal portion is formed at the periphery of each unit cell to prevent the branch gas from leaking or entering into an unintended side of the fuel cell main body.

ところで、上述したマニホールドと燃料電池本体側面と
の間は、反応ガスの漏洩を防止するためのシールを形成
する必要がある。従来は、このシール体として、゛ジル
コニアフェルトに溶融炭酸塩を含浸させたものの使用が
考えられていた。
Incidentally, it is necessary to form a seal between the above-mentioned manifold and the side surface of the fuel cell main body to prevent leakage of the reactant gas. Conventionally, it has been considered to use zirconia felt impregnated with molten carbonate as this sealing body.

しかし、このようなシール体であると、マニホールドの
燃料電池本体に対向するフランジ部や、セパレータの側
面四隅部分は、常にウェットシールとなる溶融炭酸塩と
接触した状態となる。周知のように作動温度600℃〜
700℃で溶融状態にある炭酸塩は腐蝕性を有するため
、上記のような溶融炭酸塩との接触部分は燃料電池の長
期の使用によって腐蝕し、腐蝕減量によって気密性の低
下をもたらすという問題がある。
However, with such a sealing body, the flange portion of the manifold facing the fuel cell main body and the four side corner portions of the separator are always in contact with the molten carbonate serving as a wet seal. As is well known, the operating temperature is 600℃~
Since carbonate in a molten state at 700°C is corrosive, the parts that come into contact with the molten carbonate as described above will corrode with long-term use of the fuel cell, causing a problem in that the corrosion loss will cause a decrease in airtightness. be.

また、これに伴って生じた電子伝導性を有する腐蝕生成
物が、単位電池間あるいは単位電池とマニホールド間の
短絡を引き起こしたり、イオン伝導性を有する溶融炭酸
塩を通じて単位電池間に漏洩電流が流れるなどして電池
性能の低下をもたらすことに加え、漏洩電流が流れるこ
とによって電解質が単位電池間にまたがって移動してし
まうという問題があった。
In addition, corrosion products with electronic conductivity that occur along with this may cause short circuits between unit batteries or between unit batteries and manifolds, and leakage current may flow between unit batteries through molten carbonate that has ionic conductivity. In addition to deteriorating battery performance, there is a problem in that the leakage current causes the electrolyte to move across the unit cells.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した問題に基づきなされたもので、シー
ル部の腐蝕を防止して長期に厘りシール性能および電池
性能が低下することの□ない溶融炭酸塩型燃料電池を提
供することを目的とする。
The present invention was made based on the above-mentioned problem, and an object of the present invention is to provide a molten carbonate fuel cell that prevents corrosion of the seal portion and does not deteriorate seal performance and cell performance over a long period of time. shall be.

〔発明の概要〕[Summary of the invention]

本発明は、単位電池をセパレータを介して複数積層して
なる燃料電池本体と、この燃料電池本体の各側面に当て
がわれ前記各単位電池のガス流路に反応ガスを通流させ
るマニホールドとを備えた溶融炭酸塩型燃料電池におい
て、前記マニホールドと前記燃料電池本体の側面との間
のシール体として、ホウ酸系ガラスを主成分とする材料
を用いたことを特徴としている。
The present invention comprises a fuel cell main body formed by stacking a plurality of unit cells with separators interposed therebetween, and a manifold that is applied to each side of the fuel cell main body and allows a reaction gas to flow through the gas flow path of each of the unit cells. The molten carbonate fuel cell is characterized in that a material containing boric acid glass as a main component is used as a seal between the manifold and the side surface of the fuel cell main body.

〔発明の効果〕〔Effect of the invention〕

ホウ酸系ガラスは燃料電池の動作温度よりも低い温度で
溶融状態になり、しかも溶融炭酸塩を良くはじき、溶融
炭酸塩とは混じらないという性質を有しているので、燃
料電池本体とマニホールドとの間は溶融状態のホウ酸系
ガラスのみによってウェットシールが形成される。した
がって、このホウ酸系ガラスによって溶融炭酸塩がマニ
ホールドやセパレータのマニホールドシール接触面に接
触するを防止でき、シール部が腐蝕するのを極めて有効
に防止することができる。
Boric acid glass becomes molten at a temperature lower than the operating temperature of the fuel cell, and also has the property of repelling molten carbonate and not mixing with it. During this period, a wet seal is formed only by the molten boric acid glass. Therefore, this boric acid glass can prevent molten carbonate from coming into contact with the manifold seal contact surface of the manifold or separator, and can extremely effectively prevent corrosion of the seal portion.

また、このように溶融炭酸塩が浸み出すのを防止できる
と、従来のように腐蝕生成物や炭酸塩を通して漏洩電流
が流れたり、電解質が移動することがないので、長期に
屋って良好な電池性能を維持させることができる。
In addition, if molten carbonate can be prevented from seeping out in this way, there will be no leakage current flowing through corrosion products or carbonate, and electrolyte movement will not occur, which is the case in the past, so it will be better for the long term. battery performance can be maintained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例に基づき説明する。 Hereinafter, details of the present invention will be explained based on illustrated embodiments.

〈実施例1〉 第1図に示すような燃料電池本体上を構成した。<Example 1> The fuel cell main body was constructed as shown in FIG.

この燃料電池本体1は、エンドプレート2a、2bの間
に、複数の単位電池3をセパレータ4を介して積層した
ものである。。単位電池3は一対の多孔質電極板5a、
5bの間に電解質層6を介挿して構成した。電解質層6
は、L i 2 G’03 / K2CO3−62/3
8 (モル比)の混合炭酸塩粉末と、γ−リチウムアル
ミネートの保持材とをホットプレスして得た。セパレー
タ4には、その両面に互いに直交する方向に延びる複数
のガス通流溝4a、4bを形成した。
This fuel cell main body 1 has a plurality of unit cells 3 stacked together with a separator 4 interposed between end plates 2a and 2b. . The unit battery 3 includes a pair of porous electrode plates 5a,
An electrolyte layer 6 was inserted between the layers 5b and 5b. Electrolyte layer 6
is L i 2 G'03 / K2CO3-62/3
8 (molar ratio) of mixed carbonate powder and a γ-lithium aluminate holding material were hot pressed. A plurality of gas flow grooves 4a and 4b extending in directions perpendicular to each other were formed on both surfaces of the separator 4.

一方、角形環状のアルミナファイバーで形成されたフェ
ルト7a、7b、7c、7d’を、マニホールド8a、
8b、8c、 8d(D)5”ジ部ニソれぞれ貼り合わ
せ、このフェルト7a〜7bの表面にホウ酸ガラス粉末
を塗り付けた。フェルト78〜7bは溶融ホウ酸ガラス
を浸透させて保持する保持材となるものであり、上記ホ
ウ酸ガラスとでシール体を構成する。そして、このシー
ル体を設けたマニホールド88〜8dを、燃料電池本体
上の各側面に当てがい、図示しない手段で締付けて燃料
電池を構成した。
On the other hand, the manifold 8a,
8b, 8c, 8d (D) 5" diagonal parts were pasted together, and boric acid glass powder was applied to the surfaces of these felts 7a to 7b. Felts 78 to 7b were held by impregnating them with molten boric acid glass. The manifolds 88 to 8d provided with the seal bodies are applied to each side surface of the fuel cell main body, and are held by means not shown. It was tightened to form a fuel cell.

このように構成された燃料電池を650℃に昇温し、マ
ニホールド8a側からマニホールド8C側へ燃料ガスP
を通流させるとともに、マニホールド8bからマニホー
ルド8d側へ酸化剤ガスQを通流させ、200時間の運
転を行なった。その後、燃料電池の各マニホールド8a
〜8dを取去って、アルミナファイバのフェルト78〜
7ごと接触するマニホールドフランジ部とセパレータ4
の四隅とを調べたところ、腐蝕は確認されなかった。
The temperature of the fuel cell configured in this way is raised to 650°C, and the fuel gas P is transferred from the manifold 8a side to the manifold 8C side.
At the same time, the oxidizing gas Q was passed from the manifold 8b to the manifold 8d side, and the operation was performed for 200 hours. After that, each manifold 8a of the fuel cell
~8d removed, alumina fiber felt 78~
The manifold flange and separator 4 that come into contact with each other
When examining the four corners, no corrosion was found.

また、この燃料電池は200時間運転の後も電池性能の
劣化はほとんどなかった、また、燃料電池本体上の各積
層位置における開路電圧を測定したところ、積層位置に
よる開路電圧の変化は少なく、シール中の炭酸塩を経由
するイオン伝導性の漏洩電流は発生しなかった。
In addition, this fuel cell showed almost no deterioration in cell performance even after 200 hours of operation.Also, when we measured the open circuit voltage at each stacking position on the fuel cell main body, there was little change in open circuit voltage depending on the stacking position, and the seal No ionic conductive leakage current occurred through the carbonates within.

なお、比較のため、従来例と同様にジルコニアフェルト
に溶融炭酸塩を含浸させたシール構造の燃料電池を構成
し、同様の実験を行なったところ、マニホールドやセパ
レータ側端部に腐蝕や短絡が生じていた。また、積層位
置における開路電圧は、高電位側はど低下しており、単
位電池当り50mV程度の劣化を生じていた。
For comparison, a fuel cell with a seal structure in which zirconia felt was impregnated with molten carbonate was constructed in the same way as the conventional example, and when similar experiments were conducted, corrosion and short circuits occurred at the manifold and separator side edges. was. Furthermore, the open circuit voltage at the stacking position was lower on the high potential side, resulting in a deterioration of about 50 mV per unit cell.

〈実施例2〉 ホウ酸系ガラ>eow%、アルミナファイバー10w%
、LiAβ02微粉末20W%、シリコンオイル10w
%を混線して塑性を有するパテ状とした材料を、保持体
となるアルミナファイバーのフェルトの両面に塗り込ん
でシール体を形成し、このシール体を上記実施例1のシ
ール体に代えて燃料電池を構成した。シリコンオイルは
、塑性付与剤として用いるものであるが、この非水性の
シリコンオイルを用いる理由は、水性であると水がシー
ル部から電解質層6に侵入し、電解質保持剤のりチウム
アルミネートを分解してしまうからである。
<Example 2> Boric acid glass> eow%, alumina fiber 10w%
, LiAβ02 fine powder 20W%, silicone oil 10W
A material made into a putty having plasticity by mixing % is applied to both sides of an alumina fiber felt serving as a holding body to form a seal body, and this seal body can be used in place of the seal body of Example 1 above to apply fuel. The battery was constructed. Silicone oil is used as a plasticity imparting agent, but the reason why this non-aqueous silicone oil is used is that if it is aqueous, water will enter the electrolyte layer 6 from the sealing part and decompose the electrolyte retaining agent glue tium aluminate. This is because you end up doing it.

この燃料電池を上記実施例1゛と同様の条件で運転した
。その結果、前述した実施例1と同様の効果を得た。
This fuel cell was operated under the same conditions as in Example 1 above. As a result, the same effects as in Example 1 described above were obtained.

また、この実施例では、シール体が常温でも塑性を有す
るため、第2図中Aで示すように常温の状態から良好な
ガスシール機能を発揮することが確認された。これに対
し、従来例(同図中B)および実施例1(同図中C)の
ものでは、炭酸塩やホウ酸系ガラスが溶融状態となる約
500℃以上にならないと、シール性能が発揮されなか
った。
Furthermore, in this example, since the seal body has plasticity even at room temperature, it was confirmed that it exhibited a good gas sealing function even at room temperature, as shown by A in FIG. On the other hand, in the conventional example (B in the figure) and Example 1 (C in the figure), the sealing performance is not achieved until the temperature reaches approximately 500°C or higher, where the carbonate and boric acid glasses become molten. It wasn't done.

なお、゛本発明は、上述した実施例に限定されるもので
はない。例えば上記実施例1におけるフェルト7a〜7
dとして、ジルコニアファイバー、リチウム化したアル
ミナまたはジルコニアファイバのフェルトを用いても良
い。また、シール体はホウ酸系ガラスに加え、少量のケ
イ素ガラス、酸化亜鉛、酸化鉛が入っていても良い。さ
らには、上記実施例2ではA92031m維を用いたが
、ZrO2,LiZrO2,Si3N+、SiC。
Note that the present invention is not limited to the embodiments described above. For example, the felts 7a to 7 in Example 1 above
As d, zirconia fiber, lithiated alumina, or zirconia fiber felt may be used. Further, the sealing body may contain a small amount of silicon glass, zinc oxide, or lead oxide in addition to boric acid glass. Furthermore, although A92031m fiber was used in the above Example 2, ZrO2, LiZrO2, Si3N+, and SiC.

LtA(20sjINを用いることも考えられる。また
、非水性塑性付与剤としてシリコンオイルの代わりにエ
チレングリコールやフッ素オイルを用いたり、また、生
母のリチウム炭酸塩等の炭酸塩を含ませるようにしても
良い。
It is also possible to use LtA (20sjIN).Also, ethylene glycol or fluorine oil may be used instead of silicone oil as a non-aqueous plasticizing agent, or carbonate such as raw lithium carbonate may be included. good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の−、実施例に係る溶融炭酸塩型燃料電
池の構成を示す分解斜視図、第2図は本発明の第1およ
び第2の実施例と従来例とに係る溶融炭酸塩型燃料電池
のシール性能を示す特性図である。 上・・・燃料電池本体、2a、2b・・・エンドプレー
ト、3・・・単位電池、4・・・セパレータ、5a、5
b・・・多孔質電橋板、6・・・電解質層、7a〜7d
・・・アルミナプアイバーのフェルト、88〜8d・・
・マニホールド、P・・・燃料ガス、Q・・・酸化剤ガ
ス。 出願人代理人 弁理士 鈴江武彦 b 第1図 第2図
FIG. 1 is an exploded perspective view showing the structure of a molten carbonate fuel cell according to an embodiment of the present invention, and FIG. 2 is a molten carbonate fuel cell according to the first and second embodiments of the present invention and a conventional example. FIG. 2 is a characteristic diagram showing the sealing performance of a salt fuel cell. Top...Fuel cell main body, 2a, 2b...End plate, 3...Unit cell, 4...Separator, 5a, 5
b... Porous electric bridge board, 6... Electrolyte layer, 7a to 7d
...Aluminium fiber felt, 88~8d...
・Manifold, P...fuel gas, Q...oxidizer gas. Applicant's agent Patent attorney Takehiko Suzue b Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)単位電池をセパレータを介して複数積層してなる
燃料電池本体と、この燃料電池本体の各側面に当てがわ
れ前記各単位電池のガス流路に反応ガスを通流させるマ
ニホールドとを備えた溶融炭酸塩型燃料電池において、
前記マニホールドと前記燃料電池本体の側面との間に、
ホウ酸系ガラスを主成分とする材料で形成されたシール
体を介在させたことを特徴とする溶融炭酸塩型燃料電池
(1) A fuel cell main body formed by stacking a plurality of unit cells with separators interposed therebetween, and a manifold that is applied to each side of the fuel cell main body and allows a reactant gas to flow through the gas flow path of each of the unit cells. In a molten carbonate fuel cell,
between the manifold and the side surface of the fuel cell main body,
A molten carbonate fuel cell characterized by interposing a seal body formed of a material whose main component is boric acid glass.
(2)前記シール体は、溶融状態の前記ホウ酸系ガラス
に対する濡れ性が良く、しかも前記ホウ酸系ガラスに溶
解しない保持体を含むものであることを特徴とする特許
請求の範囲第1項記載の溶融炭酸塩型燃料電池。
(2) The sealing body includes a holder that has good wettability to the boric acid glass in a molten state and does not dissolve in the boric acid glass. Molten carbonate fuel cell.
(3)前記保持体が、セラミック微粉からなるものであ
ることを特徴とする特許請求の範囲第2項記載の溶融炭
酸塩型燃料電池。
(3) The molten carbonate fuel cell according to claim 2, wherein the holding body is made of fine ceramic powder.
(4)前記シール体が、前記ホウ酸系ガラスの溶融温度
以下の温度で塑性を付与する非水液を含むことを特徴と
する特許請求の範囲第2項記載の溶融炭酸塩型燃料電池
(4) The molten carbonate fuel cell according to claim 2, wherein the sealing body contains a non-aqueous liquid that imparts plasticity at a temperature below the melting temperature of the boric acid glass.
JP60134655A 1985-06-20 1985-06-20 Molten carbonate fuel cell Expired - Fee Related JPH0815094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60134655A JPH0815094B2 (en) 1985-06-20 1985-06-20 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134655A JPH0815094B2 (en) 1985-06-20 1985-06-20 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS61292862A true JPS61292862A (en) 1986-12-23
JPH0815094B2 JPH0815094B2 (en) 1996-02-14

Family

ID=15133450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134655A Expired - Fee Related JPH0815094B2 (en) 1985-06-20 1985-06-20 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0815094B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245867A (en) * 1987-03-31 1988-10-12 Toshiba Corp Molten carbonate fuel cell
JPH01140561A (en) * 1987-08-28 1989-06-01 Mitsubishi Electric Corp Counter electrolyte protection material for power generation system with fused carbonate fuel cell
EP0620608A1 (en) * 1993-04-13 1994-10-19 Murata Manufacturing Co., Ltd. Solid oxide fuel cell and manufacturing process thereof
EP1836739A2 (en) * 2004-12-27 2007-09-26 Fuelcell Energy, Inc. Manifold gasket accommodating differential movement of fuel cell stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245867A (en) * 1987-03-31 1988-10-12 Toshiba Corp Molten carbonate fuel cell
JPH01140561A (en) * 1987-08-28 1989-06-01 Mitsubishi Electric Corp Counter electrolyte protection material for power generation system with fused carbonate fuel cell
EP0620608A1 (en) * 1993-04-13 1994-10-19 Murata Manufacturing Co., Ltd. Solid oxide fuel cell and manufacturing process thereof
EP1836739A2 (en) * 2004-12-27 2007-09-26 Fuelcell Energy, Inc. Manifold gasket accommodating differential movement of fuel cell stack
EP1836739A4 (en) * 2004-12-27 2010-09-01 Fuelcell Energy Inc Manifold gasket accommodating differential movement of fuel cell stack

Also Published As

Publication number Publication date
JPH0815094B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US5453331A (en) Compliant sealants for solid oxide fuel cells and other ceramics
WO1996005626A9 (en) Compliant sealants for solid oxide fuel cells and other ceramics
JP7016028B2 (en) Fuel cell
KR20120081780A (en) A sealing element for solid oxide fuel cell and solid oxide fuel cell employing the same
US8420278B2 (en) Solid oxide fuel cell having a glass composite seal
JPS61292862A (en) Molten carbonate type fuel cell
JP2002313371A (en) Cell unit of fuel cell
JPS625569A (en) Molten carbonate type fuel cell stack
JPH0777133B2 (en) Molten carbonate fuel cell
JPH11111312A (en) Solid electrolyte type fuel cell
JP2621863B2 (en) Molten carbonate fuel cell
JP7054818B2 (en) Fuel cell
JP2585225B2 (en) Molten carbonate fuel cell
JPS6276262A (en) Fused carbonate type fuel cell
JPS63133457A (en) Fuel cell of molten carbonate
JP2932617B2 (en) Solid oxide fuel cell
JPH036624B2 (en)
JPH0850911A (en) Platelike solid electrolytic fuel cell
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JPS6391958A (en) Solid electrolyte fuel cell
JPS63116369A (en) Fuel cell
JP2948439B2 (en) Solid electrolyte fuel cell
JP2606359Y2 (en) Fuel Cell Ceramic Seal Frame
JPS62170172A (en) Molten carbonate fuel cell
KR20080056814A (en) A seperator for fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees