JP2621863B2 - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JP2621863B2
JP2621863B2 JP62078656A JP7865687A JP2621863B2 JP 2621863 B2 JP2621863 B2 JP 2621863B2 JP 62078656 A JP62078656 A JP 62078656A JP 7865687 A JP7865687 A JP 7865687A JP 2621863 B2 JP2621863 B2 JP 2621863B2
Authority
JP
Japan
Prior art keywords
electrolyte layer
groove
gas passage
fuel
edge portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62078656A
Other languages
Japanese (ja)
Other versions
JPS63245867A (en
Inventor
篤夫 宗内
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62078656A priority Critical patent/JP2621863B2/en
Publication of JPS63245867A publication Critical patent/JPS63245867A/en
Application granted granted Critical
Publication of JP2621863B2 publication Critical patent/JP2621863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は,溶融炭酸塩燃料電池に係り,特に,複数の
単位電池を積層した積層体におけるシール構造を改良し
た溶融炭酸燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a molten carbonate fuel cell, and more particularly, to a molten carbonate fuel cell having an improved sealing structure in a stacked body in which a plurality of unit cells are stacked. Related to fuel cells.

(従来の技術) 溶融炭酸燃料電池は,アルカリ炭酸塩からなる電解質
を高温下で溶融状態にし,電極反応を起こさせるもの
で,他の燃料電池,たとえばリン酸燃料電池に比べ,高
価な貴金属触媒を必要とせずに発電熱項効率が高い等の
大きな特徴を有している。
(Prior art) Molten carbon dioxide fuel cell is a type of precious metal catalyst, which makes an electrolyte composed of alkali carbonate melt at a high temperature to cause an electrode reaction, and is more expensive than other fuel cells such as phosphoric acid fuel cell. It has significant features such as a high power generation heat term efficiency without the need for heat generation.

溶融炭酸塩燃料電池の単位電池の出力は微弱である。
したがって,通常は複数の単位電池を直列に積層して大
出力の発電プラントを構成している。単位電池は,アル
カリ炭酸塩からなる電解質層と,この電解質層の両面に
当てがわれた一対のガス拡張電極とで構成されている。
そして,積層体を構成するときには,通常,単位電池間
に,両面に反応性ガスの通路を有した導電性の隔離板を
介在させるようにしている。
The output of the unit cell of the molten carbonate fuel cell is weak.
Therefore, usually, a plurality of unit batteries are stacked in series to constitute a high-output power plant. The unit battery includes an electrolyte layer made of an alkali carbonate, and a pair of gas extension electrodes applied to both sides of the electrolyte layer.
When forming a laminate, a conductive separator having a passage for a reactive gas on both sides is usually interposed between unit cells.

ところで,このような溶融炭酸塩燃料電池において,
各電解質層に含まれるアルカリ炭酸塩は,反応ガスによ
る外部への持ち出しや,電池系外への露出などによって
時間の経過にしたがって減少する傾向がある。電解質層
内の電解質が減少すると,電解質層のイオン抵抗が増大
するので電池性能が徐々に低下する。したがって,電池
性能を長時間に亙って維持させるには,何等かの手段で
電解質の保持量を多くする必要がある。このようなこと
から,従来,一体のガス拡散電極が多孔質材で形成され
ることに着目し,燃料極側を厚肉に形成し,この燃料極
にも電解質を保持させるようにした溶融炭酸塩燃料電池
が考えられている。
By the way, in such a molten carbonate fuel cell,
The alkali carbonate contained in each of the electrolyte layers tends to decrease with the passage of time due to being taken out by the reaction gas or being exposed to the outside of the battery system. When the amount of the electrolyte in the electrolyte layer decreases, the ionic resistance of the electrolyte layer increases, so that the battery performance gradually decreases. Therefore, in order to maintain the battery performance for a long time, it is necessary to increase the amount of retained electrolyte by some means. Therefore, focusing on the fact that an integrated gas diffusion electrode is conventionally formed of a porous material, the fuel electrode side is formed to be thick, and molten carbon dioxide is formed so that the fuel electrode also holds the electrolyte. Salt fuel cells are being considered.

このように,燃料極にも電解質を保持させるようにし
た溶融炭酸燃料電池の積層Xは,通常,第3図に示すよ
うに構成されている。すなわち,この積層体Xは,単位
電池1を導電性の隔離板2を介して複数積層したものと
なっている。単位電池1は,アルカリ炭酸塩を含んだ平
板状の電解質層3と,厚肉の多孔質材で形成され電解質
層3の一方の面に当てがわれる上記電解質層3と同じ縦
横寸法の燃料極(アノード)4と,この燃料極4の反電
解質層側に位置する面に複数条平行に形成され図中太矢
で示すように燃料ガスを通流させるためのガス通路
溝5と,薄肉の多孔質材で形成され電解質層3の他方の
面に当てがわれる酸化済極(カソード)6とで構成され
ている。一方,隔離板2は,ステンレス鋼などの導電性
金属材で形成されたもので,縦横寸法が電解質層3のそ
れと等しく形成された隔離板本体7と,この隔離板本体
7の一方の面の対抗する2辺部にたとえばろう付け固定
されて図中太矢印Qで示すように酸化剤ガスを通流させ
るためのガス通路溝を構成する側壁部材9a,9bとで構
成されている。そして,この隔離板2は,ガス通路溝
内に酸化剤ガスを分流させる機能と集電機能とを発揮す
る導電性の波板10を装着した状態で酸化剤極6を嵌入さ
せ,この状態で電解質層3の前記他方の面に当てがわれ
ている。
As described above, the stack X of the molten carbon dioxide fuel cell in which the electrolyte is also held in the fuel electrode is usually configured as shown in FIG. That is, the stacked body X is formed by stacking a plurality of unit batteries 1 via the conductive separator 2. The unit cell 1 has a flat electrolyte layer 3 containing an alkali carbonate, and a fuel electrode formed of a thick porous material and having the same vertical and horizontal dimensions as the electrolyte layer 3 applied to one surface of the electrolyte layer 3. (Anode) 4, a plurality of gas passage grooves 5 formed in parallel on a surface of the fuel electrode 4 located on the side of the anti-electrolyte layer, and through which fuel gas flows as indicated by a thick arrow P in the figure, and a thin wall. And an oxidized electrode (cathode) 6 formed of the porous material described above and applied to the other surface of the electrolyte layer 3. On the other hand, the separator 2 is made of a conductive metal material such as stainless steel, and has a vertical and horizontal dimension equal to that of the electrolyte layer 3. It is composed of a side wall member 9 a, 9 b which constitutes the gas passage grooves 8 for the two sides portions to counteract for example be brazed flow through the oxidant gas as shown in Figure NakaFutoshi arrow Q . The separator 2 is provided with a gas passage groove 8.
The oxidant electrode 6 is fitted in a state in which the oxidant gas equipped with a corrugated plate 1 0 conductive to exert the function and the current collecting function of shunting within, applied to the other surface of the electrolyte layer 3 in this state Has been done.

このように構成された積層体Xでは,燃料極4のガス
通路溝5間においても電解質を保持するようにしてい
る。
In the stacked body X configured as described above, the electrolyte is held even between the gas passage grooves 5 of the fuel electrode 4.

このように主要部が構成される溶融炭酸塩燃料電池に
あっては,ガス通路溝5およびガス通路溝を通流する
各ガスが外部へ漏れるのを防止するために,(1)燃料
極4のガス通路溝5と平行する側縁部分11と電解質層3
の側縁部分12とが直接接触する部分,(2)燃料極4の
側縁部分11と隔離板本体7の側縁部分とが直接接触する
部分,(3)電解質層3の側縁部分と側壁部材9a,9b
が直接接触する部分をガスシールする必要がある。この
シール手段としては,通常,積層体Xを形成した後,電
池作動温度(Li2CO3/K2CO3からなる2元素電解質の場合
には一般に650℃)まで昇温させ,この昇温によって溶
融した電解質でシールするようにしている。すなわち,
電解質は昇温途上の488℃で溶融し,この溶融物が前記
接触部分に存在する間隙に侵入し,これによってガスシ
ールが行なわれる。
In the molten carbonate fuel cell having such a main part, in order to prevent each gas flowing through the gas passage groove 5 and the gas passage groove 8 from leaking outside, (1) the fuel electrode 4 and a side edge portion 11 parallel to the gas passage groove 5 and the electrolyte layer 3
(2) a portion where the side edge portion 11 of the anode 4 directly contacts the side edge portion of the separator body 7, (3) a portion where the side edge portion of the electrolyte layer 3 the portion and the side wall member 9 a, 9 b are in direct contact it is necessary to gas seal. As the sealing means, usually, after forming the laminate X, the temperature is raised to the battery operating temperature (generally 650 ° C. in the case of a two-element electrolyte composed of Li2CO3 / K2CO3), and the electrolyte is used to seal with the molten electrolyte. I am trying to do it. That is,
The electrolyte melts at 488 ° C. while the temperature is rising, and the melt penetrates into the gap existing in the contact portion, thereby performing gas sealing.

しかしながら,上記のように構成され,上記のような
ガスシール方式を採用した従来の溶融炭酸塩燃料電池に
あっては次のような問題があった。すなわち,ガスシー
ル部を電解質を使ってウエットシールしているので,側
壁部材9a,9bと電解質層3の側縁部分との平坦な接触部
については良好にシールすることができるが,特に,燃
料極4の側縁部分11と電解質層3の側縁部分12との接触
部および燃料電極4の側縁部分11と隔離板本体7の側縁
部分との接触部については電解質を十分に浸透させるこ
とが困難であった。このため,この接触部のシールが不
十分となって反応性ガスの有効利用が図れず,これに伴
う反応性ガスの供給不足が原因して電池電圧が低下する
問題があった。また,このようなウエットシール方式で
あると,電池降下温時に電解質層3と燃料極4との熱膨
張率の差によって,電解質層3の特に側縁部分12にクラ
ックが生じ易く,耐熱サイクル性が低いと言う問題もあ
った。
However, the conventional molten carbonate fuel cell configured as described above and employing the above-described gas sealing method has the following problems. That is, since the gas seal portion is wet-sealed using the electrolyte, the flat contact portion between the side wall members 9a and 9b and the side edge portion of the electrolyte layer 3 can be sealed well, but in particular the fuel The electrolyte sufficiently penetrates into the contact portion between the side edge portion 11 of the electrode 4 and the side edge portion 12 of the electrolyte layer 3 and the contact portion between the side edge portion 11 of the fuel electrode 4 and the side edge portion of the separator body 7. It was difficult. For this reason, there is a problem that the sealing of the contact portion is insufficient and the effective use of the reactive gas cannot be achieved, and the battery voltage is reduced due to the insufficient supply of the reactive gas. In addition, with such a wet seal method, cracks are apt to occur in the electrolyte layer 3, particularly in the side edge portion 12, due to the difference in the coefficient of thermal expansion between the electrolyte layer 3 and the fuel electrode 4 when the temperature of the battery drops. Was low.

(発明が解決しようとする問題点) 上述の如く,厚肉の燃料極を用い,この燃料極にも電
解質を保持させるようにした従来の溶融炭酸塩燃料電池
では、電解質層の側縁部分と燃料極の側縁部分との間お
よび電解質層の側縁部分と隔離板本体の側縁部分との間
のガスシールを良好に行なうことが困難で,この結果,
反応性ガスの有効利用を図れないばかりか,電池電圧の
低下をもたらし,しかも耐熱サイクル性も劣ると言う問
題があった。
(Problems to be Solved by the Invention) As described above, in a conventional molten carbonate fuel cell in which a thick fuel electrode is used and an electrolyte is also held in this fuel electrode, a side edge portion of the electrolyte layer and It is difficult to achieve good gas sealing between the side edges of the fuel electrode and between the side edges of the electrolyte layer and the side edges of the separator body.
In addition to effective utilization of the reactive gas, there was a problem that the battery voltage was lowered and the heat cycle resistance was poor.

そこで本発明は、上述した不具合を解消できる溶融炭
酸塩燃料電池を提供することを目的としている。
Therefore, an object of the present invention is to provide a molten carbonate fuel cell that can solve the above-mentioned problems.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するために,本発明は,運転温度で溶
融する炭酸塩を含んだ平板状の電解質層と,この電解質
層の縦横寸法と等しい縦横寸法に形成されて上記電解質
層の一方の面に当てがわれた多孔質材製の燃料極と,こ
の燃料極の反電解質層側に位置する面に複数条平行に形
成された燃料ガス通路溝と,前記電解質層の他方の面に
当てがわれた多孔質材製の酸化剤極とからなる単位電池
を,一方の面に酸化剤ガス通路を有し,この酸化剤ガス
通路溝内に前記酸化剤極を嵌入させた状態で前記電解質
層の前記他方の面に当てがわれる導電性の隔離板を介し
て複数積層した積層体を備え,前記燃料極の前記燃料ガ
ス通路溝と平行する側縁部分と前記電解質層の側縁部分
および前記隔離板の側縁部分とが直接接触する部分を溶
融電解質を使ってシールするようにした溶融炭酸塩燃料
電池において,前記燃料極の前記側縁部分で,前記電解
質層側に位置する面に前記燃料ガス通路溝と平行して二
条以上設けられた第1の溝と,前記燃料極の前記側縁部
分で,前記隔離板側に位置する面における前記第1の溝
とは積層方向に重合しない位置に前記燃料ガス通路溝と
平行に一条以上設けられた第2の溝と,前記第1および
第2の溝に装着され,ホウ酸系ガラスを主成分とし,リ
チウム含有酸化物を副成分として構成されるとともに電
池を運転温度まで昇温させる過程の温度で溶融する性質
を備えたシール材とを具備してなることを特徴としてい
る。
[Constitution of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a flat electrolyte layer containing a carbonate which melts at an operating temperature, and a vertical and horizontal dimension of the electrolyte layer. A fuel electrode made of a porous material formed to have the same vertical and horizontal dimensions as that of the fuel electrode and applied to one surface of the electrolyte layer, and a plurality of fuel electrodes formed in parallel with a surface of the fuel electrode located on the anti-electrolyte layer side. A unit cell comprising a gas passage groove and a porous oxidant electrode applied to the other surface of the electrolyte layer is provided with an oxidant gas passage on one surface. A plurality of stacked bodies via a conductive separator applied to the other surface of the electrolyte layer in a state where the oxidizer electrode is fitted in the fuel cell passage groove of the fuel electrode; Parallel side edge portion, side edge portion of the electrolyte layer, and side edge of the separator In a molten carbonate fuel cell in which a portion in direct contact with a fuel cell is sealed using a molten electrolyte, the fuel gas passage groove and the fuel gas passage groove are formed on a surface located on the electrolyte layer side at the side edge portion of the fuel electrode. The fuel gas is located at a position where two or more first grooves provided in parallel with the first groove on the side edge portion of the fuel electrode on the surface located on the separator side do not overlap in the stacking direction. A second groove provided in at least one groove in parallel with the passage groove; and a battery which is mounted in the first and second grooves, is composed mainly of borate-based glass, and is composed of lithium-containing oxide as a sub-component. And a sealing material having a property of melting at a temperature in the process of raising the temperature to the operating temperature.

(作用) 上記のように第1および第2の溝に装着されたシール
材は,加熱されると溶融して電解質層および隔離板に密
着するばかりか,圧力の加わらない溝内を溝の内面に充
分馴染みながら溝の幅方向へと広がり,良好なシール機
能を発揮する。また,ホウ酸系ガラスを主成分としたシ
ール材は電解質との相溶性が低いため,長期に亙って使
用しても相互での溶解による移動がなく安定したシール
性能を発揮する。さらに,ホウ酸系ガラスは,電解質と
の相互溶解性が低いため,電池降温時にシール部分で起
こり易い電解質層と燃料極との融着現象を抑制する。特
に,本発明では,燃料極の側縁部分と電解質層の側縁部
分とが直接接触する部分の面積を狭くし,代わりに前記
組成のシール材を介して接触する部分の面積を広くでき
る構造を実現するために,単に第1の溝の幅を広くする
のではなく,第1の溝を二条以上設けることによって必
要な面積を確保する構成を採用している。したがって,
第1の溝を構成している各溝に装着されているシール材
を境にした圧力差をそれぞれ小さくできので,シール性
能を一段と向上できるばかりか,溶融した電解質でシー
ルされる領域を狭くして,代わりに炭酸塩との相溶性の
低い前記組成のシール材でシールされる領域を広くでき
るので,電池降温時に,電解質層と燃料極との熱膨張差
によってシール部の電解質層側に起こり易いクラックの
発生を抑制でき,これによって耐熱性サイクル性の向上
にも寄与する。
(Operation) As described above, the sealing material mounted in the first and second grooves is melted when heated and adheres tightly to the electrolyte layer and the separator. It spreads in the width direction of the groove while fully conforming to the above, and exhibits a good sealing function. Further, since the sealing material containing boric acid glass as a main component has low compatibility with the electrolyte, even if used for a long period of time, there is no migration due to mutual dissolution, and stable sealing performance is exhibited. Furthermore, since the borate glass has low mutual solubility with the electrolyte, the fusion phenomenon between the electrolyte layer and the fuel electrode, which tends to occur at the sealing portion when the temperature of the battery is lowered, is suppressed. In particular, in the present invention, the structure is such that the area of the portion where the side edge portion of the fuel electrode and the side edge portion of the electrolyte layer are in direct contact is reduced, and the area of the portion where the side edge portion is in contact via the sealing material having the above composition is increased. In order to realize the above, a configuration is employed in which a required area is secured by providing two or more first grooves, instead of simply increasing the width of the first grooves. Therefore,
Since the pressure difference between the sealing materials mounted on the respective grooves constituting the first groove can be reduced, the sealing performance can be further improved, and the area sealed by the molten electrolyte can be narrowed. Instead, the area sealed by the sealing material having the above-mentioned composition having low compatibility with the carbonate can be widened. Therefore, when the temperature of the battery is lowered, a difference in thermal expansion between the electrolyte layer and the fuel electrode may occur on the electrolyte layer side of the seal portion. The generation of cracks that are easy to occur can be suppressed, thereby contributing to the improvement of the heat resistance cycle property.

また,第1の溝を二条設けることによってシール材で
シールされる領域の必要な面積を確保しているので,溝
数を増すことによって第1の溝を構成している各溝の幅
を狭くできる。一方,燃料極の側縁部分で,隔離板側に
位置する面に,第1の溝とは積層方向に重合しない関係
に,燃料ガス通路溝と平行に一条以上の第2の溝を設
け,この第2の溝にも前記と同じ性質のシール材を装着
している。このように,燃料極の側縁部分両面に第1の
溝と第2の溝とを設けているが,第1の溝の各溝幅を狭
くできることと第1の溝と第2の溝とを積層方向に重合
しないように設けていることとが相俟って,燃料極の側
縁部分両面に溝を儲けたことによって起こる上記側縁部
分の機械的強度の低下を防止することができる。
Further, since the required area of the region sealed by the sealing material is secured by providing two first grooves, the width of each groove constituting the first groove is reduced by increasing the number of grooves. it can. On the other hand, at least one second groove is provided in parallel with the fuel gas passage groove in a side edge portion of the fuel electrode, on the surface located on the separator side, so as not to overlap with the first groove in the stacking direction. This second groove is also provided with a sealing material having the same properties as described above. As described above, the first groove and the second groove are provided on both sides of the side edge portion of the fuel electrode. However, the width of each groove of the first groove can be reduced, and the first groove and the second groove are formed. In combination with the fact that the fuel cell is not superposed in the stacking direction, it is possible to prevent a decrease in the mechanical strength of the side edge portion caused by forming grooves on both sides of the fuel electrode side edge portion. .

(実施例) 以下、本発明の実施例を図面を参照しながら説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

本発明に係る溶融炭酸塩燃料電池は外観的には従来の
ものと変わりないが,単位電池を構成する要素,特に電
解質層を保持する機能を有した厚肉の燃料極部分が改良
されている。
Although the molten carbonate fuel cell according to the present invention is not different from the conventional one in appearance, the elements constituting the unit cell, especially the thick fuel electrode portion having the function of holding the electrolyte layer, are improved. .

第1図には本発明によって改良された燃料極4aと,こ
の燃料極4aの一方の面に密接して設けられる隔離板2と
が示されている。
FIG. 1 shows a fuel electrode 4a improved by the present invention and a separator 2 provided in close contact with one surface of the fuel electrode 4a.

燃料極4aは,厚肉の多孔質材で図示しない電解質層の
縦横寸法と等しい寸法に形成されており,隔離板2側に
位置する面には燃料ガスを通流させるためのガス通路溝
5が複数条形成されている。そして,電解質層側に位置
する面で,ガス通路溝5と平行する側縁部分11,つまり
電解質層の両側縁部分に接触してシール部を形成する部
分には,たとえば幅5mm,深さ1.5mmの溝15がガス通路溝
5と平行に二条ずつ形成されている。また,燃料極4aの
側縁部分11で,隔離板2側に位置する面には,電解質層
側の溝とは積層方向に重合しない関係に,上記と同様な
幅および深さの溝15がガス通路溝5と平行に一条ずつ形
成されている。なお,このように側縁部分11の両面に設
けられる溝15が積層方向に重合しないようにしているの
は,溝15を設けたことによって側縁部分11の機械的強度
の低下を防止するためである。
The fuel electrode 4a is made of a thick porous material and has a dimension equal to the vertical and horizontal dimensions of an electrolyte layer (not shown). A gas passage groove 5 for allowing fuel gas to flow therethrough is provided on a surface located on the separator 2 side. Are formed. On the surface located on the side of the electrolyte layer, the side edge portion 11 parallel to the gas passage groove 5, that is, the portion which is in contact with both side edge portions of the electrolyte layer to form a seal portion, has a width of 5 mm and a depth of 1.5 mm, for example. A groove 15 of mm is formed two by two in parallel with the gas passage groove 5. On the side edge portion 11 of the fuel electrode 4a, which is located on the side of the separator 2, a groove 15 having the same width and depth as described above is formed so as not to overlap with the groove on the electrolyte layer side in the stacking direction. It is formed one by one in parallel with the gas passage groove 5. The reason why the grooves 15 provided on both sides of the side edge portion 11 are not overlapped in the laminating direction is that the provision of the groove 15 prevents the mechanical strength of the side edge portion 11 from lowering. It is.

一方,隔離板2は,従来のものと同様に,隔離板本体
7と,この隔離板本体7の反燃料極側に位置する面でガ
ス通路5が延びる方向とは直交する両側部に固定されて
酸化剤ガスを通流させるためのガス通路溝8を形成する
側壁部材9a,9bとで構成されている。単位電池を構成す
る他の要素は全て第3図に示した従来のものと同様に構
成されている。
On the other hand, the separator 2 is fixed to the separator main body 7 and both sides orthogonal to the direction in which the gas passage 5 extends on a surface of the separator main body 7 located on the side opposite to the fuel electrode, as in the conventional case. And a side wall member 9a, 9b forming a gas passage groove 8 for allowing the oxidizing gas to flow therethrough. All other elements constituting the unit battery are configured in the same manner as the conventional one shown in FIG.

そして,本発明に係る溶融炭酸塩燃料電池では,上記
のように構成された燃料極4aを構成要素の一部とする単
位電池を次のようにして積層して第3図に示すような積
層体Xを構成している。すなわち燃料極4aの各溝15内
に,ホウ素系ガラスを主成分としたシール材,たとえば
B2O3−Zno−Sio3ガラス(軟化点500℃)粉末に,保持材
としてのアルミン酸リチウム粉末(ガラス9部に対して
1部)および粘度調整用溶媒としてのシリコーンオイル
(ガラス,アルミナ混合物10部に対して4部)を添加し
てなる混合物を混練し,引き続いてロール成形し,これ
を紐状に切断加工してなるシール材16を装着した状態で
単位電池を順次組立て積層して積層体Xを構成してい
る。そして,この積層体Xを締付けバー等で締付けた
後、外部加熱によって電池運転温度(650℃)まで一旦
昇温させている。この加熱によって,シール材16が軟化
点近傍(500℃)で溶融し,最終的に電解質層に密着す
るとともに溝15内に充分染み込む。
In the molten carbonate fuel cell according to the present invention, the unit cells having the fuel electrode 4a configured as described above as a part of the constituent elements are stacked as follows and stacked as shown in FIG. It constitutes the body X. That is, in each groove 15 of the fuel electrode 4a, a sealing material containing boron-based glass as a main component, for example,
To B2O3-Zno-Sio3 glass (softening point 500 ° C) powder, lithium aluminate powder (1 part for 9 parts of glass) as a holding material, and silicone oil (10 parts of glass and alumina mixture) as a viscosity adjusting solvent Then, the mixture obtained by adding 4 parts) is kneaded, subsequently roll-formed, and cut and cut into a string shape. With the sealing material 16 attached, the unit batteries are sequentially assembled and laminated to form a laminate X. Is composed. Then, after the stacked body X is fastened with a fastening bar or the like, the temperature is temporarily raised to the battery operating temperature (650 ° C.) by external heating. By this heating, the sealing material 16 is melted near the softening point (500 ° C.), and finally adheres to the electrolyte layer and sufficiently penetrates into the groove 15.

このように昇温させた後,積層体Xの4つの側面に通
常の方法で反応性ガス供給用のマニホールドを取付けて
最終的な燃料電池を構成したものとなっている。
After the temperature is raised in this manner, a manifold for supplying a reactive gas is attached to the four side surfaces of the stacked body X by an ordinary method to form a final fuel cell.

上記のように構成された燃料電池について,シール部
のシール性能を確認するために,マニホールドを介して
ガス通路溝5に水素ガスを,またガス通路溝8に窒素ガ
スをそれぞれ流すとともにガス通路溝8を通った窒素ガ
ス中の水素ガス含有量を触媒燃焼式水素計で測定するこ
とによって燃料ガス通路のシール性能を調べてみた。ま
た逆に,ガス通路溝8に水素ガスを,ガス通路溝5に窒
素ガスを流し,ガス通路溝5を通った窒素ガス中の水素
含有量を同様に測定することによって酸化剤ガス通路の
シール性能を調べてみた。また,参考例として各部寸法
および段数が等しく,かつ溝15およびシール材16を使わ
ずにシールしたものについても同様の測定を行なってみ
た。その結果,燃料ガス通路のシール性能(酸化剤ガス
通路における水素含有量vol%)は,実施例においては
1.5%であったが,参考例では10.5%であった。このこ
とから判るように、本発明の構造を採用することによっ
てガスシール性能を大幅に向上させることができること
が確認された。
In order to confirm the sealing performance of the sealing portion of the fuel cell configured as described above, hydrogen gas is supplied to the gas passage groove 5 and nitrogen gas is supplied to the gas passage groove 8 via the manifold. The sealing performance of the fuel gas passage was examined by measuring the hydrogen gas content in the nitrogen gas passing through No. 8 with a catalytic combustion type hydrogen meter. Conversely, a hydrogen gas is supplied to the gas passage groove 8 and a nitrogen gas is supplied to the gas passage groove 5, and the hydrogen content in the nitrogen gas passing through the gas passage groove 5 is measured in the same manner, thereby sealing the oxidizing gas passage. I checked its performance. Further, as a reference example, the same measurement was performed for a case where the dimensions and the number of steps were the same and the sealing was performed without using the groove 15 and the sealing material 16. As a result, the sealing performance of the fuel gas passage (the hydrogen content vol% in the oxidizing gas passage) was
It was 1.5%, but it was 10.5% in the reference example. As can be seen from this, it has been confirmed that the gas sealing performance can be greatly improved by employing the structure of the present invention.

また,実施例の積層電池を50℃/hの速度で室温まで降
温し,マニホールド側面から見える部分の電解質層に形
成されたクラック数を確認したところ,シール材16を使
用しない場合に比べて1/3に減少していることが確認さ
れた。
Further, the temperature of the laminated battery of the example was lowered to room temperature at a rate of 50 ° C./h, and the number of cracks formed in the electrolyte layer in a portion visible from the side of the manifold was confirmed. It was confirmed that it decreased to / 3.

このように,ホウ酸系ガラスを主成分とするシール材
16を前記関係に装着しているので,このシール材16の溶
融物の燃料4aへの馴染み作用および電解質層への密着作
用によって良好なシール機能を発揮させることができ
る。また,ホウ酸系ガラスを主成分としたシール材16は
電解質との相溶性が低いため,長期に亙って使用しても
相溶性での溶解による移動がない。したがって,長期に
亙って安定したシール性能を発揮させることができる。
さらに,ホウ酸系ガラスは,電解質との相互溶解性が低
いため,電池降温時にシール部分で起こり易い電解質層
と燃料極との融着現象を抑制する。このため,電池降温
時に,電解質層と燃料極との熱膨張差によってシール部
の電解質層側に起こり易いクラックの発生を抑制でき,
これによって耐熱サイクル性の向上化も図ることができ
る。
Thus, the sealing material mainly composed of borate glass
Since the sealing member 16 is mounted in the above-described relationship, a favorable sealing function can be exhibited by the action of adapting the melt of the sealing material 16 to the fuel 4a and the action of adhering to the electrolyte layer. In addition, since the sealing material 16 containing boric acid-based glass as a main component has low compatibility with the electrolyte, even if used for a long period, there is no migration due to the compatibility. Therefore, stable sealing performance can be exhibited over a long period of time.
Furthermore, since the borate glass has low mutual solubility with the electrolyte, the fusion phenomenon between the electrolyte layer and the fuel electrode, which tends to occur at the sealing portion when the temperature of the battery is lowered, is suppressed. Therefore, it is possible to suppress the occurrence of cracks that are likely to occur on the electrolyte layer side of the seal due to the difference in thermal expansion between the electrolyte layer and the fuel electrode when the temperature of the battery drops.
Thereby, the heat cycle resistance can be improved.

なお,本発明は上述した実施例に限定されるものでは
ない。すなわち,上述した実施例では溝15内に装着する
シール材16の副成分としてLiAIO2を使用しているが,ジ
ルコン酸リチウム,チタン酸リチウムを用いてもよい。
また,上述した実施例では,シール用ガラスとして,ガ
ラス粉末をシリコーンオイルで混練したパテ状のものを
用い,これをシール用の溝に装着するようにしている
が,溝に内接する多孔質の丸棒または角棒にガラスを溶
融含浸させたものを溝内に装着するようにしてもよい。
この場合,多孔質棒として,アルミナ,高気孔率金属に
溶融アルミメッキを施したもの,あるいは硬質ガラスを
用いることができる。また,両面にシール用の溝15を設
ける場合には,隔離板本来7のシール材16に接触する面
に浅い筋条の溝(深さ0.1mm,幅0.05mm)を多数設け,こ
の面にシール用のガラスが馴染むようにすることが望ま
しい。また,積層電池を分解して一部の単位電池を取替
える際に,電極と波板との固着が原因して抜き出しセル
以外のセルの破損を防止するために波板の表面にBN粉末
を塗布するようにしてもよい。また,波板にスリット状
の孔を多数設けるようにしてもよい。さらに,波板およ
び隔離板の耐食性を向上させるために,これらの酸化剤
極側に位置する表面にNiFe2O4層を薄く形成してもよ
い。
The present invention is not limited to the embodiment described above. That is, in the embodiment described above, LiAIO2 is used as a sub-component of the sealing material 16 mounted in the groove 15, but lithium zirconate or lithium titanate may be used.
In the above-described embodiment, a putty-shaped glass powder kneaded with silicone oil is used as the sealing glass, and the putty is mounted in the sealing groove. However, the porous glass inscribed in the groove is used. A round bar or a square bar that is melt-impregnated with glass may be mounted in the groove.
In this case, as the porous rod, alumina, high porosity metal plated with molten aluminum, or hard glass can be used. When grooves 15 for sealing are provided on both surfaces, a large number of shallow streak grooves (depth 0.1 mm, width 0.05 mm) are provided on the surface of the separator 7 which comes into contact with the sealing material 16. It is desirable that the glass for sealing be adapted. Also, when disassembling the stacked battery and replacing some unit cells, apply BN powder to the surface of the corrugated sheet to prevent damage to cells other than the extracted cell due to the adhesion between the electrode and the corrugated sheet. You may make it. Also, a large number of slit-shaped holes may be provided in the corrugated plate. Further, in order to improve the corrosion resistance of the corrugated plate and the separator, a thin NiFe2O4 layer may be formed on the surface located on the oxidant electrode side.

[発明の効果] 以上述べたように,本発明によれば,燃料極を使った
電解質の保持機能に何等悪影響を与えることなく,積層
体の確実なシールを実現でき,これによって反応性ガス
の有効利用化を図れ,電池電圧の低下を防止できるばか
りか,耐熱サイクル性を向上させ得る溶融炭酸塩燃料電
池を提供できる。
[Effects of the Invention] As described above, according to the present invention, a reliable seal of the laminate can be realized without any adverse effect on the function of holding the electrolyte using the fuel electrode, and thereby, the reactive gas can be reduced. It is possible to provide a molten carbonate fuel cell that can not only prevent a decrease in the battery voltage but also improve the heat cycle resistance while achieving effective utilization.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る溶融炭酸塩燃料電池に
組み込まれた燃料極および隔離板の斜視図,第2図は同
燃料電池の積層体を局部的に取出して示す縦断面図,第
3図は従来の溶融炭酸塩燃料電池における積層体の分解
斜視図である。 X……積層体,1……単位電池,2……隔離板,3……電解質
層,4、4a……燃料極,5……ガス通路溝,6……酸化剤極,8
……ガス通路溝,10……波板,11,12……側縁部分,15……
溝,16……シール材。
FIG. 1 is a perspective view of a fuel electrode and a separator incorporated in a molten carbonate fuel cell according to one embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing a stack of the fuel cell locally taken out. FIG. 3 is an exploded perspective view of a laminated body in a conventional molten carbonate fuel cell. X: laminate, 1 ... unit cell, 2 ... separator, 3 ... electrolyte layer, 4, 4a ... fuel electrode, 5 ... gas passage groove, 6 ... oxidizer electrode, 8
... gas passage groove, 10 ... corrugated plate, 11, 12 ... side edge portion, 15 ...
Groove, 16 …… Seal material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】運転温度で溶融する炭酸塩を含んだ平板状
の電解質層と,この電解質層の縦横寸法と等しい縦横寸
法に形成されて上記電解質層の一方の面に当てがわれた
多孔質材製の燃料極と,この燃料極の反電解質層側に位
置する面に複数条平行に形成された燃料ガス通路溝と,
前記電解質層の他方の面に当てがわれた多孔質材製の酸
化剤極とからなる単位電池を,一方の面に酸化剤ガス通
路を有し,この酸化剤ガス通路溝内に前記酸化剤極を嵌
入させた状態で前記電解質層の前記他方の面に当てがわ
れる導電性の隔離板を介して複数積層した積層体を備
え,前記燃料極の前記燃料ガス通路溝と平行する側縁部
分と前記電解質層の側縁部分および前記隔離層の側縁部
分とが直接接触する部分を溶融電解質を使ってシールす
るようにした溶融炭酸塩燃料電池において, 前記燃料極の前記側縁部分で前記電解質層側に位置する
面に前記燃料ガス通路溝と平行して二条以上設けられた
第1の溝と, 前記燃料極の前記縁側部分で,前記隔離板側に位置する
面における前記第1の溝とは積層方向に重合しない位置
に前記燃料ガス通路溝と平行に一条以上設けられた第2
の溝と, 前記第1および第2の溝に装着され,ホウ酸系ガラスを
主成分とし,リチウム含有酸化物を副成分として構成さ
れるとともに電池を運転温度まで昇温させる過程の温度
で溶融する性質を備えたシール材 とを具備してなることを特徴とする溶融炭酸塩燃料電
池。
1. A flat electrolyte layer containing a carbonate that melts at an operating temperature, and a porous layer formed in a vertical and horizontal dimension equal to the vertical and horizontal dimensions of the electrolyte layer and applied to one surface of the electrolyte layer. A fuel electrode made of a material, a plurality of fuel gas passage grooves formed in parallel on a surface located on the anti-electrolyte layer side of the fuel electrode,
A unit battery comprising a porous material oxidant electrode applied to the other surface of the electrolyte layer, an oxidant gas passage on one surface, and the oxidant gas passage grooved in the oxidant gas passage groove. A side edge portion parallel to the fuel gas passage groove of the fuel electrode, comprising a plurality of stacked bodies via a conductive separator applied to the other surface of the electrolyte layer with the electrode fitted therein; And a portion where the side edge portion of the electrolyte layer and the side edge portion of the isolation layer are in direct contact with each other is sealed using a molten electrolyte. A first groove provided at least two in parallel with the fuel gas passage groove on a surface located on the electrolyte layer side; and a first groove on a surface located on the separator side at the edge portion of the fuel electrode. The fuel gas is located at a position where the groove does not overlap in the stacking direction. Michimizo parallel to a second provided above Article
And a groove which is mounted in the first and second grooves, is composed mainly of borate-based glass, is composed of a lithium-containing oxide as a sub-component, and melts at a temperature in a process of raising the temperature of the battery to the operating temperature. A molten carbonate fuel cell, comprising: a sealing material having the following properties:
【請求項2】前記シール材の副成分であるリチウム含有
酸化物が,LiAlO2であることを特徴とする特許請求の範
囲第1項記載の溶融炭酸塩燃料電池。
2. The molten carbonate fuel cell according to claim 1, wherein the lithium-containing oxide as a sub-component of the sealing material is LiAlO 2 .
JP62078656A 1987-03-31 1987-03-31 Molten carbonate fuel cell Expired - Fee Related JP2621863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078656A JP2621863B2 (en) 1987-03-31 1987-03-31 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078656A JP2621863B2 (en) 1987-03-31 1987-03-31 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS63245867A JPS63245867A (en) 1988-10-12
JP2621863B2 true JP2621863B2 (en) 1997-06-18

Family

ID=13667903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078656A Expired - Fee Related JP2621863B2 (en) 1987-03-31 1987-03-31 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2621863B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145753A (en) * 1989-09-12 1992-09-08 Mitsubishi Jukogyo Kabushiki Kaisha Solid electrolyte fuel cell
EP0921583A1 (en) * 1997-12-05 1999-06-09 Siemens Aktiengesellschaft Sealing of high temperature fuel cells and high temperature fuel cell stacks
US20100151345A1 (en) * 2008-12-17 2010-06-17 Saint-Gobain Ceramics & Plastics, Inc. Electrode Gas Channel Supports and Methods for Forming Internal Channels
JP5973377B2 (en) * 2013-04-24 2016-08-23 株式会社ノリタケカンパニーリミテド Green sheet for solid oxide fuel cell and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996670A (en) * 1982-11-26 1984-06-04 Agency Of Ind Science & Technol Fused-carbonate fuel cell
JPH0815094B2 (en) * 1985-06-20 1996-02-14 株式会社東芝 Molten carbonate fuel cell

Also Published As

Publication number Publication date
JPS63245867A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US7422819B2 (en) Ceramic coatings for insulating modular fuel cell cassettes in a solid-oxide fuel cell stack
EP1500157B1 (en) Multi-layer seal for electrochemical devices
BRPI0610685A2 (en) sofc batteries
US8420278B2 (en) Solid oxide fuel cell having a glass composite seal
JP2995604B2 (en) Gas seal material for solid electrolyte fuel cells
JP2621863B2 (en) Molten carbonate fuel cell
JPH0793146B2 (en) Molten carbonate fuel cell stack
JPH11111312A (en) Solid electrolyte type fuel cell
US20190379076A1 (en) Hybrid seal and planar arrangement comprising at least one high temperature electrochemical cell and a hybrid seal
JPH0158832B2 (en)
JPH03285268A (en) High temperature type fuel cell and manufacture thereof
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof
JPH02242564A (en) Solid electrolyte fuel cell
JPS63133457A (en) Fuel cell of molten carbonate
JPH0151027B2 (en)
JPS61292862A (en) Molten carbonate type fuel cell
JPH0358153B2 (en)
JP2771578B2 (en) Solid electrolyte fuel cell
JPH0777133B2 (en) Molten carbonate fuel cell
JP7054818B2 (en) Fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH01124964A (en) Flat plate type solid electrolyte fuel cell
JP2948439B2 (en) Solid electrolyte fuel cell
JPH0684530A (en) Solid electrolyte type fuel cell
JPH02121265A (en) Molten carbonate type fuel cell laminate body

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees