JPH01124964A - Flat plate type solid electrolyte fuel cell - Google Patents

Flat plate type solid electrolyte fuel cell

Info

Publication number
JPH01124964A
JPH01124964A JP62283716A JP28371687A JPH01124964A JP H01124964 A JPH01124964 A JP H01124964A JP 62283716 A JP62283716 A JP 62283716A JP 28371687 A JP28371687 A JP 28371687A JP H01124964 A JPH01124964 A JP H01124964A
Authority
JP
Japan
Prior art keywords
solid electrolyte
interconnector
film
fuel
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283716A
Other languages
Japanese (ja)
Inventor
Tokumi Satake
徳己 佐竹
Akihiro Isato
伊里 昭寛
Hideo Nishikawa
西川 日出男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62283716A priority Critical patent/JPH01124964A/en
Publication of JPH01124964A publication Critical patent/JPH01124964A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2435High-temperature cells with solid electrolytes with monolithic core structure, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the strength in a joint and to prevent breakage in a baking process by alternately stacking corrugated solid electrolyte films and interconnector films, and forming fuel electrodes and oxygen electrodes in regions surrounded by these films. CONSTITUTION:A corrugated solid electrolyte film 21 and a flat plate-like interconnector film 23 are joined together through an adhesive 22. An oxygen electrode 25 having an oxidizing agent passage 25a and a fuel electrode 26 having a fuel passage 26a are installed in a passage 24 formed with the solid electrolyte film 21 and the interconnector film 23. By directly joining the solid electrolyte film and the interconnector film, both are a dense film, the strength in the joint is increased. Since the solid electrolyte film is corrugated, both films are joined in a straight line, and baked in an almost tree state. Deformation during baking is therefore free and breakage is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は平板型固体電解質燃料電池に関し、電流を流す
ことにより水電解、CO2電解等の電解セルにも使用可
能なものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flat plate type solid electrolyte fuel cell, which can also be used in electrolytic cells such as water electrolysis and CO2 electrolysis by passing a current through the cell.

[従来の技術と問題点] 周知の如く、固体電解質燃料電池(以下、5OFCと呼
ぶ)はイツトリア安定化ジルコニア(以下、YSZと呼
ぶ)などを電解質とし、その両側に電極を設け、約10
00℃に加熱した状態で燃料及び酸化剤(通常は空気)
を供給すると、電気化学反応により直接発電するもので
、高効率、無公害等の特徴を有し、次世代の発電方式と
して期待されている。
[Prior Art and Problems] As is well known, a solid electrolyte fuel cell (hereinafter referred to as 5OFC) uses an electrolyte such as yttria-stabilized zirconia (hereinafter referred to as YSZ), electrodes are provided on both sides of the electrolyte, and approximately 10
Fuel and oxidizer (usually air) heated to 00°C
When supplied, power is generated directly through an electrochemical reaction, and it has features such as high efficiency and no pollution, and is expected to be a next-generation power generation method.

従来、電池構造としては、円筒型5OFC及び平板型5
OFCが考えられている。前者の代表例としては第4図
に示゛す特開昭54−73240号(以下、従来例1と
呼ぶ)及び第5図に示す特開昭57−130381号(
以下、従来例2と呼ぶ)があり、現在夫々数Kw級の発
電試験を行うなどの研究が進められている。一方、後者
としては、第6図に示す波形状薄膜と平板状薄膜を積層
した平板型5OFC(以下、従来例3と呼ぶ)がある。
Conventionally, battery structures include a cylindrical 5OFC and a flat plate 5
OFC is being considered. Representative examples of the former are JP-A-54-73240 (hereinafter referred to as conventional example 1) shown in FIG. 4 and JP-A-57-130381 (hereinafter referred to as conventional example 1) shown in FIG.
There is a conventional example 2 (hereinafter referred to as conventional example 2), and research is currently underway, including conducting power generation tests of several kilowatts for each. On the other hand, as the latter, there is a flat plate type 5OFC (hereinafter referred to as conventional example 3) in which a corrugated thin film and a flat thin film are laminated as shown in FIG.

第、6図において、1は単位セルである。この単位セル
1は、酸素電極2.固体電解質膜3.燃料電極4で構成
される波板状の積層膜5及び燃料電極6.インタコネク
タ膜7.酸素電極8で構成される平板状の積層膜9から
成立ち、単セル1が複数個直列に接続したものがモジュ
ール(集合電池)10である。また、波板状積層膜で仕
切られた空間のうち、その燃料電極4に接する方が燃料
通路11で、酸素電極2に接する方が酸化剤通路12と
なっている。また、各構成層の膜厚は50〜100μs
程度である。材質的には、前記酸素電極2.8は高温酸
化雰囲気で高い導電性を有し、熱膨張率も他の構成材杆
と略一致するLaSrMnO3などの酸素電極材料を使
用する。同様に、燃料電極4.6は高温還元雰囲気で高
い導電性を有し、熱膨張率も考慮した(Ni O+YS
Z)などの燃料電極材料を使用する。また、固体電解質
膜3にはイオン導電性を有するYSzなどを、インタコ
ネクタ膜7には高温酸化還元の両雰囲気に耐え、導電性
も有するLa Mg Cr 03の材料を使用する。
In FIGS. 6 and 6, 1 is a unit cell. This unit cell 1 has an oxygen electrode 2. Solid electrolyte membrane 3. A corrugated laminated membrane 5 composed of a fuel electrode 4 and a fuel electrode 6. Interconnector membrane7. A module (battery assembly) 10 is made up of a flat laminated film 9 composed of an oxygen electrode 8 and has a plurality of single cells 1 connected in series. Further, among the spaces partitioned by the corrugated laminated film, the one in contact with the fuel electrode 4 is a fuel passage 11, and the one in contact with the oxygen electrode 2 is an oxidizer passage 12. In addition, the film thickness of each constituent layer is 50 to 100 μs.
That's about it. In terms of material, the oxygen electrode 2.8 is made of an oxygen electrode material such as LaSrMnO3, which has high conductivity in a high-temperature oxidizing atmosphere and has a coefficient of thermal expansion that is approximately the same as that of the other constituent materials. Similarly, fuel electrode 4.6 has high conductivity in a high-temperature reducing atmosphere, taking into account the coefficient of thermal expansion (Ni O + YS
Use fuel electrode materials such as Z). Further, the solid electrolyte membrane 3 is made of YSz or the like having ionic conductivity, and the interconnector membrane 7 is made of a material such as La Mg Cr 03 which can withstand both high temperature oxidation and reduction atmospheres and also has conductivity.

製作方法としては、以上全ての電池構成要素はテープキ
ャスティングと呼ばれる薄膜製造法で、焼成前のグリー
ンな状態で成形される。それらを用いて、積層膜5は酸
素電極2.固体電解質膜3゜燃料電極4のテープキャス
ティング膜を積層後、波板状に曲げ加工する。また、積
層膜9は燃料電極6.インタコネクタ膜7.酸素電極8
のテープキャスティング膜を積層し、平板状とする。こ
のようにして製作した波板状積層膜5及び平板状積層膜
9を交互に積み重ね、その状態で一括焼成する。電池完
成後、約1000℃に保持した状態で燃料通路11に水
素等酸化剤通路12に空気等を供給すると、電気化学反
応により直接電気が得られる。
As for the manufacturing method, all of the battery components mentioned above are molded in a green state before firing using a thin film manufacturing method called tape casting. Using them, the laminated film 5 is formed into an oxygen electrode 2. After stacking the solid electrolyte membrane 3° and the tape casting membrane of the fuel electrode 4, they are bent into a corrugated plate shape. Moreover, the laminated film 9 is a fuel electrode 6. Interconnector membrane7. oxygen electrode 8
The tape casting films are laminated to form a flat plate. The corrugated laminated film 5 and the flat laminated film 9 thus produced are alternately stacked and fired in this state at once. After the battery is completed, if air or the like is supplied to the fuel passage 11 and the oxidizing agent passage 12 while maintaining the temperature at about 1000°C, electricity can be directly obtained through an electrochemical reaction.

ところで、円筒型5OFCと平板型5OFCを比較する
と、円筒型5OFCは試作が比較的容易で、現在すでに
かなり研究が進んでいるが、発電性能(電流密度、出力
密度等)はさほど良くなく、そのため単位出力当りの製
造コストも高くなることが予想される。
By the way, when comparing cylindrical 5OFC and flat plate 5OFC, cylindrical 5OFC is relatively easy to prototype, and research is already progressing considerably, but its power generation performance (current density, output density, etc.) is not so good. It is expected that the manufacturing cost per unit output will also increase.

一方、従来例3の燃料電池は薄膜のみで構成され、しか
も1セルの間隔を1〜2mmと小さくしているため、発
電部単位面積当りの電流密度、出力密度が高く、しかも
薄膜のみで構成され重量が軽い為、セル容量1重量当り
の出力は従来例1.2と比べ飛躍的に向上する。しかし
ながら、平板型5OFCは製作が難しく製作技術の確立
が最も重要な課題である。以下、第6図の平板型5OF
Cの問題点について説明する。
On the other hand, the fuel cell of Conventional Example 3 is composed only of thin films, and the interval between each cell is as small as 1 to 2 mm, so the current density and output density per unit area of the power generation part are high, and it is composed only of thin films. Since the weight is light, the output per weight of cell capacity is dramatically improved compared to the conventional example 1.2. However, flat plate type 5OFC is difficult to manufacture and the most important issue is the establishment of manufacturing technology. Below, the flat plate type 5OF in Figure 6
The problems with C will be explained.

(1)燃料電極及び酸素電極は主に1000℃での導電
率、熱膨張率を考慮して選定された材料で、しかも電極
に対する要求からポーラスに出来ており、燃料電極、酸
素電極の強度は低い。従って、燃料電極同志、酸素電極
同志の接合部は弱く、この部分から破損し易い。
(1) The fuel electrode and oxygen electrode are made of materials selected mainly taking into consideration the electrical conductivity and coefficient of thermal expansion at 1000°C, and due to the requirements for the electrode, they are made porous, so the strength of the fuel electrode and oxygen electrode is low. Therefore, the joints between the fuel electrodes and the oxygen electrodes are weak and easily break from these parts.

(2)固体電解質膜、インタコネクタ膜、酸素電極。(2) Solid electrolyte membrane, interconnector membrane, oxygen electrode.

燃料電極の4 M類の材料を焼成前の未焼結のグリーン
状態で3層膜及びそれを変形した波形状の3層膜を成形
し、それらを積層後1度に焼成させるが、これらの材料
は■本来最適焼成温度が異なる。
A 3-layer film and a wavy 3-layer film obtained by deforming it are formed from the 4M class materials of the fuel electrode in an unsintered green state before firing, and they are fired at one time after being laminated. Materials originally have different optimal firing temperatures.

■固体電解質膜及びインタコネクタ膜は緻密な膜を必要
とする一方で酸素電極及び燃料電極はポーラスな膜を必
要とするなど、構成膜により要求使用が異なる。従って
、1度の焼成で4種類の材料全てに対し、最適な焼成を
行うことは困難である。
■Requirements differ depending on the constituent membranes, such as solid electrolyte membranes and interconnector membranes requiring dense membranes, while oxygen electrodes and fuel electrodes require porous membranes. Therefore, it is difficult to perform optimal firing for all four types of materials in one firing.

また、焼成温度の高い材料に合せて高い温度で焼成する
と、焼成温度の低い材料側で材質の劣化。
Also, if you fire at a high temperature to match a material that has a high firing temperature, the material will deteriorate on the side of the material that has a low firing temperature.

電極の緻密化及び電池としての有害な界面反応等の不具
合が生じる。また、逆に焼成温度の低い材料に合せて低
い温度で焼成すると、焼成温度の高い材料は焼結が不充
分で、緻密性が不足したり電気的特性が不十分等の不具
合が生じる。
Problems such as densification of the electrode and harmful interfacial reactions as a battery occur. On the other hand, if the material is fired at a low temperature to match a material that requires a low firing temperature, the material that requires a high firing temperature will not be sufficiently sintered, resulting in problems such as insufficient density and insufficient electrical properties.

(3) 4 tI類の材料は熱膨張率も考慮して材料を
選定しているが、未焼結のグリーン状態から焼成する時
に同一条件で昇温しでも、材料1粒度等により焼結、即
ち焼結に伴う収縮が開始する温度及び収縮量が異なる。
(3) 4 tI class materials are selected taking into account the coefficient of thermal expansion, but even if the temperature is raised under the same conditions when firing from an unsintered green state, sintering or That is, the temperature at which shrinkage starts due to sintering and the amount of shrinkage are different.

例えば、材料間の熱膨張率の差がI X 10−6/’
C違っている時に0℃から1000℃まで温度を変えた
時の変形量の差は1 x 1O−6x(1000℃−0
℃)X100膠0,1 %に過ぎないが、焼結前の収縮
量の差は10%オーダで生じる。しかも、バインダーは
蒸発又は燃焼し、セラミックスあ焼結は不十分で強度が
ほとんどない状態で、この収縮のアンバランスが生じる
と割れ。
For example, the difference in thermal expansion coefficient between materials is I x 10-6/'
The difference in deformation when changing the temperature from 0℃ to 1000℃ when C is different is 1 x 1O-6x (1000℃-0
℃)X100 glue is only 0.1%, but the difference in shrinkage before sintering is on the order of 10%. Moreover, the binder evaporates or burns, and the ceramic is insufficiently sintered and has almost no strength, and this unbalanced shrinkage causes it to crack.

変形が非常に生じ易くなる。Deformation is very likely to occur.

本発明は上記事情に鑑みてなされたもので、接合部の強
度を向上するとともに、焼成時の割れを防止し得る平板
型固体電解質燃料電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flat solid electrolyte fuel cell that can improve the strength of the joint and prevent cracking during firing.

[問題点を解決するための手段] 本発明は、交互に積層されかつ少なくとも一方が波形状
の複数の固体電解質膜及びインタコネクタ膜と、これら
固体電解質膜及びインタコネクタ膜により囲まれた領域
内に夫々形成され、内部に夫々通路を有した燃料電極及
び酸素電極とを具備することを要旨とする。
[Means for Solving the Problems] The present invention provides a plurality of solid electrolyte membranes and interconnector membranes that are alternately stacked and at least one of which is corrugated, and a region surrounded by these solid electrolyte membranes and interconnector membranes. The main feature is that the fuel electrode is provided with a fuel electrode and an oxygen electrode, each of which is formed in a fuel cell and has a passage therein.

[作用コ 本発明によれば、 (1)緻密膜同志である固体電解質膜、インタコネクタ
膜を直接(又は接着剤層を介して)接合する為、接合部
の強度が向上する。
[Function] According to the present invention, (1) Since the solid electrolyte membrane and the interconnector membrane, which are dense membranes, are directly bonded (or via an adhesive layer), the strength of the bonded portion is improved.

(2)固体電解質膜、インタコネクタ膜の両方又は片方
は波板状であるため、両者の接するのは線状又は点状で
ある。このように両膜とも略フリーの状態で焼成出来る
ため、焼成中の変形が可能で割れが生じにくくなる。
(2) Since either or both of the solid electrolyte membrane and the interconnector membrane are corrugated, their contact is linear or dotted. In this way, since both films can be fired in a substantially free state, they can be deformed during firing and are less prone to cracking.

(3)材料配合例が例えば固体電解質膜;YSZ。(3) An example of material composition is a solid electrolyte membrane; YSZ.

インタコネクタ膜; LaMgCr03 、燃料電極;
(NiO+YSZ)、酸素電極;LaSrMnO3の場
合、緻密で焼成温度も高い固体電解質膜、インタコネク
タ膜をまず焼成し、次いでポーラスで焼成温度も少し低
い燃料電極、酸素電極を焼成する。このように、焼成温
度の高い材料から低い材料へと順次焼成するため、各材
料に対して最適の条件で焼成することが可能である。
Interconnector membrane; LaMgCr03, fuel electrode;
(NiO+YSZ), oxygen electrode; In the case of LaSrMnO3, the solid electrolyte membrane and interconnector membrane, which are dense and have a high firing temperature, are first fired, and then the porous fuel electrode and oxygen electrode, which are porous and have a slightly lower firing temperature, are fired. In this way, since materials are fired in order from materials with higher firing temperatures to materials with lower firing temperatures, each material can be fired under optimal conditions.

[実施例] 以下、本発明の実施例を図を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図において、21はYSz等からなる波板状の固体
電解質膜である。この固体電解質膜21には、接着剤2
2を介してLa Mg Cr 03などからなる平板状
のインタコネクタ膜23が接合されている。ここで、前
記接着剤22の材質としては、zro2.Aノ2031
  S t 02などのセラミックを主成分とし高温に
耐えられるものを使用する。但し、黒鉛パウダーなどを
充填剤として詰め、ホットプレスなどの方法で固体電解
質膜21とインタコネクタ膜23が直接接合する場合に
は、前記接着剤22は不要である。前記固体電解質膜2
2とインタコネクタ膜23で形成される通路24には、
内部に燃料通路25aを有する(NiO+YSZ)など
からなる酸素電極25、内部に酸化剤通路26aを有す
る燃料電極26が夫々設けられている。ここで、前記燃
料通路25a、酸化剤通路26aは固体電解質821の
凹凸により出来るもので、両道路25a、25bは平行
流となる。このように、前記固体電解質膜21、インタ
コネクタ膜23.酸素電極25及び燃料電極26かた単
セル27が成立ち、これら単セル27を積層することに
よりモジュール(集合電池)28が成立つ。
Example 1 In FIG. 1, 21 is a corrugated solid electrolyte membrane made of YSz or the like. This solid electrolyte membrane 21 is coated with adhesive 2.
A planar interconnector film 23 made of La Mg Cr 03 or the like is bonded via 2 . Here, the material of the adhesive 22 is zro2. Ano 2031
Use a material whose main component is ceramic, such as S t 02, and which can withstand high temperatures. However, if graphite powder or the like is filled as a filler and the solid electrolyte membrane 21 and interconnector membrane 23 are directly joined by a method such as hot pressing, the adhesive 22 is not necessary. The solid electrolyte membrane 2
2 and the interconnector membrane 23, the passage 24 is formed by
An oxygen electrode 25 made of (NiO+YSZ) or the like having a fuel passage 25a inside, and a fuel electrode 26 having an oxidizer passage 26a inside are provided, respectively. Here, the fuel passage 25a and the oxidizer passage 26a are formed by the unevenness of the solid electrolyte 821, and both roads 25a and 25b form parallel flows. In this way, the solid electrolyte membrane 21, the interconnector membrane 23. An oxygen electrode 25, a fuel electrode 26, and a single cell 27 are formed, and by stacking these single cells 27, a module (collected battery) 28 is formed.

次に、上記構造の平板型5OFCの製作方法について第
2図(a)〜(e)を参照して説明する。
Next, a method for manufacturing a flat plate type 5OFC having the above structure will be explained with reference to FIGS. 2(a) to 2(e).

■まず、固体電解質膜21のグリーンテープをテープキ
ャスティング法で成形し、波形状に曲げる(第2図(a
)図示)。なお、図中の31はYSZを収容する容器、
32は乾燥機、33はカッターである。
■First, the green tape of the solid electrolyte membrane 21 is formed by tape casting and bent into a wave shape (see Fig. 2 (a)
). In addition, 31 in the figure is a container containing YSZ,
32 is a dryer, and 33 is a cutter.

■次に、インタコネクタII! 23のグリーンテープ
をテープキャスティング法で成形する(第2図(b)図
示)。
■Next, Interconnector II! A green tape of No. 23 is molded by a tape casting method (as shown in FIG. 2(b)).

■つづいて、波形状の固体電解質膜21の凸部先端に接
着剤22を塗布し、平板状のインタコネクタ膜23と積
層し、この状態で1400〜1600℃で焼成する(第
2図(C)図示)。
■Subsequently, an adhesive 22 is applied to the tip of the convex part of the corrugated solid electrolyte membrane 21, and it is laminated with the flat interconnector membrane 23. In this state, it is fired at 1400 to 1600°C (Fig. 2 (C) ).

■更に、所定の面に対し燃料電極26のスラリーを流し
込む等の方法で塗布し、1300〜1500℃で焼成す
る(第2図(d)図示)。
(2) Furthermore, the slurry of the fuel electrode 26 is applied to a predetermined surface by a method such as pouring, and fired at 1300 to 1500°C (as shown in FIG. 2(d)).

■最後に、上記■で施工しなかった面に対し酸素電極2
5のスラリーを塗布し、1100〜1400℃で焼成し
て平板型固体電解質膜燃料電池を製作する(第2図(e
)図示)。
■Finally, add oxygen electrode 2 to the surface that was not installed in ■ above.
The slurry of Step 5 is applied and fired at 1100 to 1400°C to produce a flat solid electrolyte membrane fuel cell (see Figure 2 (e).
).

しかるに、電池完成後、約1000℃に保持した状態で
燃料及び酸化剤を供給すると、電気化学反応により電気
が得られ、その電気はマクロ的に見ると平板型5OFC
の垂直方向へと流れる。
However, after the battery is completed, if fuel and oxidizer are supplied while maintaining the temperature at approximately 1000°C, electricity is obtained through an electrochemical reaction, and from a macroscopic perspective, the electricity is
Flows in the vertical direction.

上記実施例1によれば、波形状の固体電解質膜21及び
平板状のインタコネクタ膜23を接着剤22を介して積
層し、焼成により接合した構造となっているため、従来
と比べ固体電解質膜21゜インタコネクタ膜23の接合
部の強度が向上する。
According to the first embodiment, the structure is such that the corrugated solid electrolyte membrane 21 and the flat interconnector membrane 23 are laminated via the adhesive 22 and bonded by firing. The strength of the joint portion of the 21° interconnector film 23 is improved.

また、前記固体電解質膜21は波形状である為、前記イ
ンタコネクタ膜23との接する部分は線状となる。従っ
て、両膜21.23とも略フリーの状態で焼成できるた
め、焼成中の変形が可能で割れが生じにくくなる。更に
、緻密で焼成温度も高い固体電解質膜21.インタコネ
クタ膜23を先ず焼成し、次いでポーラスで焼成温度も
少し低い燃料電極26.酸素電極25を焼成して電池を
構成すれば、焼成温度の高い材料から低い材料へと順次
焼成することになり、各材料に対して最適な条件で焼成
することが可能となる。
Further, since the solid electrolyte membrane 21 has a wave shape, the portion in contact with the interconnector membrane 23 has a linear shape. Therefore, since both films 21 and 23 can be fired in a substantially free state, they can be deformed during firing and cracks are less likely to occur. Furthermore, the solid electrolyte membrane 21 is dense and has a high firing temperature. First, the interconnector film 23 is fired, and then the fuel electrode 26, which is porous and has a slightly lower firing temperature. If a battery is constructed by firing the oxygen electrode 25, the materials will be fired in order from materials with higher firing temperatures to materials with lower firing temperatures, making it possible to perform firing under optimal conditions for each material.

実施例2 本実施例は、第1図の燃料電池に聴いて、燃料通路26
a及び、酸化剤通路25aが直交するように改良した平
板型5OFCである(第3図図示)。
Embodiment 2 This embodiment is based on the fuel cell shown in FIG.
This is a flat plate type 5OFC that has been improved so that the oxidizing agent passage 25a and the oxidizing agent passage 25a are orthogonal to each other (as shown in FIG. 3).

なお、同図は分り易くする為、燃料電極、酸素電極及び
接着剤は省略しである。
Note that the fuel electrode, oxygen electrode, and adhesive are omitted from this figure for clarity.

図中の41は波板状のインタコネクタ膜であり、波板の
向きを直交するように積層されている。また、42は電
池端部のシール材で、燃料43及び酸化剤44が混合し
ない構造になっている。しかるに、燃料通路26.酸化
剤通路25aは電池の端面からはシール材42の存在に
より燃料通路26aのみ、又は酸化剤通路25aのみし
かガスが流れるスペースはないが、電流内部ではこち電
解質膜21及びインタコネクタ膜41の間を交互に流れ
ている。このように、燃料通路26aと酸化剤通路25
aが直交している為、ガス給排気のためのヘッダー構造
方法が容易となる。次に、第3図の平板型5OFCの製
作方法について説明する。
41 in the figure is a corrugated plate-shaped interconnector film, which is laminated so that the directions of the corrugated plates are perpendicular to each other. Further, 42 is a sealing material at the end of the battery, which has a structure in which the fuel 43 and the oxidizer 44 do not mix. However, the fuel passage 26. Due to the presence of the sealing material 42 from the end face of the cell, the oxidizer passage 25a has a space where gas can flow only through the fuel passage 26a or only the oxidizer passage 25a, but inside the current, there is a space between the electrolyte membrane 21 and the interconnector membrane 41. are flowing alternately. In this way, the fuel passage 26a and the oxidizer passage 25
Since a is orthogonal, the header construction method for gas supply and exhaust becomes easy. Next, a method for manufacturing the flat plate type 5OFC shown in FIG. 3 will be explained.

■まず、固体電解質膜21のグリーンテープをテープキ
ャスティング法で成形し、波形状に曲げる。次に、同様
にして、波形状のインタコネクタ膜41を成形する。
(1) First, the green tape of the solid electrolyte membrane 21 is formed by tape casting and bent into a wave shape. Next, a corrugated interconnector film 41 is formed in the same manner.

■次いで、上記波板状の固体電解質膜21と波板状のイ
ンタコネクタ膜4を直交するように重ね、その接する部
分に接着剤を塗布する。その状態で1400〜1600
℃で焼成する。
(2) Next, the corrugated solid electrolyte membrane 21 and the corrugated interconnector membrane 4 are stacked perpendicularly to each other, and an adhesive is applied to the contacting portions. 1400-1600 in that state
Bake at ℃.

■この後、電池の端部にガスリークを防止する為のシー
ル材42を詰め込む。そのシール材42の幅は、少なく
とも固体電解質膜21.インタコネクタ膜41の、波板
の1ピッチ分以上とする。第3図に示す如くシールする
ことにより、A方向端面に貫通しているのはインタコネ
クタ膜41の波板の下側のみで、そこに燃料43を流す
ことになる。同様に、B方向端面には固体電解質膜21
の波板の下側に酸化剤44を流すことになる。このよう
に、実施例2では燃料と酸化剤を直交方向に流すことが
可能となる。
■After this, a sealing material 42 is packed into the end of the battery to prevent gas leakage. The width of the sealing material 42 is at least the width of the solid electrolyte membrane 21. The interconnector film 41 should be equal to or more than one pitch of the corrugated plate. By sealing as shown in FIG. 3, only the lower side of the corrugated plate of the interconnector membrane 41 penetrates the end face in the A direction, and the fuel 43 can flow there. Similarly, a solid electrolyte membrane 21 is provided on the end face in the B direction.
The oxidizing agent 44 will be flowed under the corrugated plate. In this way, in the second embodiment, it is possible to flow the fuel and the oxidizer in orthogonal directions.

■次に、第3図ん状態から電池を立てて、燃料電極スラ
リーを流し込み、必要な膜厚を形成した後1300〜1
400で焼成し、平板型5OFCを製作する。
■Next, from the third stage, stand the battery upright, pour in the fuel electrode slurry, and form the required film thickness.
Sinter at 400 ℃ to produce a flat plate type 5OFC.

[発明の効果] 以上詳述した如く本発明によれば、接合部の強度を向上
するとともに、焼成時の割れを防止できかつ各材料に対
して最適の条件で焼成可能な発電効率の高い平板型固体
電解質燃料電池を提供できる。
[Effects of the Invention] As detailed above, the present invention provides a flat plate with high power generation efficiency that can improve the strength of joints, prevent cracking during firing, and can be fired under optimal conditions for each material. type solid electrolyte fuel cell can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係る平板型5OFCの断面
図、第2図(a)〜(e)は夫々同平板型5OFCの製
作方法を工程順に示す説明図、第3図は本発明の実施例
2に係る平板型5OFCの断面図、第4図(a)は従来
例1に係る円筒型5OFCの斜視図、同図(b)は同図
(a)の断面図、第5図は従来例2に係る円筒型5OF
Cの斜視図、第6図は従来例3に係る平板型5OFCの
断面図である。 21・・・固体電解質膜、22・・・接着剤、23゜4
1・・・インタコネクタ膜、25・・・酸素電極、25
a・・・燃料通路、26・・・燃料電池、26a・・・
酸化剤通路、27・・・単セル、28・・・モジュール
、42・・・シール材、43・・・燃料、44・・・酸
化剤。 出願人代理人 弁理士 鈴江武彦 ra         D Φ ″     区 へ ^                        
 ^1)                    、
Ω!!?X 第6図
FIG. 1 is a cross-sectional view of a flat plate type 5OFC according to Example 1 of the present invention, FIGS. FIG. 4(a) is a cross-sectional view of a flat plate type 5OFC according to Example 2 of the invention, and FIG. 4(b) is a perspective view of a cylindrical type 5OFC according to conventional example 1. The figure shows a cylindrical 5OF according to conventional example 2.
FIG. 6 is a perspective view of C and a cross-sectional view of a flat plate type 5OFC according to Conventional Example 3. 21...Solid electrolyte membrane, 22...Adhesive, 23゜4
1... Interconnector film, 25... Oxygen electrode, 25
a...Fuel passage, 26...Fuel cell, 26a...
Oxidizer passage, 27... Single cell, 28... Module, 42... Seal material, 43... Fuel, 44... Oxidizer. Applicant's agent Patent attorney Takehiko Suzue ra D Φ ″ To ward ^
^1) ,
Oh! ! ? X Figure 6

Claims (1)

【特許請求の範囲】[Claims] 交互に積層されかつ少なくとも一方が波形状の複数の固
体電解質膜及びインタコネクタ膜と、これら固体電解質
膜及びインタコネクタ膜により囲まれた領域内に夫々形
成され、内部に夫々通路を有した燃料電極及び酸素電極
とを具備することを特徴とする平板型固体電解質燃料電
池。
A plurality of solid electrolyte membranes and interconnector membranes that are alternately laminated and at least one of which is corrugated; and a fuel electrode that is formed within a region surrounded by these solid electrolyte membranes and interconnector membranes and each has a passage therein. and an oxygen electrode.
JP62283716A 1987-11-10 1987-11-10 Flat plate type solid electrolyte fuel cell Pending JPH01124964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283716A JPH01124964A (en) 1987-11-10 1987-11-10 Flat plate type solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283716A JPH01124964A (en) 1987-11-10 1987-11-10 Flat plate type solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH01124964A true JPH01124964A (en) 1989-05-17

Family

ID=17669161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283716A Pending JPH01124964A (en) 1987-11-10 1987-11-10 Flat plate type solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH01124964A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145754A (en) * 1990-02-15 1992-09-08 Ngk Insulators, Ltd. Solid oxide fuel cell
EP0642185A3 (en) * 1993-09-01 1995-03-29 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
EP1060534A4 (en) * 1998-02-27 2001-05-23 Corning Inc Flexible inorganic electrolyte fuel cell design
JP2010267618A (en) * 2009-05-13 2010-11-25 Robert Bosch Gmbh Electrochemical cell for obtaining electric energy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145754A (en) * 1990-02-15 1992-09-08 Ngk Insulators, Ltd. Solid oxide fuel cell
EP0642185A3 (en) * 1993-09-01 1995-03-29 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
US5501914A (en) * 1993-09-01 1996-03-26 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
EP1060534A4 (en) * 1998-02-27 2001-05-23 Corning Inc Flexible inorganic electrolyte fuel cell design
JP2010267618A (en) * 2009-05-13 2010-11-25 Robert Bosch Gmbh Electrochemical cell for obtaining electric energy

Similar Documents

Publication Publication Date Title
US5171646A (en) Fuel cell system including porous, panel type support and process for producing the same
US5162167A (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
US4857420A (en) Method of making monolithic solid oxide fuel cell stack
RU2310952C2 (en) Tubular cell (alternatives), tubular-cell battery with current passage over generating line, and method for its manufacture
JPH07245120A (en) Solid electrolyte fuel cell
JP2008538449A (en) Self-supporting ceramic membrane and electrochemical cell and electrochemical cell stack structure including the same
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JP3495654B2 (en) Cell tube seal structure
JPH09259905A (en) Laminated sintered body for electrochemical cell, electrochemical cell, and manufacture of laminated sintered body for electrochemical cell
JP6122497B2 (en) Cell, cell stack device, module, and module storage device
JP2001196069A (en) Fuel cell
JP2000048831A (en) Solid electrolyte fuel cell
JPH03219563A (en) Solid electrolyte type fuel cell
JP2002329511A (en) Stack for solid electrolyte fuel cell and solid electrolyte fuel cell
JPH01197972A (en) Plate shaped solid electrolyte type fuel cell
JP4594035B2 (en) Fuel cell and fuel cell
AU8539891A (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
JPH01124964A (en) Flat plate type solid electrolyte fuel cell
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JPH02276166A (en) Solid electrolyte fuel cell
JP3966950B2 (en) Electrochemical cell support, electrochemical cell and production method thereof
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH02273465A (en) Manufacture of solid electrolyte fuel cell
RU2310256C2 (en) Tubular cell (alternatives) for batteries of high-temperature electrochemical devices using thin-layer solid electrolyte and method for its manufacture
JPH0658804B2 (en) Method for manufacturing monolithic solid electrolyte fuel cell