JPH02273465A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH02273465A
JPH02273465A JP1092687A JP9268789A JPH02273465A JP H02273465 A JPH02273465 A JP H02273465A JP 1092687 A JP1092687 A JP 1092687A JP 9268789 A JP9268789 A JP 9268789A JP H02273465 A JPH02273465 A JP H02273465A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
forming
film
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1092687A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
佐藤 佳雄
Hiroshi Tsuneizumi
常泉 浩志
Eiji Matsuda
松田 英治
Hirotaka Nakagawa
中川 大隆
Hiroshi Mihara
三原 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1092687A priority Critical patent/JPH02273465A/en
Publication of JPH02273465A publication Critical patent/JPH02273465A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a cell equal to that of monolithic type by forming a solid electrolyte into a film on the waveform face of a burned body, and forming an interconnector on the plane portion of the burned body to manufacture cells, and stacking cells via a nickel felt. CONSTITUTION:An air electrode 1 made of lanthanum strontium mangan oxide is molded and burned. The electrode 1 is in the form of a porous flat plate, and has one face 3 shaped into a plane and the other face 2 shaped into waveform. And a gas passage 5 is formed which is open to that portion which is formed by the plane and the pointed portion 4 of the waveform. A solid electrolyte 6 is formed into a film on the waveform face 2, and a burning electrode 7 is formed into a film thereon, and an interconnector 8 is formed into a film on the plane 3, whereby a cell is obtained. The cell is laminated into plural steps via a nickel felt 9. Air (O) and a fuel (F) are forced to pass through the passage 5 and a space 10 defined by the electrode 1 and another cell, respectively, so that electric power is generated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、固体電解質燃料電池の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a solid electrolyte fuel cell.

[従来技術] 固体電解質型燃料電池は、電極部分が形成された電極部
材を多数配し、これらの電極部材を電気的に連結するよ
うにして構成されている。
[Prior Art] A solid oxide fuel cell is configured to include a large number of electrode members each having an electrode portion formed thereon, and to electrically connect these electrode members.

このうち電極部材をハニカム状に形成し、これを複数段
積層したモノリシック型固体電解質燃料電池としては、
ステイール教授が文献(CERA旧CELECTROC
HEMICAL REACTOR3,1987,B 、
 C、H。
Among these, a monolithic solid electrolyte fuel cell in which the electrode member is formed into a honeycomb shape and is stacked in multiple stages is
Professor Steil has published the literature (CERA former CELECTROC)
HEMICAL REACTOR3, 1987, B,
C.H.

5teele)で紹介している第6図のようなものがあ
る。これは平板状の固体電解質51の一面に内面をハニ
カム型に構成した平板状の燃料電極52を、他の面に同
しく内面をハニカム型に構成した平板状の空気電極53
を、ハニカムの断面が燃料電極52のハニカムの断面と
は直交するように配置した電極部材54を複数セパレー
タ55を介して積層している。そして第7図のように、
燃料電極52のハニカム空間56には燃料供給マニホル
ド57により供給し、燃料排出マニポルド58から余分
の燃料を排出するようにしている。また空気電極53の
ハニカム空間59には空気供給マニホルド60から空気
を供給し、余分の空気は空気排出マユボルド61から排
出するようにして平板型固体電解質燃料電池を構成して
いる。この型の固体電解質型燃料電池は、単位体積当た
りの電気出力が大きく、コスト的にも有利な長所を持っ
ている。
There is something like the one shown in Figure 6 introduced in 5teele). This includes a flat fuel electrode 52 with a honeycomb-shaped inner surface on one surface of a flat solid electrolyte 51, and a flat air electrode 53 with a honeycomb-shaped inner surface on the other surface.
A plurality of electrode members 54 are stacked with separators 55 in between, and the electrode members 54 are arranged so that the cross section of the honeycomb is perpendicular to the cross section of the honeycomb of the fuel electrode 52. And as shown in Figure 7,
A fuel supply manifold 57 supplies fuel to the honeycomb space 56 of the fuel electrode 52, and excess fuel is discharged from a fuel discharge manifold 58. Further, air is supplied to the honeycomb space 59 of the air electrode 53 from an air supply manifold 60, and excess air is discharged from an air exhaust Mayubold 61, thereby configuring a flat solid electrolyte fuel cell. This type of solid oxide fuel cell has a large electrical output per unit volume and is advantageous in terms of cost.

[発明が解決し、ようとする課題] しかしながら、」二連した従来のモノリシック型固体電
解質燃料電池には、次のような問題点があった。すなわ
ち、燃料電極、固体電解質、空気電極およびインターコ
ネクター材をドクターブレード法で成形し、複数層を一
枚に貼り合わせて焼成しているが、各グリーンシーI・
の焼成時の収縮量を一致させるように月利を成分調整す
る必要があるとともに、画一・的な焼成条件て一度に焼
成するので、焼結性の悪い材料については、焼結助剤を
添加する等製造条件が難しい上に、焼結助剤が電池に対
して悪影響を及ぼずという問題点があった。
[Problems to be Solved and Attempted by the Invention] However, the conventional dual monolithic solid electrolyte fuel cells have the following problems. That is, the fuel electrode, solid electrolyte, air electrode, and interconnector material are formed using the doctor blade method, and the multiple layers are bonded together and fired.
It is necessary to adjust the monthly yield to match the amount of shrinkage during firing, and since it is fired all at once under uniform firing conditions, it is necessary to use sintering aids for materials with poor sinterability. In addition to difficult manufacturing conditions such as addition of sintering aids, there was a problem in that the sintering aids did not have an adverse effect on the battery.

この発明は、従来技術の上記のような問題点を解消し、
モノリシック型固体電解質燃料電池と同等のものが容易
に製造てきる製造方法を提供することを目的としている
This invention solves the above-mentioned problems of the prior art,
The purpose of this invention is to provide a manufacturing method that can easily manufacture a monolithic solid electrolyte fuel cell.

「課題を解決するための手段] この発明に係る固体電解質燃料電池の製造方法は、−面
は平面、他の面は波形であり、かつ平面と波形の山部と
て囲まれる部分に気体通路を設(、′)た多孔質電極を
成形し、焼成する工程と、この焼成体の波形面に固体電
解質を成膜し、引き続きその−にに他方の電極材料を成
膜するとともに、この焼成体の平面部にインターコネク
ターを形成して単電池を製造する工程と、燃料電極と空
気電極か通電するように、この単電池をニッケルフェル
トを介して積上げる工程とからなる固体電解質燃料電池
の製造方法である。
"Means for Solving the Problems" In the method for manufacturing a solid electrolyte fuel cell according to the present invention, the negative surface is a flat surface, the other surfaces are corrugated, and a gas passage is formed in a portion surrounded by the flat surface and the peaks of the corrugated shape. The process of forming and firing a porous electrode with a The solid electrolyte fuel cell process consists of a process of manufacturing a single cell by forming an interconnector on the flat surface of the body, and a process of stacking the single cells via nickel felt so that the fuel electrode and air electrode conduct electricity. This is the manufacturing method.

[作用コ この発明に係る固体電解質燃料電池の製造方法は、−面
は平面、他の面は波形であり、かつ平面と波形の山部と
で囲まれる部分に気体通路を設(うた中実電極を成形し
、焼成する工程と、この焼成体の波形面に固体電解質を
成膜し、引き続きその上に他方の電極材料を成膜すると
ともに、この焼成体の平面部にインターコネクターを形
成して単電池を製造する工程と、燃料電極と空気電極か
通電するように、この単電池をニッケルフェルl〜を介
して積上げる工程とからなっているので、燃料電極、固
体電解質、空気電極およびインターコネクター材のグリ
ーンシートを貼り合わせて同時に焼成することかなく、
各4A判の成分整したり、焼結助剤を添加する必要かな
い。したかつて、製造が容易であり、製造コストが低減
できるとともに、品質の良い固体電解質燃料電池を得る
ことかできる。
[Function] In the method for producing a solid oxide fuel cell according to the present invention, the negative surface is flat, the other surfaces are corrugated, and a gas passage is provided in a portion surrounded by the flat surface and the crests of the corrugations. A process of forming and firing an electrode, forming a solid electrolyte film on the corrugated surface of this fired body, subsequently depositing the other electrode material on top of it, and forming an interconnector on the flat part of this fired body. The process consists of the process of manufacturing single cells using nickel ferrite, and the process of stacking these single cells through nickel fer l~ so that the fuel electrode and air electrode are energized. There is no need to bond interconnector material green sheets together and fire them at the same time.
There is no need to adjust the composition of each 4A size or add sintering aids. However, it is easy to manufacture, and manufacturing costs can be reduced, and a solid electrolyte fuel cell of good quality can be obtained.

[実施例] 本発明の1実施例の固体電解質燃料電池の製造方法を、
第1図〜第5図により説明する。本発明の1実施例の固
体′近解質燃料電池の製造方法においては、第1図のよ
うにランタンス1〜ロンチユームマンカン酸化物製の空
気型@]を押し出し法て成形し、焼成する。この空気電
極1は多孔質平板状のものであるが、その−面2は平面
形状となっており、他のi′li]3は波形形状をして
いる。そして、平面と波形の山部4とで形成される部分
に開口している気体通路5を形成している。
[Example] A method for manufacturing a solid electrolyte fuel cell according to an example of the present invention,
This will be explained with reference to FIGS. 1 to 5. In a method for manufacturing a solid-state near-solite fuel cell according to one embodiment of the present invention, an air mold made of lanthanum 1 to rontium mankan oxide is molded by extrusion and fired, as shown in FIG. This air electrode 1 has a porous flat plate shape, but its negative surface 2 has a planar shape, and the other i'li]3 has a wavy shape. A gas passage 5 is formed in a portion formed by the flat surface and the wave-shaped crest 4.

次に、第2図のように焼成した空気電極1の波形面2に
、固体電解質6としてのイツトリア安定化ジルコニアを
、溶射法により成膜する。
Next, as shown in FIG. 2, a film of yttria-stabilized zirconia as a solid electrolyte 6 is formed on the corrugated surface 2 of the fired air electrode 1 by thermal spraying.

この成膜された固体電解質6の」二に、第3図のように
燃料電極7としてのニッケルシルコニアサ−メツ)・を
塗布して、または溶射法により成膜する。
As shown in FIG. 3, nickel silconia cermet (nickel silconia cermet) as a fuel electrode 7 is applied to the solid electrolyte 6 thus formed, or a film is formed by thermal spraying.

さらに、第4図のように空気型W!1の平面部2にイン
ターコネクター8としてのランタンクロム酸化物を溶射
法や焼結法により成膜し、単電池を完成させる。
Furthermore, as shown in Figure 4, air type W! A film of lanthanum chromium oxide as an interconnector 8 is formed on the flat part 2 of 1 by thermal spraying or sintering to complete a unit cell.

そして、完成した単電池を第5図のように、ニッケルフ
ェル)−9を介して複数段く第5図では2段)積層する
Then, as shown in FIG. 5, the completed single cells are stacked in multiple stages (two stages in FIG. 5) with nickel fer)-9 interposed therebetween.

」:述のようにして製造した固体電解質燃料電池により
発電を行なう場合は、一番外側のインターコネクター同
志間に電気回路を設け、前記気体通路5には空気(0)
を、空気電極と他の単電池の平面とて構成される空間1
0には燃料(F)を流すことにより、発電が行なわれる
”: When generating electricity using the solid electrolyte fuel cell manufactured as described above, an electric circuit is provided between the outermost interconnectors, and the gas passage 5 is filled with air (0).
space 1 consisting of the air electrode and the plane of another cell
Electric power is generated by flowing fuel (F) through the 0.

なお、成形焼成する電極を燃料電極とし、この上に固体
電解質、空気電極及びインターコネクターを成膜するよ
うにしてもよい。
Note that the electrode to be shaped and fired may be used as a fuel electrode, and a solid electrolyte, an air electrode, and an interconnector may be formed thereon.

部が金属箔24の上に載っている状態に構成してもよい
The structure may be such that the portion rests on the metal foil 24.

[発明の効果] この発明により、固体電解質燃料電池の製造が容易にな
り、製造コスl−を低減することがてきるとともに、焼
結助剤を添加することもないのて、品質の良好な固体電
解質型燃料電池を得ることができる。
[Effects of the Invention] This invention facilitates the production of solid electrolyte fuel cells, reduces production costs, and eliminates the need to add sintering aids, resulting in high-quality solid electrolyte fuel cells. A solid oxide fuel cell can be obtained.

来の固体電解質燃料電池の斜視図、第7図は第6図の従
来の固体電解質燃料電池のマニホルドと電池の関係を示
す斜視図である。
FIG. 7 is a perspective view of a conventional solid oxide fuel cell showing the relationship between the manifold and the battery of the conventional solid oxide fuel cell shown in FIG.

1・空気電極、2・空気電極の波形面、3・・空気電極
の平面、5・・気体通路、6・固体電解質、7 燃料電
極、 8・・−インターコネクター、9・・ニッケルフェル1
〜。
1. Air electrode, 2. Waveform surface of air electrode, 3. Flat surface of air electrode, 5. Gas passage, 6. Solid electrolyte, 7 Fuel electrode, 8. Interconnector, 9. Nickel fer 1
~.

Claims (1)

【特許請求の範囲】[Claims] 一面は平面、他の面は波形であり、かつ平面と波形の山
部とで囲まれる部分に気体通路を設けた多孔質電極を成
形し、焼成する工程と、この焼成体の波形面に固体電解
質を成膜し、引き続きその上に他方の電極材料を成膜す
るとともに、この焼成体の平面部にインターコネクター
を形成して単電池を製造する工程と、燃料電極と空気電
極が通電するように、この単電池をニッケルフェルトを
介して積上げる工程とからなることを特徴とする固体電
解質燃料電池の製造方法。
A process of forming and firing a porous electrode with a flat surface on one side and a corrugated surface on the other side with gas passages in the area surrounded by the flat surface and the peaks of the waveform, The process of forming an electrolyte film, then forming the other electrode material on top of it, and forming an interconnector on the flat surface of this fired body to manufacture a single cell, and making sure that the fuel electrode and air electrode are energized. A method for manufacturing a solid electrolyte fuel cell, comprising the steps of: piling up the single cells with nickel felt interposed therebetween.
JP1092687A 1989-04-12 1989-04-12 Manufacture of solid electrolyte fuel cell Pending JPH02273465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092687A JPH02273465A (en) 1989-04-12 1989-04-12 Manufacture of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092687A JPH02273465A (en) 1989-04-12 1989-04-12 Manufacture of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH02273465A true JPH02273465A (en) 1990-11-07

Family

ID=14061404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092687A Pending JPH02273465A (en) 1989-04-12 1989-04-12 Manufacture of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH02273465A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785587A3 (en) * 1996-01-18 2000-02-09 Ngk Insulators, Ltd. Layered sintered body for electrochemical cell, electrochemical cell including it and process for its manufacture
WO2001071841A3 (en) * 2000-03-30 2002-08-15 Michael A Cobb & Company Tubular electrochemical devices with lateral fuel apertures for increasing active surface area
WO2001039311A3 (en) * 1999-11-26 2002-09-06 Michael A Cobb & Company Planar fuel cell utilizing nail current collectors for increased active surface area
WO2002037589A3 (en) * 2000-10-30 2003-03-13 Michael A Cobb & Company Solid oxide fuel cell stack
WO2003028132A1 (en) * 2000-06-14 2003-04-03 Mitsubishi Heavy Industries, Ltd. Fuel cell device and method of cooling fuel cell
JP2008501217A (en) * 2004-05-28 2008-01-17 シーメンス アクチエンゲゼルシヤフト High-temperature solid electrolyte fuel cell and fuel cell device comprising the cell
DE102020206225A1 (en) 2020-05-18 2021-11-18 Robert Bosch Gesellschaft mit beschränkter Haftung Process for the manufacture of an electrochemical cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785587A3 (en) * 1996-01-18 2000-02-09 Ngk Insulators, Ltd. Layered sintered body for electrochemical cell, electrochemical cell including it and process for its manufacture
WO2001039311A3 (en) * 1999-11-26 2002-09-06 Michael A Cobb & Company Planar fuel cell utilizing nail current collectors for increased active surface area
WO2001071841A3 (en) * 2000-03-30 2002-08-15 Michael A Cobb & Company Tubular electrochemical devices with lateral fuel apertures for increasing active surface area
WO2003028132A1 (en) * 2000-06-14 2003-04-03 Mitsubishi Heavy Industries, Ltd. Fuel cell device and method of cooling fuel cell
WO2002037589A3 (en) * 2000-10-30 2003-03-13 Michael A Cobb & Company Solid oxide fuel cell stack
JP2008501217A (en) * 2004-05-28 2008-01-17 シーメンス アクチエンゲゼルシヤフト High-temperature solid electrolyte fuel cell and fuel cell device comprising the cell
DE102020206225A1 (en) 2020-05-18 2021-11-18 Robert Bosch Gesellschaft mit beschränkter Haftung Process for the manufacture of an electrochemical cell

Similar Documents

Publication Publication Date Title
JP3215650B2 (en) Electrochemical cell, method for producing the same, and electrochemical device
US5256499A (en) Monolithic solid oxide fuel cells with integral manifolds
US5162167A (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
EP0439517A1 (en) Fabrication of a monolithic solid oxide fuel cell
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JPH09245810A (en) Manufacture of solid electrolyte fuel cell
JP2001196069A (en) Fuel cell
JPH02273465A (en) Manufacture of solid electrolyte fuel cell
CA2090683C (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
JPH1197038A (en) Solid electrolyte type fuel cell and manufacture of the same
JPH01197972A (en) Plate shaped solid electrolyte type fuel cell
JP3722927B2 (en) Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly
JPH11297334A (en) Hollow flat substrate, its manufacture and manufacture of solid electrolyte fuel cell
JPH02276166A (en) Solid electrolyte fuel cell
JP2012531713A (en) Lightweight monolithic solid oxide fuel element array
JPH09306514A (en) Manufacture of solid electrolyte fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH1167243A (en) Support for electrochemical cell, electrochemical cell, and its manufacture
JPH087900A (en) Solid electrolytic fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JPH06140056A (en) Solid electrolytic fuel cell having inside manifold structure to increase current collecting rate
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JPH04306563A (en) Manufacture of unit cell for solid electrolyte type fuel cell
JPH0837011A (en) Fuel cell base board in hollow flat plate form
JPH0845516A (en) Plate type solid electrolyte fuel cell using mesh with different wire diameters