JPH03285268A - High temperature type fuel cell and manufacture thereof - Google Patents

High temperature type fuel cell and manufacture thereof

Info

Publication number
JPH03285268A
JPH03285268A JP2086456A JP8645690A JPH03285268A JP H03285268 A JPH03285268 A JP H03285268A JP 2086456 A JP2086456 A JP 2086456A JP 8645690 A JP8645690 A JP 8645690A JP H03285268 A JPH03285268 A JP H03285268A
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
interconnector
glass
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2086456A
Other languages
Japanese (ja)
Other versions
JP2936001B2 (en
Inventor
Toshihiko Yoshida
利彦 吉田
Isao Mukaisawa
向沢 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP2086456A priority Critical patent/JP2936001B2/en
Publication of JPH03285268A publication Critical patent/JPH03285268A/en
Application granted granted Critical
Publication of JP2936001B2 publication Critical patent/JP2936001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent the leakage of a gas between a solid electrolytic plate and an interconnector and fix both of them to each other by applying a material never plastically deformed at the operation temperature of a cell between the surface of the solid electrolytic plate having electrodes formed thereon and the interconnector. CONSTITUTION:Solid electrolytic plates 21 are covered with porous materials forming a positive electrode 22 and a negative electrode 23, and laminated through an interconnector 24, and end plates 25, 26 for taking out electricity to the outside are provided on both the ends. The interconnector is provided with a gas passage 27 for oxidizing agent such as oxygen or air and a gas passage 28 for fuel gas such as hydrogen, and the end plates 25, 26 are similarly provided with gas passages 29, 30. Onto the peripheral parts 31 of the electrolytic plate surfaces having the electrodes formed thereon, a material softened at a temperature of 1050 deg.C-1350 deg.C higher than the operation temperature of the cell to deform the softening material into sealing form followed by temperature lowering and never plastically deformed at a temperature not higher than the operation temperature 1000 deg.C is applied.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、燃料電池に関し特に固体酸化物の電解質を使
用する燃料電池の封止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to fuel cells, and more particularly to a method for sealing a fuel cell using a solid oxide electrolyte.

[従来技術] 燃料電池は化学エネルギーを直接電気エネルギ−へ高い
効率で変換可能であるので、現在行われている化石燃料
の燃焼によって発生した蒸気による発電方法に代わる発
電方法として開発が進めらている。
[Prior art] Fuel cells are capable of converting chemical energy directly into electrical energy with high efficiency, so they are being developed as a power generation method to replace the current power generation method using steam generated from the combustion of fossil fuels. There is.

燃料電池は、各種の燃料によって作動するが、電池反応
の生成物が水のみである水素を燃料とする電池が開発の
中心である。
Although fuel cells can be operated using a variety of fuels, the focus of development is on cells that use hydrogen as fuel, where the only product of the cell reaction is water.

莫用化が進められている水素を燃料とする燃料電池には
、電池反応が起きる電解質の種類によって、アルカリ型
、燐酸型、溶融炭酸塩型、固体電解質型に分類される。
Fuel cells that use hydrogen as fuel, which is becoming increasingly popular, are classified into alkaline type, phosphoric acid type, molten carbonate type, and solid electrolyte type, depending on the type of electrolyte in which the cell reaction occurs.

アルカリ型は作動温度が低いという特徴を有しているが
炭酸ガスが混入した燃料は電解質の水酸化カリウムと反
応するために、アルカす型ではこのような燃料を使用す
ることはできない。
The alkaline type is characterized by a low operating temperature, but since fuel mixed with carbon dioxide reacts with the potassium hydroxide electrolyte, such fuel cannot be used in the alkaline type.

また燐酸型の燃料電池は天然ガスやナフサを改質して得
られる炭酸ガスを含む水素ガスも問題なく使用すること
ができるので電気事業用の燃料電池として開発が進めら
れているが、電極触媒に白金族の金属を使用するととも
に、使用する触媒が原料ガス中に含まれている微量の一
酸化炭素によって被毒するという問題点がある。
In addition, phosphoric acid fuel cells are being developed as fuel cells for the electric power industry because they can use hydrogen gas containing carbon dioxide obtained by reforming natural gas and naphtha without any problems. In addition to using a platinum group metal, there is a problem in that the catalyst used is poisoned by trace amounts of carbon monoxide contained in the raw material gas.

比較的規模の大きな発電設備用として開発中である高温
で作動するために白金族の金属等の高価な触媒は必要と
せず、電池で発生する排熱を蒸気発生に利用可能である
溶融炭酸塩型の燃料電池は原料の水素中に一酸化炭素が
含まれていても問題なく利用できる。ところが、溶融炭
酸塩型の燃料電池では燃料電池反応に炭酸イオンが関与
しているためにその反応には炭酸ガスが不可欠であるの
で、酸化剤である空気に二酸化炭素を混合する必要性が
あるので原料および排ガスの処理設備が複雑となる。
Molten carbonate, which is being developed for use in relatively large-scale power generation facilities, does not require expensive catalysts such as platinum group metals because it operates at high temperatures, and the waste heat generated by batteries can be used to generate steam. This type of fuel cell can be used without any problems even if the hydrogen raw material contains carbon monoxide. However, in molten carbonate fuel cells, since carbonate ions are involved in the fuel cell reaction, carbon dioxide gas is essential for the reaction, so it is necessary to mix carbon dioxide with air, which is an oxidizing agent. Therefore, processing equipment for raw materials and exhaust gas becomes complicated.

これらに対して、上記の燃料電池のような気体あるいは
溶融状の電解質を含まず高温で電解質として作動する固
体電解質を使用した燃料電池が第三世代の燃料電池とし
て開発が進められている。
In response to these, fuel cells that do not contain gaseous or molten electrolytes and use solid electrolytes that operate as electrolytes at high temperatures, such as the above-mentioned fuel cells, are being developed as third-generation fuel cells.

固体電解質型燃料電池は、高温で酸素イオン導電性の電
解質として作動する酸化ジルコニウムに酸化イツトリウ
ムあるいは酸化丈ルシウムなどを加えて安定化したもの
を使用している。そして水素、−酸化炭素、炭化水素な
どの各種の燃料を使用することができるとともに、電解
質が固体であるために液体または溶融塩を使用した燃料
電池では避けられない電解質の蒸発や電解液による腐食
の問題がなく、また燃料電池の構造が簡単という特徴を
有している。
Solid electrolyte fuel cells use zirconium oxide, which acts as an oxygen ion conductive electrolyte at high temperatures, stabilized by adding yttrium oxide or lucium oxide. Various fuels such as hydrogen, carbon oxide, and hydrocarbons can be used, and since the electrolyte is solid, evaporation of the electrolyte and corrosion caused by the electrolyte are unavoidable in fuel cells using liquids or molten salts. There are no problems, and the structure of the fuel cell is simple.

そして作動温度が高いために白金族の金属のような高価
な触媒が必要ではなく排熱も高温であるために排熱をガ
スタービン発電または蒸気の発生に有効利用することが
できるので総合的なエネルギー効率が極めて大きく、最
も優れた燃料電池として期待されている。
In addition, because the operating temperature is high, expensive catalysts such as platinum group metals are not required, and the exhaust heat is also high temperature, so the exhaust heat can be effectively used for gas turbine power generation or steam generation. It has extremely high energy efficiency and is expected to be the most superior fuel cell.

固体電解質型の燃料電池は、製造方法および構造の違い
により、電解質上への電極の形成方法は大きく分けて次
の三種類の方法に分類される。
Solid electrolyte fuel cells can be broadly classified into the following three types of methods for forming electrodes on the electrolyte, depending on the manufacturing method and structure.

(イ)アルミナ等の機械的強度の大きな多孔質のセラミ
ックスの基体上に一方の電極を形成し、その上にガスリ
ーク孔のないように溶射等の方法で酸化ジルコニウム層
を作成し、更に酸化ジルコニウム層の上に他方の電極を
形成する方法であり、円筒型の燃料電池の製造で用いら
れている。
(b) One electrode is formed on a porous ceramic substrate with high mechanical strength such as alumina, and a zirconium oxide layer is created on top of it by a method such as thermal spraying so that there are no gas leak holes, and then a zirconium oxide layer is formed. This method forms the other electrode on top of the layer, and is used in the manufacture of cylindrical fuel cells.

(ロ)焼結前の生の酸化ジルコニウムのシート上に焼結
により電極となる物質を塗布して酸化ジルコニウムの焼
結時に同時に電極を形成する方法であって、モノリシリ
ツク型の燃料電池の製造で利用されている。
(b) A method in which a material that will become an electrode is applied by sintering onto a sheet of raw zirconium oxide to form an electrode at the same time as the zirconium oxide is sintered, and is used in the production of monolithic fuel cells. It's being used.

(ハ)焼結した酸化ジルコニウムの電解質上に電極を塗
布あるいは印刷の方法で形成する方法で、平板型の電池
のユニットを積層した燃料電池で利用されている。
(c) A method in which electrodes are formed on a sintered zirconium oxide electrolyte by coating or printing, and is used in fuel cells in which flat plate battery units are stacked.

ところが、固体電解質電池の製造においてあらかじめ焼
結した酸化ジルコニウムの固体電解質上に電極を形成す
る前記(ハ)の方法は、平板状であるために品質の安定
した酸化ジルコニウム電解質および電極が製造できるの
で大型の燃料電池の製造に適しているが、−組の正極と
負極で構成した燃料電池の発生電圧は開放で1.2ボル
ト程度であり、また出力電流も電池の効率の面から制限
を受けるので、燃料電池を発電に利用するには多数の単
位燃料電池を電気的に直列および並列に接続している。
However, in the production of solid electrolyte batteries, the method (c) above, in which electrodes are formed on a zirconium oxide solid electrolyte that has been sintered in advance, cannot produce zirconium oxide electrolytes and electrodes with stable quality because of the flat plate shape. Although it is suitable for manufacturing large-scale fuel cells, the voltage generated by a fuel cell composed of a pair of positive and negative electrodes is approximately 1.2 volts when open, and the output current is also limited by the efficiency of the battery. Therefore, in order to use fuel cells for power generation, a large number of unit fuel cells are electrically connected in series and parallel.

第2図は、平板型の燃料電池の積層様式を示す図である
が、図中1は安定化あるいは部分安定化ジルコニアから
なる固体電解質板、固体電解質板には正極2と負極3を
形成する多孔性物質を被覆している。電極を被覆した固
体電解質板はインターコネクタ4を介して積層している
Figure 2 is a diagram showing the stacking style of a flat plate fuel cell. In the figure, 1 is a solid electrolyte plate made of stabilized or partially stabilized zirconia, and a positive electrode 2 and a negative electrode 3 are formed on the solid electrolyte plate. Covering a porous material. The solid electrolyte plates covering the electrodes are laminated with an interconnector 4 interposed therebetween.

また、インターコネクタには、空気あるいは酸素などの
酸化剤のガス通路7と水素などの燃料気体のガス通路8
を形成して電極に気体を供給するともに隣接する単位燃
料電池を電気的に接続する作用をする。両端には電気を
外部に取り出すための端板5および6を設けている。端
板5および6にも同様にガス通路9および10が設けら
れている。
The interconnector also includes a gas passage 7 for an oxidizing agent such as air or oxygen, and a gas passage 8 for a fuel gas such as hydrogen.
It acts to supply gas to the electrodes and to electrically connect adjacent unit fuel cells. End plates 5 and 6 are provided at both ends for extracting electricity to the outside. End plates 5 and 6 are likewise provided with gas passages 9 and 10.

また、インターコネクタには、空気あるいは酸素などの
酸化剤のガス通路7と水素などの燃料気体のガス通路8
を形成して電極に気体を供給するともに隣接する単位燃
料電池を電気的に接続する作用をする。両端には電気を
外部に取り出すための端板5および6を設けている。端
板5および6にも同様にガス通路9および10が設けら
れている。この図では単位燃料電池は2組のみであるが
、多数の単位燃料電池を積層することによって所望の出
力電圧を得る燃料電池を得ることが可能であることは勿
論である。
The interconnector also includes a gas passage 7 for an oxidizing agent such as air or oxygen, and a gas passage 8 for a fuel gas such as hydrogen.
It acts to supply gas to the electrodes and to electrically connect adjacent unit fuel cells. End plates 5 and 6 are provided at both ends for extracting electricity to the outside. End plates 5 and 6 are likewise provided with gas passages 9 and 10. Although this figure shows only two sets of unit fuel cells, it is of course possible to obtain a fuel cell that provides a desired output voltage by stacking a large number of unit fuel cells.

このような構成の燃料電池において、ガス通路7および
9に酸素または空気を、ガス通路8および10には水素
またはその他の燃料気体を流し、両端板には図示しない
外部回路を接続し、燃料電池の作動温度である850℃
〜1000℃に保持すると、イオン化した酸素が正極2
側より固体電解質板1を透過して負極3で燃料気体と反
応する。
In a fuel cell having such a configuration, oxygen or air is supplied to the gas passages 7 and 9, hydrogen or other fuel gas is supplied to the gas passages 8 and 10, and an external circuit (not shown) is connected to both end plates. 850℃, which is the operating temperature of
When maintained at ~1000°C, ionized oxygen flows to the positive electrode 2.
It passes through the solid electrolyte plate 1 from the side and reacts with the fuel gas at the negative electrode 3.

この結果外部回路を電流が流れることとなる。As a result, current flows through the external circuit.

燃料気体として水素を利用した場合を化学式で示すと、
次のようになる。
The chemical formula for using hydrogen as a fuel gas is:
It will look like this:

正極:  1 / 202+ 2 e−<02−負極’
  H2+0z−=H20+2 e−電池全体では 1/20□+H2→H20 で示される水素の酸化による水の生成反応が起こってい
る。
Positive electrode: 1/202+ 2 e-<02-negative electrode'
H2+0z-=H20+2 In the entire e-battery, a water production reaction is occurring by oxidizing hydrogen as shown by 1/20□+H2→H20.

第3図に示すように、積層した燃料電池スタック11は
圧力容器12内に設けて酸化剤および燃料の供給および
排出のマニホールドを取り付けるか(図示していない)
、あるいは圧力容器内の壁面と燃料電池との接触箇所を
封止することにより燃料電池スタックと圧力容器との間
で形成される空間を気体の通路として、圧力容器の底面
に水素の供給口13、未反応水素を含む気体の排出口1
4、酸素の供給口15および未反応酸素を含む気体の排
出口16を設けて燃料電池への気体の供給と排出をする
ことができる。
As shown in FIG. 3, the stacked fuel cell stack 11 may be provided within a pressure vessel 12 with manifolds for supplying and discharging oxidizer and fuel (not shown).
Alternatively, by sealing the contact point between the wall surface of the pressure vessel and the fuel cell, a space formed between the fuel cell stack and the pressure vessel is used as a gas passage, and a hydrogen supply port 13 is installed at the bottom of the pressure vessel. , exhaust port 1 for gas containing unreacted hydrogen
4. An oxygen supply port 15 and a gas discharge port 16 containing unreacted oxygen may be provided to supply and discharge gas to the fuel cell.

また、発生電力を外部回路に供給する端子17および1
8と外部回路を接続して外部に電力を供給する。
Also, terminals 17 and 1 supply generated power to an external circuit.
8 and an external circuit to supply power to the outside.

[発明が解決しようとする課題] 平板型の単位燃料電池を直列に接続するためには導電性
のインターコネクタを介して単位燃料電池を多数積層し
ているが、インターコネクタには高温の酸素および水素
雰囲気に耐食性があって電気伝導性の良い材料、炭化ケ
イ素、ケイ素化モリブデン、ケイ素化クロム、ランタン
クロマイト等の導電性セラミックスまたはニッケル、ク
ロム、コバルト等を含む合金等を用いている。ところが
、これらの材料を用いるインターコネクタは安定化ジル
コニアの固体電解質板とは、熱膨張率において1011
0−61/’Cの差がある。このように大きな差がある
と固体電解質燃料電池の作動温度である850℃〜10
00 ”Cでは固体電解質板の電極面とインターコネク
タ間に隙間が発生することとなり、酸素と燃料気体が漏
洩すると電池反応に利用されなくり燃料の利用率が低下
するとともに酸素と燃料気体の混合が起きると危険でも
ある。
[Problems to be Solved by the Invention] In order to connect flat unit fuel cells in series, a large number of unit fuel cells are stacked via conductive interconnectors, but the interconnectors are exposed to high temperature oxygen and Materials that are resistant to corrosion in a hydrogen atmosphere and have good electrical conductivity, conductive ceramics such as silicon carbide, molybdenum silicide, chromium silicide, and lanthanum chromite, or alloys containing nickel, chromium, cobalt, etc., are used. However, interconnectors using these materials have a coefficient of thermal expansion of 1011 compared to stabilized zirconia solid electrolyte plates.
There is a difference of 0-61/'C. If there is such a large difference, the operating temperature of a solid electrolyte fuel cell is 850℃~10℃.
At 00"C, a gap will occur between the electrode surface of the solid electrolyte plate and the interconnector, and if oxygen and fuel gas leak, they will not be used for the cell reaction, resulting in a decrease in the fuel utilization rate and the mixing of oxygen and fuel gas. It is also dangerous if this happens.

燐酸型および溶融炭酸塩型燃料電池のように200ない
し600℃程度の温度で作動する燃料電池では、気体の
漏洩および混合を液状および溶融物の電解質とガスケッ
トによって防止することは比較的容易であるが、作動温
度が850℃〜1000℃という高温では有効な封止方
法が提案されておらず、これが平板型の固体電解質型燃
料電池の開発を遅らせる一つの原因となっていた。
In fuel cells operating at temperatures on the order of 200 to 600°C, such as phosphoric acid and molten carbonate fuel cells, it is relatively easy to prevent gas leakage and mixing with liquid and molten electrolytes and gaskets. However, no effective sealing method has been proposed at high operating temperatures of 850° C. to 1000° C., and this has been one of the reasons for delaying the development of flat plate solid oxide fuel cells.

[課題を解決するための手段] 本発明者らは、固体電解質型の燃料電池の封止方法を鋭
意検討し、固体電解質板とインターコネクタとの間の熱
膨張の差を緩和し、燃料電池の作動温度より高温の10
50℃〜1350℃の間に軟化点をもち850℃〜10
00℃の作動温度では塑性変形しない材料を封止材とす
ることによって確実に封止する方法を見出したのである
[Means for Solving the Problem] The present inventors have diligently studied a sealing method for a solid electrolyte fuel cell, alleviated the difference in thermal expansion between a solid electrolyte plate and an interconnector, and 10 higher than the operating temperature of
It has a softening point between 50℃ and 1350℃, and has a softening point between 850℃ and 10℃.
They discovered a method for reliably sealing by using a sealing material that does not undergo plastic deformation at an operating temperature of 00°C.

すなわち、第1図は本発明の固体電解質型燃料電池の構
成を示す図であり、3段に平板型の単位燃料電池を積層
した電解槽スタックを展開して示したものである。図中
21は安定化あるいは部分安定化ジルコニアからなる固
体電解質板、固体電解質板には正極22と負極23を形
成する多孔性物質を被覆しており、気体の通路を形成し
た集電の作用と共に隣接する単位燃料電池を電気的に接
続するインターコネクタ24を介して積層し、両端には
電気を外部に取り出すための端板25および26を設け
ている。また、インターコネクタには酸素または空気等
の酸化剤のガス通路27と水素などの燃料気体のガス通
路28を設け、端板25および26にも同様にガス通路
29および30が設けられており、電極を形成した電解
質板面の周縁部31には電池の作動温度より高温の10
50℃から1350℃で軟化し、軟化物が102〜10
7ボイズの粘度であり、封止形状に変形させ、降温し、
作動温度1000℃以下では塑性変形しない材料を用い
るものであり、ガラスペーストの軟化する温度に加熱の
後に、作動温度まで温度を低下させる過程でガラスペー
ストを凝固させて電解質板とインターコネクタの間を封
止すると共に両者を機械的に固定するものである。
That is, FIG. 1 is a diagram showing the configuration of a solid oxide fuel cell according to the present invention, and is an exploded view of an electrolytic cell stack in which flat unit fuel cells are stacked in three stages. In the figure, 21 is a solid electrolyte plate made of stabilized or partially stabilized zirconia, and the solid electrolyte plate is coated with a porous material that forms a positive electrode 22 and a negative electrode 23. Adjacent unit fuel cells are stacked via interconnectors 24 that electrically connect them, and end plates 25 and 26 are provided at both ends for taking out electricity to the outside. Further, the interconnector is provided with a gas passage 27 for an oxidizing agent such as oxygen or air, and a gas passage 28 for a fuel gas such as hydrogen, and the end plates 25 and 26 are similarly provided with gas passages 29 and 30. The peripheral edge 31 of the electrolyte plate surface on which the electrodes are formed is heated to
Softens from 50℃ to 1350℃, and the softened product is 102 to 10
It has a viscosity of 7 voids, is deformed into a sealed shape, cooled,
It uses a material that does not undergo plastic deformation at an operating temperature of 1000°C or less, and after heating to a temperature at which the glass paste softens, the glass paste is solidified in the process of lowering the temperature to the operating temperature, thereby creating a gap between the electrolyte plate and the interconnector. This is to seal and mechanically fix the two.

このような目的で使用可能なガラスペーストには、高軟
化点のアルミノケイ酸ガラス、高ケイ酸ガラス、結晶化
ガラスのうち、 Li2O°5i02系、 β−スポジ
ュメン固溶(E  コージェライト系のガラス等をあげ
ることができる。
Glass pastes that can be used for this purpose include high softening point aluminosilicate glass, high silicate glass, crystallized glass, Li2O°5i02 type, β-spodumene solid solution (E cordierite type glass, etc.) can be given.

あるいは、結晶化ガラスのように1050℃から135
0℃で軟化し、封止形状にした後、この温度に維持する
ことによりガラス相から結晶相を析出させて塑性変形し
ない状態にして封止ど固定を行ってもよい。ガラスペー
ストの塗布幅が大きいと燃料電池として作用する部分の
面積が減少することとなり、また小さいと漏洩の可能性
があるので2〜8 mm程度が好ましく、塗布する厚み
は0.1〜0.5mm程度が好ましい。
Or, like crystallized glass, from 1050℃ to 135℃
After it is softened at 0° C. and formed into a sealed shape, it may be maintained at this temperature to precipitate a crystalline phase from the glass phase to prevent plastic deformation and be fixed by sealing or the like. If the glass paste coating width is too large, the area of the part that functions as a fuel cell will be reduced, and if it is too small, there is a possibility of leakage, so it is preferably about 2 to 8 mm, and the coating thickness is 0.1 to 0.0 mm. Approximately 5 mm is preferable.

また、ガラスペーストの塗布に代えてガラスペーストの
ガラス成分と同様の成分からなるガラス板を挟持して積
層した後に、ガラスを軟化温度まで加熱した後に温度を
硬化させて凝固させて封止と固定を行ってもよいし、電
極を形成した固体電解質板、インターコネクタの少なく
とも一方の表面に電池の作動温度において塑性変形しな
いガラスを有機物質に分散させたガラスペーストを塗布
するとともに、ガラスペーストのガラス成分と同様の成
分からなるガラス板を挟持して積層してガラスを軟化温
度まで加熱した後に温度を降下して凝固させて封止と固
定を行ってもよい。
In addition, instead of applying glass paste, we sandwich and stack glass plates made of the same glass components as the glass paste, heat the glass to its softening temperature, and then harden the temperature and solidify it for sealing and fixing. Alternatively, at least one surface of the solid electrolyte plate on which electrodes are formed and the interconnector is coated with a glass paste in which glass that does not deform plastically at the operating temperature of the battery is dispersed in an organic substance. Sealing and fixing may be performed by sandwiching and stacking glass plates made of the same components as the components, heating the glass to a softening temperature, and then lowering the temperature to solidify it.

[作用] 平板型の固体電解質型の燃料電池において、電極を形成
した固体電解質板の表面とインターコネクタとの間に1
050℃〜1350℃の間において軟化し電池の作動温
度においては塑性変形しない物質を塗布することによっ
て固体電解質板とインターコネクタとの開の気体の漏洩
を防止するとともに両者を固定することができる。
[Function] In a flat plate solid electrolyte fuel cell, there is a gap between the surface of the solid electrolyte plate on which electrodes are formed and the interconnector.
By applying a material that softens between 050° C. and 1350° C. and does not undergo plastic deformation at the operating temperature of the battery, it is possible to prevent gas leakage between the solid electrolyte plate and the interconnector and to fix the two.

[実施例] 第1回の積層様式にしたがって燃料電池スタックを製作
した。酸化イツトリウムを3モル%添加した部分安定化
ジルコニアの50×50IIII11の大きさの固体電
解質板を用いた。そして、固体電解質の酸素通路側には
L a @、gs r I!、)M n O3粉末(平
均粒径約5μm)を刷毛塗り法で厚さ0 、3 mmに
塗布して正極とした。また水素通路側にはニッケル/二
酸化ジルコニウム(重量比で9対1)のサーメット混合
粉末を正極と同様に刷毛塗り法で02=の厚さに塗布し
て負極とした。
[Example] A fuel cell stack was manufactured according to the first stacking method. A solid electrolyte plate of partially stabilized zirconia with a size of 50×50III11 to which 3 mol % of yttrium oxide was added was used. And on the oxygen passage side of the solid electrolyte, L a @, gs r I! , )MnO3 powder (average particle size of about 5 μm) was applied to a thickness of 0.3 mm by brush coating to form a positive electrode. Further, on the hydrogen passage side, a cermet mixed powder of nickel/zirconium dioxide (weight ratio: 9:1) was applied to a thickness of 0.2 mm by brush coating in the same manner as the positive electrode to form a negative electrode.

インターコネクタにはニクロムを用い、固体電解質板2
1の周縁部には軟化点が1200℃のLi20・5i0
2系結晶化ガラスのペーストを0.2鰭の厚さで塗布し
た。
Nichrome is used for the interconnector, and the solid electrolyte plate 2
Li20.5i0 with a softening point of 1200°C is placed around the periphery of 1.
A paste of 2-series crystallized glass was applied to a thickness of 0.2 fins.

このようにして3段に積層した燃料電池スタックを圧力
容器内に取り付けて加熱した。加熱は室温から150℃
までは1分間に1℃で加熱し、ガラスペーストの溶媒を
蒸発させた6 150℃〜300℃までは1分間に5℃
、300℃以上では水素通路側に電極の酸化を防止する
ために窒素を流し、 1分間に5℃で1200℃まで昇
温して熔融し同温度に10分間保持した。
The fuel cell stack stacked in three layers in this way was mounted in a pressure vessel and heated. Heating is from room temperature to 150℃
From 150°C to 300°C, heat at 5°C per minute to evaporate the glass paste solvent.
At temperatures above 300°C, nitrogen was flowed on the hydrogen path side to prevent oxidation of the electrode, and the temperature was increased to 1200°C at a rate of 5°C per minute to melt it and held at the same temperature for 10 minutes.

その後1000℃に降温しで正極側に酸素、負極側に水
素を供給して発電を開始したところ開放電圧は3.7ボ
ルトあり、ネルンストの式による電気化学電位の値から
推計すると、気体の漏洩はほとんどなく、また固体電解
質板とインターコネクタとは十分に機械的にも固定され
ていた。
After that, when the temperature was lowered to 1000℃ and power generation was started by supplying oxygen to the positive electrode side and hydrogen to the negative electrode side, the open circuit voltage was 3.7 volts. Estimating from the value of the electrochemical potential according to Nernst's equation, gas leakage occurred. In addition, the solid electrolyte plate and interconnector were sufficiently mechanically fixed.

[発明の効果] 平板型の電解質板を有する固体電解質型の燃料電池にお
いて、電解質板の周縁部に1050℃から1350℃で
軟化し、電池の作動温度である850℃〜1000℃で
は塑性変形しないガラスを塗布してインターコネクタと
固体電解質板との間を封止したので気体の漏洩の可能性
を減少させるとともに両者を固定したので振動によって
ずれることなく安全な操業が可能である。
[Effect of the invention] In a solid electrolyte fuel cell having a flat electrolyte plate, the peripheral edge of the electrolyte plate softens at 1050°C to 1350°C and does not undergo plastic deformation at the cell operating temperature of 850°C to 1000°C. Glass was applied to seal the space between the interconnector and the solid electrolyte plate, reducing the possibility of gas leakage, and since both were fixed, safe operation was possible without shifting due to vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によって製造した固体電解質燃料
電池の構成を示す図、第2図は固体電解質燃料電池の構
成を示す図、第3図は燃料電池スタックの取り付は例を
示す図である。 固体電解質      ・・・・・2 正極         ・・・・・2 負極          ・・・・・2インターコネク
タ   ・・・・・2 ガラスペーストの塗布部・・・・・3
FIG. 1 is a diagram showing the configuration of a solid oxide fuel cell manufactured by the method of the present invention, FIG. 2 is a diagram showing the configuration of the solid oxide fuel cell, and FIG. 3 is a diagram illustrating an example of how the fuel cell stack is installed. It is. Solid electrolyte...2 Positive electrode...2 Negative electrode...2 Interconnector...2 Glass paste application area...3

Claims (8)

【特許請求の範囲】[Claims] (1)電極を形成した固体電解質板とインターコネクタ
との間に電池の作動温度において塑性変形しない封止物
質が介在していることを特徴とする高温型燃料電池。
(1) A high-temperature fuel cell characterized in that a sealing material that does not undergo plastic deformation at the operating temperature of the cell is interposed between a solid electrolyte plate forming an electrode and an interconnector.
(2)作動温度が850℃〜1000℃である請求項1
記載の高温型燃料電池。
(2) Claim 1, wherein the operating temperature is 850°C to 1000°C.
High temperature fuel cell described.
(3)封止物質が軟化温度1050℃〜1350℃の間
にあるガラスである請求項1あるいは2のいずれかに記
載の高温型燃料電池。
(3) The high temperature fuel cell according to claim 1 or 2, wherein the sealing material is glass having a softening temperature between 1050°C and 1350°C.
(4)封止物質が作動温度で結晶相を生成する結晶化ガ
ラスである請求項1ないし3項のいずれか1項に記載の
高温型燃料電池。
(4) The high-temperature fuel cell according to any one of claims 1 to 3, wherein the sealing material is crystallized glass that forms a crystalline phase at the operating temperature.
(5)電極を形成した固体電解質板、インターコネクタ
の少なくとも一方の表面に電池の作動温度において塑性
変形しないガラスを有機物質に分散させたガラスペース
トを塗布して積層することを特徴とする高温型燃料電池
の製造方法。
(5) A high-temperature type characterized by laminating a solid electrolyte plate on which electrodes are formed and at least one surface of the interconnector by applying a glass paste in which glass that does not deform plastically at the operating temperature of the battery is dispersed in an organic substance. Method of manufacturing fuel cells.
(6)電極を形成した固体電解質板とインターコネクタ
の間に電池の作動温度において塑性変形しないガラスを
挟持して積層することを特徴とする高温型燃料電池の製
造方法。
(6) A method for manufacturing a high-temperature fuel cell, which comprises sandwiching and stacking glass that does not undergo plastic deformation at the operating temperature of the cell between a solid electrolyte plate on which electrodes are formed and an interconnector.
(7)電極を形成した固体電解質板、インターコネクタ
の少なくとも一方の表面に電池の作動温度において塑性
変形しないガラスを有機物質に分散させたガラスペース
トを塗布することを特徴とする請求項6記載の高温型燃
料電池の製造方法。
(7) A glass paste in which glass that does not deform plastically at the operating temperature of the battery is dispersed in an organic substance is applied to at least one surface of the solid electrolyte plate on which the electrode is formed and the interconnector. A method for manufacturing a high temperature fuel cell.
(8)1050℃〜1350℃に加熱し、ガラスを軟化
させ封止することを特徴とする請求項5ないし7項のい
ずれか1項に記載の高温型燃料電池の製造方法。
(8) The method for manufacturing a high-temperature fuel cell according to any one of claims 5 to 7, characterized in that the glass is heated to 1050°C to 1350°C to soften and seal the glass.
JP2086456A 1990-03-31 1990-03-31 High temperature fuel cell and method of manufacturing the same Expired - Fee Related JP2936001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086456A JP2936001B2 (en) 1990-03-31 1990-03-31 High temperature fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086456A JP2936001B2 (en) 1990-03-31 1990-03-31 High temperature fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03285268A true JPH03285268A (en) 1991-12-16
JP2936001B2 JP2936001B2 (en) 1999-08-23

Family

ID=13887448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086456A Expired - Fee Related JP2936001B2 (en) 1990-03-31 1990-03-31 High temperature fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2936001B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620608A1 (en) * 1993-04-13 1994-10-19 Murata Manufacturing Co., Ltd. Solid oxide fuel cell and manufacturing process thereof
EP0675557A1 (en) * 1994-03-03 1995-10-04 Murata Manufacturing Co., Ltd. Method of producing a solid oxide fuel cell
WO1997034331A1 (en) * 1996-03-14 1997-09-18 Siemens Aktiengesellschaft Method of coating a component of a high-temperature fuel cell with a vitreous layer and high-temperature fuel cell stack
JP2003238201A (en) * 2001-12-05 2003-08-27 Ngk Insulators Ltd Sealing material, joined body, electrochemical apparatus, and crystallized glass
JP2010055859A (en) * 2008-08-27 2010-03-11 Ngk Insulators Ltd Assembling method of solid oxide fuel cell
JP2010262761A (en) * 2009-04-30 2010-11-18 Noritake Co Ltd Solid oxide fuel cell and jointing material
JP2011042550A (en) * 2009-08-24 2011-03-03 Noritake Co Ltd Oxygen ion conduction module, sealing material for the module and its utilization
JP2016081813A (en) * 2014-10-20 2016-05-16 株式会社東芝 Electrochemical cell stack, and power system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620608A1 (en) * 1993-04-13 1994-10-19 Murata Manufacturing Co., Ltd. Solid oxide fuel cell and manufacturing process thereof
EP0675557A1 (en) * 1994-03-03 1995-10-04 Murata Manufacturing Co., Ltd. Method of producing a solid oxide fuel cell
US5585203A (en) * 1994-03-03 1996-12-17 Murata Manufacturing Co., Ltd. Method of producing a solid oxide fuel cell
WO1997034331A1 (en) * 1996-03-14 1997-09-18 Siemens Aktiengesellschaft Method of coating a component of a high-temperature fuel cell with a vitreous layer and high-temperature fuel cell stack
JP2003238201A (en) * 2001-12-05 2003-08-27 Ngk Insulators Ltd Sealing material, joined body, electrochemical apparatus, and crystallized glass
JP2010055859A (en) * 2008-08-27 2010-03-11 Ngk Insulators Ltd Assembling method of solid oxide fuel cell
JP2010262761A (en) * 2009-04-30 2010-11-18 Noritake Co Ltd Solid oxide fuel cell and jointing material
JP2011042550A (en) * 2009-08-24 2011-03-03 Noritake Co Ltd Oxygen ion conduction module, sealing material for the module and its utilization
JP2016081813A (en) * 2014-10-20 2016-05-16 株式会社東芝 Electrochemical cell stack, and power system

Also Published As

Publication number Publication date
JP2936001B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
Singh et al. Solid oxide fuel cells: technology status
US8652709B2 (en) Method of sealing a bipolar plate supported solid oxide fuel cell with a sealed anode compartment
CA2445599A1 (en) Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
JP2009520315A (en) Electrochemical battery holder and stack
JPH1092446A (en) Solid electrolyte type fuel cell
JP2936001B2 (en) High temperature fuel cell and method of manufacturing the same
JPH03219563A (en) Solid electrolyte type fuel cell
JP6667279B2 (en) Electrochemical reaction cell stack and electrochemical reaction module
JPH0660891A (en) Sealing material for fuel cell
JP3547062B2 (en) Sealing material for fuel cells
JP2018041569A (en) Electrochemical reaction unit, and electrochemical reaction cell stack
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH03285267A (en) High temperature type fuel cell and manufacture thereof
JPH0412460A (en) High-temperature fuel cell
JPH0294365A (en) Solid electrolyte fuel cell
JPH0412470A (en) High-temperature type fuel cell
JPH0850911A (en) Platelike solid electrolytic fuel cell
Markin et al. High temperature solid electrolyte fuel cells
JP7254755B2 (en) Manufacturing method of electrochemical reaction cell stack
JPH0722032A (en) Fuel electrode plate for flat plate type solid electrolyte fuel cell
JPH033338B2 (en)
JPH03285266A (en) High temperature type fuel cell
JP3301558B2 (en) Flat solid electrolyte fuel cell
KR100318206B1 (en) A heat treatment method for separator of molten carbonate fuel cell
JPH05174846A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees