JP3722927B2 - Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly - Google Patents

Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly Download PDF

Info

Publication number
JP3722927B2
JP3722927B2 JP28864896A JP28864896A JP3722927B2 JP 3722927 B2 JP3722927 B2 JP 3722927B2 JP 28864896 A JP28864896 A JP 28864896A JP 28864896 A JP28864896 A JP 28864896A JP 3722927 B2 JP3722927 B2 JP 3722927B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
electrolyte fuel
cell assembly
electrode support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28864896A
Other languages
Japanese (ja)
Other versions
JPH10134829A (en
Inventor
力 岩澤
幹幸 小野
正孝 望月
雅克 永田
波子 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP28864896A priority Critical patent/JP3722927B2/en
Publication of JPH10134829A publication Critical patent/JPH10134829A/en
Application granted granted Critical
Publication of JP3722927B2 publication Critical patent/JP3722927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質燃料電池アセンブリユニットの製造方法及び固体電解質燃料電池アセンブリに関する。
【0002】
【従来の技術】
固体電解質燃料電池には、図6に示すような円筒縦縞方式のもの、図7に示すような平板方式のものが知られている。
【0003】
図6に示す円筒縦縞方式固体電解質燃料電池は、内側から順に電池全体に強度保持、導電管兼空気供給管をなす基体管1の外周に多孔質ランタンマンガネート系の空気極2、イットリウム安定化ジルコニア(YSZ)の固体電解質3、ニッケル又はニッケル合金とYSZとのサーメットを素材とする燃料電極4の積層構造にして、外周面の一部にインタコネクタ5を燃料極4から絶縁し、かつ内部の空気極2に接続する形で配置している。なお、これとは逆に最内層に導電管兼燃料供給管をなす基体管を配し、その外周に燃料極、固体電解質、空気極を積層形成した構造の円筒方式固体電解質燃料電池も知られている。
【0004】
図7に示す平板方式固体電解質燃料電池は、平板状の空気極6上に固体電解質7、燃料極8を積層形成し、このユニットをセパレータ9を介して多段に直列にスタックする構造である。
【0005】
【発明が解決しようとする課題】
ところが、これらの従来の固体電解質燃料電池の場合、次のような問題点があった。円筒縦縞方式固体電解質燃料電池では、機械強度が比較的優れ、ガスシールも容易であるが、発電効率が比較的に低くて単位容積当たりの出力密度が低い問題点を有している。平板方式固体電解質燃料電池では逆に発電効率が比較的高く、単位容積当たりの出力密度を高くすることができるが、ガスシールが難しい問題点、また製造において高い薄膜製造技術を要する問題点があった。
【0006】
本発明はこのような従来の問題点に鑑みてなされたもので、強度的に強く、シーリングも容易であり、その上に発電効率も高い固体電解質燃料電池アセンブリユニットの製造方法及び固体電解質燃料電池アセンブリを提供することを目的とする。
【0018】
【課題を解決するための手段】
請求項1の発明の固体電解質燃料電池アセンブリユニットの製造方法は、空気極若しくは燃料極とその保形体とを兼用する角筒形状の電極支持管の複数体をセパレータ上に等間隔で配列し、次に前記複数体の電極支持管それぞれの開放外周面に固体電解質を積層形成し、続いて前記固体電解質の外周に前記電極支持管と反対の極性の電極層を積層形成することによって、前記セパレータ上に等間隔に複数体の角筒式固体電解質燃料電池が列設された固体電解質燃料電池アセンブリユニットを製造することを特徴とするものである。
【0019】
この請求項の発明の固体電解質燃料電池アセンブリユニットの製造方法によれば、セパレータとその上の固体電解質燃料電池とが一体化したインタコネクタレスの固体電解質アセンブリユニットが形成でき、これを複数段に積層することによって容易に固体電解質燃料電池アセンブリを製作することができる。
【0020】
請求項2の発明の固体電解質燃料電池アセンブリは、請求項1の製造方法にて製造された固体電解質燃料電池アセンブリユニットの複数体を複数段に積層し、前記電極支持管それぞれの内部に酸化ガスと燃料ガスのいずれか一方を通流させ、前記角筒式固体電解質燃料電池の列間の間隙に酸化ガスと燃料ガスのいずれか他方を通流させるようにしたものである。
【0021】
この請求項の発明の固体電解質燃料電池アセンブリでは、機械的強度があり、かつ平板方式固体電解質燃料電池に準じた高い発電効率を有する。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。図1は本発明の固体電解質燃料電池の第1の実施の形態を示している。この実施の形態の固体電解質燃料電池1は、ランタンマンガネート系のポーラスな角筒形状の空気極支持管11の外周面の3側面にYSZの固体電解質12を積層形成し、さらにこの固体電解質12の外周面にニッケル又はニッケル合金とYSZとのサーメット製のポーラスな燃料極13を積層形成し、空気極支持管11の残る1側面にランタンクロマイト系酸化物(LaCrOn)のインタコネクタ14を積層形成した構造である。
【0023】
空気極支持管11を制作するにあたってはその素材が高い電子導電性を持ち、固体電解質12との密着性が良く、かつ多孔質である特性を有するものとして、3〜15μmの粒径のランタンマンガネート系酸化物セラミックス、例えば、ランタンストロンチウムマンガネート(La(Sr)MnO3 )、ランタンカルシウムマンガネート(LaCaMnO3 )などのランタンマンガネート(LaMnOn)系酸化物の微粉末をバインダ3〜10%、水分5〜20%(いずれも重量%)と共に混練し、押出し成形あるいはスリップキャストによって所定の長さ、肉厚、径の角筒形状に成形し、これを乾燥させて自己保形できる成形体を得、さらに焼成炉に入れて1300〜1600℃の高温状態で所望時間焼成することによって作成する。気孔率は約30%程度である。
【0024】
固体電解質12には一般にイットリア安定化ジルコニア(YSZ)を素材とし、空気極支持管11に対して電気化学蒸着法(CVD−EVD)、スラリーコーティング法、プラズマ溶射法などの薄膜積層技術を用いて積層形成する。さらに燃料極13の素材にはニッケル、コバルト、あるいはこれらの合金、さらにはこれらとジルコニアとのサーメットが用いられ、固体電解質12の上に電気化学蒸着法(CVD−EVD)、スラリーコーティング法、プラズマ溶射法などの薄膜積層技術を用いて積層形成する。この燃料極13に気孔率も約30%程度である。
【0025】
そしてインタコネクタ14の素材には、高温耐性があり、化学的に安定し、導電率が高いことなどの特性を有しているものとしてランタンクロマイト(LaCrO3 )系酸化物を用い、電気化学蒸着法(CVD−EVD)、スラリーコーティング法、プラズマ溶射法などの薄膜積層技術を用いて空気極支持管11の1側面に積層形成する。
【0026】
実際の固体電解質燃料電池の製造に当たっては、上記の方法で得た空気極支持管11の1側面をマスキングして、他の3側面に上記の各方法で固体電解質12、燃料極13を積層形成し、その後に、マスキングしていた空気極支持管11の1側面のマスクを外し、逆に他の3側面にマスキングを行い、インタコネクタ14を上述した方法によって積層形成する。
【0027】
またこれとは逆に、空気極支持管11の3側面にマスキングを行い、残りの1側面にインタコネクタ14をまず形成し、その後に形成されたインタコネクタ14にはマスキングし、他の3側面のマスキングを外してそこに固体電解質12及び燃料極13を積層形成する方法を採用することもできる。
【0028】
こうして得られる角筒形状の固体電解質燃料電池は、肉厚が1〜2mm、1辺が1.5〜2.5cm程度の外形寸法を有し、長さは通常の円筒縦縞方式の固体電解質燃料電池と同程度で、例えば、50〜200cmのものとする。
【0029】
このような角筒形状の固体電解質燃料電池Aは、図2に示す構造に組み立てて固体電解質燃料電池アセンブリとし、実際の燃料電池発電に用いる。この固体電解質燃料電池アセンブリの構造について説明すると、集電体をなすセパレータ21上にインタコネクタ14が同じ向きを向くようにして複数段、複数列のマトリクス配列に固体電解質燃料電池Aをスタックし、下側のセパレータ21と固体電解質燃料電池Aとの間、上下の固体電解質燃料電池A,A間、固体電解質燃料電池Aと上側のセパレータ21との間には燃料改質作用と導電作用を行うニッケル又はニッケル合金のフェルト22を介在させる。セパレータ21はインタコネクタ14とほぼ同じ組成物の成形体である。
【0030】
こうしてアセンブルされた固体電解質燃料電池アセンブリでは、各固体電解質燃料電池Aの長さ方向の端部には閉塞栓体(図示せず)を取り付け、外部から酸化ガスとしての空気を空気極支持管11内を通流させるように空気供給管をその閉塞栓体に接続し、また複数段にスタックされている固体電解質燃料電池Aの列間の空隙23には燃料ガスを通流させることによって、燃料電池発電を行わせる。
【0031】
得られる発電力は、固体電解質燃料電池A単体の起電力が1.0V程度とすると、図2に示した3段1スタックのセパレータ21,21間での起電力は3.0V程度となり、電流の強さは並列に配置した固体電解質燃料電池Aの列数によって決まる。
【0032】
図2に示したアセンブリを複数段直列に配置すればその起電力をさらに大きくすることができる。
【0033】
なお、上記の固体電解質燃料電池Aは内側に空気支持管11、外側に燃料極13を配置した構造であるが、これとは逆に内側に燃料極支持管を配し、外側に空気極を配した構造の角筒形状の固体電解質燃料電池を構成することも可能である。そしてこの場合には、図2に示したようにアセンブルし、燃料ガスを各固体電解質燃料電池の内部に通流させ、外部に空気を通流させることによって燃料電池発電を行うことになる。
【0034】
またこれらの固体電解質燃料電池アセンブリは、上記のような平板方式固体電解質燃料電池アセンブリに似たとものとする代わりに、従来の円筒方式固体電解質燃料電池アセンブリと同様のものにすることもできる。
【0035】
次に、本発明の第2の実施の形態を図3に基づいて説明する。この実施の形態の特徴は、固体電解質燃料電池A´の構造をインタコネクタなしとし、内部に角筒形状の導電体、空気極、形状支持の働きをなす空気極支持管11´を配し、この外周全面に固体電解質12´を積層形成し、さらにその外周全面に導電体を兼用する燃料極13´を積層形成した構造である。
【0036】
空気極支持管11´は、第1の実施の形態と同様に3〜15μmの粒径のランタンマンガネート系酸化物セラミックスの微粉末をバインダ3〜10%、水5〜20%(いずれも重量%)と共に混練し、押出し成形あるいはスリップキャストによって所定の長さ、肉厚、径の角筒形状に成形し、これを乾燥させて自己保形できる成形体を得、さらに焼成炉に入れて1300〜1600℃の高温状態で所望時間焼成することによって作成する。
【0037】
固体電解質12´はイットリア安定化ジルコニア(YSZ)を空気極支持管11´に対して電気化学蒸着法(CVD−EVD)、スラリーコーティング法、プラズマ溶射法などの薄膜積層技術を用いて積層形成し、燃料極13´はニッケル、コバルト、あるいはこれらの合金、さらにはこれらとジルコニアとのサーメットを固体電解質12の上に電気化学蒸着法(CVD−EVD)、スラリーコーティング法、プラズマ溶射法などの薄膜積層技術を用いて積層形成する。
【0038】
図3に示す角筒形状の固体電解質燃料電池A´も、1辺は1.5〜2.5cm程度の外形寸法を有し、長さは通常の円筒縦縞方式の固体電解質燃料電池と同程度で、例えば、50〜200cmのものである。
【0039】
この第2の実施の形態の角筒形状の固体電解質燃料電池A´の場合も、固体電解質燃料電池アセンブリに組み立てるには図2に示す構造とする。
【0040】
次に、本発明の第3の実施の形態を図4及び図5に基づいて説明する。この第3の実施の形態は、図5(a)に示すようにセパレータ31と複数体の等間隔に配列された空気極支持管32とを一体化し、この各空気極支持管32の開放外周面に固体電解質33を積層形成し、さらにその外周面に燃料極34を積層形成して図5(b)に示すような固体電解質燃料電池アセンブリユニット35を作成し、この固体電解質燃料電池アセンブリユニット35を図4に示すように複数段、積層することによって固体電解質燃料電池アセンブリを構成することを特徴とする。なお、各燃料極34とその上側のセパレータ31との間にはニッケル又はニッケル合金のような導電性の高い素材のフェルト36を介在させて固体電解質燃料電池アセンブリユニット35を積層する。
【0041】
セパレータ31と空気極支持管32との一体化はセパレータ31用の成形体と第1の実施の形態の空気極支持管11用の成形体とを図5(a)に示すように配置させた状態で焼成することによって行う。
【0042】
この固体電解質燃料電池アセンブリユニット35では、セパレータ31、空気極支持管32、固体電解質33、燃料極34それぞれは第1、第2の実施の形態と組成、形成方法は共通である。そしてこの第3の実施の形態の場合、複数体の空気極支持管32が並列に配列されていて、その各々に固体電解質33、燃料極34を積層形成した固体電解質燃料電池アセンブリユニット35を複数段積層することによって固体電解質燃料電池アセンブリを組み立てることができるので、1体、1体の固体電解質燃料電池Aを多段、複数列のマトリクスに配列して固体電解質燃料電池アセンブリを構成する場合よりもアセンブルに要する手間や時間を節約することができる。
【0043】
なお、この第3の実施の形態においても、セパレータと燃料極支持管とを一体化し、中間に固体電解質、外側に空気極を配した構造の角筒形状の固体電解質燃料電池アセンブリユニットを構成することも可能である。そしてこの場合には、図4に示したようにアセンブルし、燃料ガスを各固体電解質燃料電池の内部に通流させ、外部に空気を通流させることによって燃料電池発電を行うことになる。
【0048】
【発明の効果】
請求項の発明の固体電解質燃料電池アセンブリユニットの製造方法によれば、セパレータとその上の固体電解質燃料電池とが一体化したインタコネクタレスの固体電解質アセンブリユニットが形成でき、これを複数段に積層することによって容易に固体電解質燃料電池アセンブリを製作することができる。
【0049】
請求項の発明の固体電解質燃料電池アセンブリによれば、機械的強度があり、かつ平板方式固体電解質燃料電池に準じた高い発電効率が実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の固体電解質燃料電池の斜視図。
【図2】本発明の第1の実施の形態の固体電解質燃料電池により形成した固体電解質燃料電池アセンブリの正面図。
【図3】本発明の第2の実施の形態の固体電解質燃料電池の斜視図。
【図4】本発明の第3の実施の形態の固体電解質燃料電池アセンブリの斜視図。
【図5】本発明の第3の実施の形態の固体電解質燃料電池アセンブリに用いるアセンブリユニットの製造方法の説明図。
【図6】従来例の斜視図。
【図7】他の従来例の斜視図。
【符号の説明】
11,11´ 空気極支持管
12,12´ 固体電解質
13,13´ 燃料極
14 インタコネクタ
21 集電体
22 フェルト
23 空隙
31 セパレータ
32 空気極支持管
33 固体電解質
34 燃料極
35 固体電解質燃料電池アセンブリユニット
36 フェルト
A,A´ 固体電解質燃料電池
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolyte fuel cell assembly unit and a solid electrolyte fuel cell assembly.
[0002]
[Prior art]
As the solid electrolyte fuel cell, those of the cylindrical vertical stripe type as shown in FIG. 6 and those of the flat plate type as shown in FIG. 7 are known.
[0003]
The cylindrical vertical stripe type solid electrolyte fuel cell shown in FIG. 6 maintains the strength of the whole cell in order from the inside, and the porous lanthanum manganate air electrode 2 is stabilized on the outer periphery of the base tube 1 forming a conductive tube and an air supply tube, and yttrium is stabilized. A laminated structure of a zirconia (YSZ) solid electrolyte 3, a fuel electrode 4 made of nickel or a nickel alloy and cermet of YSZ is used, and the interconnector 5 is insulated from the fuel electrode 4 on a part of the outer peripheral surface, and the inside It arrange | positions in the form connected to the air electrode 2 of this. On the other hand, a cylindrical solid electrolyte fuel cell having a structure in which a base tube, which is a conductive tube and a fuel supply tube, is arranged in the innermost layer and a fuel electrode, a solid electrolyte, and an air electrode are laminated on the outer periphery is also known. ing.
[0004]
The flat plate type solid electrolyte fuel cell shown in FIG. 7 has a structure in which a solid electrolyte 7 and a fuel electrode 8 are stacked on a flat air electrode 6 and the units are stacked in series via separators 9.
[0005]
[Problems to be solved by the invention]
However, these conventional solid electrolyte fuel cells have the following problems. The cylindrical vertical stripe type solid electrolyte fuel cell has relatively high mechanical strength and easy gas sealing, but has a problem that power generation efficiency is relatively low and output density per unit volume is low. On the other hand, the plate type solid electrolyte fuel cell has a relatively high power generation efficiency and can increase the output density per unit volume, but there are problems in that gas sealing is difficult and high thin film manufacturing technology is required in manufacturing. It was.
[0006]
The present invention has been made in view of such conventional problems, and is a method of manufacturing a solid electrolyte fuel cell assembly unit and a solid electrolyte fuel cell that are strong in strength, easy to seal, and have high power generation efficiency. An object is to provide an assembly.
[0018]
[Means for Solving the Problems]
The method for producing a solid electrolyte fuel cell assembly unit according to the invention of claim 1 is a method of arranging a plurality of rectangular tube-shaped electrode support tubes that serve both as an air electrode or a fuel electrode and a shape-retaining body on a separator at equal intervals, then the solid electrolyte laminated on the open outer circumferential surface of the respective electrode support tube of said plurality thereof, followed by laminating forming the electrode support tube opposite polarity electrode layer of the outer periphery of the solid electrolyte, the separator A solid electrolyte fuel cell assembly unit having a plurality of prismatic solid electrolyte fuel cells arranged in a row at equal intervals is manufactured .
[0019]
According to the method for manufacturing a solid electrolyte fuel cell assembly unit of the first aspect of the present invention, an interconnector-less solid electrolyte assembly unit in which a separator and a solid electrolyte fuel cell on the separator are integrated can be formed. The solid electrolyte fuel cell assembly can be easily manufactured by laminating the two.
[0020]
According to a second aspect of the present invention, there is provided a solid electrolyte fuel cell assembly in which a plurality of solid electrolyte fuel cell assembly units manufactured by the manufacturing method of the first aspect are stacked in a plurality of stages, and an oxidizing gas is provided inside each of the electrode support tubes. One of the gas and the fuel gas is allowed to flow, and one of the oxidizing gas and the fuel gas is allowed to flow through the gap between the rows of the rectangular cylindrical solid electrolyte fuel cells .
[0021]
The solid electrolyte fuel cell assembly according to the second aspect of the present invention has mechanical strength and high power generation efficiency in accordance with the flat plate type solid electrolyte fuel cell.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a first embodiment of a solid electrolyte fuel cell of the present invention. In the solid electrolyte fuel cell 1 of this embodiment, a YSZ solid electrolyte 12 is laminated on three side surfaces of the outer peripheral surface of a lanthanum manganate-based porous rectangular tube-shaped air electrode support tube 11. A porous cermet fuel electrode 13 made of nickel or a nickel alloy and YSZ is laminated on the outer peripheral surface of the cathode, and a lanthanum chromite oxide (LaCrOn) interconnector 14 is laminated on the remaining side surface of the air electrode support tube 11. This is the structure.
[0023]
In producing the air electrode support tube 11, the material has high electronic conductivity, good adhesion to the solid electrolyte 12, and porous properties. Nate oxide ceramics, for example, fine powder of lanthanum manganate (LaMnOn) oxide such as lanthanum strontium manganate (La (Sr) MnO 3 ), lanthanum calcium manganate (LaCaMnO 3 ), 3 to 10% binder, A molded body that can be kneaded together with 5 to 20% moisture (all by weight%), formed into a rectangular tube shape of a predetermined length, thickness, and diameter by extrusion molding or slip casting, and dried to self-retain. It is prepared by placing in a baking furnace and baking at a high temperature of 1300 to 1600 ° C. for a desired time. The porosity is about 30%.
[0024]
The solid electrolyte 12 is generally made of yttria-stabilized zirconia (YSZ), and is applied to the air electrode support tube 11 using thin film lamination techniques such as electrochemical deposition (CVD-EVD), slurry coating, plasma spraying, and the like. Laminate. Further, the fuel electrode 13 is made of nickel, cobalt, or an alloy thereof, or a cermet of these and zirconia, and is deposited on the solid electrolyte 12 by electrochemical deposition (CVD-EVD), slurry coating, plasma. Lamination is performed using thin film lamination techniques such as thermal spraying. The porosity of the fuel electrode 13 is also about 30%.
[0025]
The material of the interconnector 14 uses lanthanum chromite (LaCrO 3 ) -based oxide as a material having high temperature resistance, chemical stability, high conductivity, and the like. A layer is formed on one side of the air electrode support tube 11 using a thin film stacking technique such as a CVD (EV-EVD) method, a slurry coating method, or a plasma spraying method.
[0026]
When actually manufacturing a solid electrolyte fuel cell, one side of the air electrode support tube 11 obtained by the above method is masked, and the solid electrolyte 12 and the fuel electrode 13 are laminated on the other three sides by the above methods. Thereafter, the mask on one side of the air electrode support tube 11 that has been masked is removed, and on the other hand, the other three sides are masked, and the interconnector 14 is laminated by the method described above.
[0027]
On the other hand, masking is performed on the three side surfaces of the air electrode support tube 11 and the interconnector 14 is first formed on the remaining one side surface. Then, the formed interconnector 14 is masked and the other three side surfaces are masked. It is also possible to adopt a method of removing the masking and laminating the solid electrolyte 12 and the fuel electrode 13 there.
[0028]
The rectangular solid electrolyte fuel cell thus obtained has a thickness of 1 to 2 mm, an outer dimension of about 1.5 to 2.5 cm on one side, and a length of a solid electrolyte fuel of a normal cylindrical vertical stripe type. It is about the same as the battery, for example, 50 to 200 cm.
[0029]
Such a rectangular cylindrical solid electrolyte fuel cell A is assembled into the structure shown in FIG. 2 to form a solid electrolyte fuel cell assembly, which is used for actual fuel cell power generation. The structure of this solid electrolyte fuel cell assembly will be described. The solid electrolyte fuel cells A are stacked in a matrix arrangement of a plurality of stages and a plurality of rows so that the interconnector 14 faces the same direction on the separator 21 that forms a current collector. Between the lower separator 21 and the solid electrolyte fuel cell A, between the upper and lower solid electrolyte fuel cells A, A, and between the solid electrolyte fuel cell A and the upper separator 21, a fuel reforming action and a conducting action are performed. Nickel or nickel alloy felt 22 is interposed. The separator 21 is a molded body having substantially the same composition as the interconnector 14.
[0030]
In the thus assembled solid electrolyte fuel cell assembly, a closing plug (not shown) is attached to the end of each solid electrolyte fuel cell A in the longitudinal direction, and air as an oxidizing gas is externally supplied to the air electrode support tube 11. An air supply pipe is connected to the closing plug so as to flow through the inside, and a fuel gas is passed through the gaps 23 between the rows of solid electrolyte fuel cells A stacked in a plurality of stages. Let the battery generate electricity.
[0031]
When the electromotive force of the solid electrolyte fuel cell A alone is about 1.0 V, the electromotive force obtained is about 3.0 V between the separators 21 and 21 of the three-stage one-stack shown in FIG. Is determined by the number of rows of solid electrolyte fuel cells A arranged in parallel.
[0032]
If the assembly shown in FIG. 2 is arranged in a plurality of stages in series, the electromotive force can be further increased.
[0033]
The solid electrolyte fuel cell A has a structure in which the air support tube 11 is disposed on the inner side and the fuel electrode 13 is disposed on the outer side. On the contrary, the fuel electrode support tube is disposed on the inner side and the air electrode is disposed on the outer side. It is also possible to configure a rectangular solid electrolyte fuel cell having an arranged structure. In this case, assembling is performed as shown in FIG. 2, and fuel cell power generation is performed by flowing the fuel gas inside each solid electrolyte fuel cell and allowing air to flow outside.
[0034]
Further, these solid electrolyte fuel cell assemblies may be similar to the conventional cylindrical solid electrolyte fuel cell assembly, instead of being similar to the flat plate solid electrolyte fuel cell assembly as described above.
[0035]
Next, a second embodiment of the present invention will be described with reference to FIG. The feature of this embodiment is that the structure of the solid electrolyte fuel cell A ′ is made without an interconnector, and a rectangular tube-shaped conductor, an air electrode, and an air electrode support tube 11 ′ that functions as a shape support are arranged inside, In this structure, a solid electrolyte 12 'is laminated on the entire outer periphery, and a fuel electrode 13' also serving as a conductor is laminated on the entire outer periphery.
[0036]
As in the first embodiment, the air electrode support tube 11 ′ is made of fine powder of lanthanum manganate oxide ceramics having a particle size of 3 to 15 μm, binder 3 to 10%, water 5 to 20% (both weights). %)), And formed into a rectangular tube shape having a predetermined length, thickness, and diameter by extrusion molding or slip casting, and dried to obtain a molded body that can be self-retaining, and is further placed in a baking furnace to obtain 1300. It is created by baking for a desired time at a high temperature of ˜1600 ° C.
[0037]
The solid electrolyte 12 'is formed by laminating yttria-stabilized zirconia (YSZ) on the air electrode support tube 11' using thin film lamination techniques such as electrochemical deposition (CVD-EVD), slurry coating, plasma spraying, and the like. The fuel electrode 13 'is a thin film made of nickel, cobalt, or an alloy thereof, or a cermet of these and zirconia on the solid electrolyte 12, such as electrochemical vapor deposition (CVD-EVD), slurry coating, plasma spraying, etc. Lamination is performed using a lamination technique.
[0038]
The rectangular solid electrolyte fuel cell A ′ shown in FIG. 3 also has an outer dimension of about 1.5 to 2.5 cm on one side, and the length is the same as that of a normal cylindrical vertical stripe type solid electrolyte fuel cell. For example, it is 50-200 cm.
[0039]
In the case of the solid electrolyte fuel cell A ′ having a rectangular tube shape according to the second embodiment, the structure shown in FIG. 2 is used to assemble the solid electrolyte fuel cell assembly.
[0040]
Next, a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, as shown in FIG. 5A, a separator 31 and a plurality of air electrode support pipes 32 arranged at equal intervals are integrated, and the open outer periphery of each air electrode support pipe 32 is provided. A solid electrolyte 33 is formed on the surface, and a fuel electrode 34 is formed on the outer peripheral surface thereof to form a solid electrolyte fuel cell assembly unit 35 as shown in FIG. 5B. This solid electrolyte fuel cell assembly unit As shown in FIG. 4, a solid electrolyte fuel cell assembly is formed by stacking a plurality of stages 35 as shown in FIG. A solid electrolyte fuel cell assembly unit 35 is stacked between each fuel electrode 34 and the separator 31 on the upper side thereof with a felt 36 made of a highly conductive material such as nickel or a nickel alloy interposed therebetween.
[0041]
The integration of the separator 31 and the air electrode support tube 32 is made by arranging the formed body for the separator 31 and the formed body for the air electrode support tube 11 of the first embodiment as shown in FIG. By firing in a state.
[0042]
In this solid electrolyte fuel cell assembly unit 35, the separator 31, the air electrode support tube 32, the solid electrolyte 33, and the fuel electrode 34 have the same composition and formation method as the first and second embodiments. In the case of the third embodiment, a plurality of air electrode support pipes 32 are arranged in parallel, and a plurality of solid electrolyte fuel cell assembly units 35 each having a solid electrolyte 33 and a fuel electrode 34 formed thereon are stacked. Since the solid electrolyte fuel cell assembly can be assembled by stacking stages, the solid electrolyte fuel cell assembly can be constructed by arranging a single solid electrolyte fuel cell A in a multistage, multi-row matrix. The time and effort required for assembly can be saved.
[0043]
Also in the third embodiment, a separator and a fuel electrode support tube are integrated, and a rectangular solid electrolyte fuel cell assembly unit having a structure in which a solid electrolyte is disposed in the middle and an air electrode is disposed outside is formed. It is also possible. In this case, assembling is performed as shown in FIG. 4, and fuel cell power generation is performed by passing the fuel gas through each solid electrolyte fuel cell and allowing air to flow outside.
[0048]
【The invention's effect】
According to the method of manufacturing a solid electrolyte fuel cell assembly unit of the first aspect of the present invention, an interconnector-less solid electrolyte assembly unit in which a separator and a solid electrolyte fuel cell thereon are integrated can be formed in a plurality of stages. The solid electrolyte fuel cell assembly can be easily manufactured by stacking.
[0049]
According to the solid electrolyte fuel cell assembly of the second aspect of the invention, it has mechanical strength and can realize high power generation efficiency according to the flat plate type solid electrolyte fuel cell.
[Brief description of the drawings]
FIG. 1 is a perspective view of a solid electrolyte fuel cell according to a first embodiment of the present invention.
FIG. 2 is a front view of a solid electrolyte fuel cell assembly formed by the solid electrolyte fuel cell according to the first embodiment of the present invention.
FIG. 3 is a perspective view of a solid electrolyte fuel cell according to a second embodiment of the present invention.
FIG. 4 is a perspective view of a solid electrolyte fuel cell assembly according to a third embodiment of the present invention.
FIG. 5 is an explanatory view of a method of manufacturing an assembly unit used in the solid electrolyte fuel cell assembly according to the third embodiment of the present invention.
FIG. 6 is a perspective view of a conventional example.
FIG. 7 is a perspective view of another conventional example.
[Explanation of symbols]
11, 11 'Air electrode support tube 12, 12' Solid electrolyte 13, 13 'Fuel electrode 14 Interconnector 21 Current collector 22 Felt 23 Air gap 31 Separator 32 Air electrode support tube 33 Solid electrolyte 34 Fuel electrode 35 Solid electrolyte fuel cell assembly Unit 36 Felt A, A 'Solid electrolyte fuel cell

Claims (2)

空気極若しくは燃料極とその保形体とを兼用する角筒形状の電極支持管の複数体をセパレータ上に等間隔で配列し、次に前記複数体の電極支持管それぞれの開放外周面に固体電解質を積層形成し、続いて前記固体電解質の外周に前記電極支持管と反対の極性の電極層を積層形成することによって、前記セパレータ上に等間隔に複数体の角筒式固体電解質燃料電池が列設された固体電解質燃料電池アセンブリユニットを製造することを特徴とする固体電解質燃料電池アセンブリユニットの製造方法。 A plurality of rectangular tube-shaped electrode support tubes that serve both as an air electrode or a fuel electrode and their shape-retaining body are arranged on the separator at equal intervals, and then a solid electrolyte is formed on the open outer peripheral surface of each of the plurality of electrode support tubes. Then , a plurality of rectangular cylindrical solid electrolyte fuel cells are arranged at equal intervals on the separator by stacking and forming an electrode layer having a polarity opposite to that of the electrode support tube on the outer periphery of the solid electrolyte. A method of manufacturing a solid electrolyte fuel cell assembly unit, characterized by manufacturing a solid electrolyte fuel cell assembly unit provided. 請求項1の製造方法にて製造された固体電解質燃料電池アセンブリユニットの複数体を複数段に積層し、前記電極支持管それぞれの内部に酸化ガスと燃料ガスのいずれか一方を通流させ、前記角筒式固体電解質燃料電池の列間の間隙に酸化ガスと燃料ガスのいずれか他方を通流させるようにした固体電解質燃料電池アセンブリ。A plurality of solid electrolyte fuel cell assembly units manufactured by the manufacturing method according to claim 1 are stacked in a plurality of stages, and one of oxidizing gas and fuel gas is allowed to flow inside each of the electrode support tubes, A solid electrolyte fuel cell assembly in which either one of an oxidizing gas and a fuel gas is allowed to flow through a gap between rows of rectangular cylindrical solid electrolyte fuel cells.
JP28864896A 1996-10-30 1996-10-30 Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly Expired - Fee Related JP3722927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28864896A JP3722927B2 (en) 1996-10-30 1996-10-30 Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28864896A JP3722927B2 (en) 1996-10-30 1996-10-30 Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly

Publications (2)

Publication Number Publication Date
JPH10134829A JPH10134829A (en) 1998-05-22
JP3722927B2 true JP3722927B2 (en) 2005-11-30

Family

ID=17732892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28864896A Expired - Fee Related JP3722927B2 (en) 1996-10-30 1996-10-30 Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly

Country Status (1)

Country Link
JP (1) JP3722927B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291539B1 (en) * 1998-10-09 2001-06-01 손재익 Single-pole micro fuel cell
US6998187B2 (en) * 2003-08-07 2006-02-14 Nanodynamics, Inc. Solid oxide fuel cells with novel internal geometry
JP4704693B2 (en) * 2004-02-18 2011-06-15 東京瓦斯株式会社 Power generator
JP4733354B2 (en) * 2004-02-18 2011-07-27 東京瓦斯株式会社 Power generator
JP5184795B2 (en) 2006-06-06 2013-04-17 シャープ株式会社 FUEL CELL, FUEL CELL SYSTEM, AND ELECTRONIC DEVICE
JP5275990B2 (en) * 2007-08-02 2013-08-28 シャープ株式会社 Fuel cell stack and fuel cell system
JP5181600B2 (en) * 2007-09-28 2013-04-10 大日本印刷株式会社 Solid oxide fuel cell, stack structure of solid oxide fuel cell, and manufacturing method of solid oxide fuel cell
US9142853B2 (en) 2009-04-01 2015-09-22 Sharp Kabushiki Kaisha Fuel cell stack and electronic device provided with the same
JP5448880B2 (en) * 2010-01-26 2014-03-19 京セラ株式会社 Fuel cell, cell stack device, fuel cell module and fuel cell device

Also Published As

Publication number Publication date
JPH10134829A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP3215650B2 (en) Electrochemical cell, method for producing the same, and electrochemical device
US4476197A (en) Integral manifolding structure for fuel cell core having parallel gas flow
JP5498510B2 (en) Thermal shock resistant solid oxide fuel cell stack
JP2947557B2 (en) High temperature solid electrolyte fuel cell power generator
JP4146738B2 (en) Fuel cell, cell stack and fuel cell
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JP3722927B2 (en) Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly
JP2004179071A (en) Cell for fuel cell, and fuel cell
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
JP4236298B2 (en) Solid oxide fuel cell with honeycomb integrated structure
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JPH0737595A (en) Solid electrolyte type fuel cell
JP2599810B2 (en) Solid electrolyte fuel cell
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JP2002358996A (en) Manifold structure of flat laminate fuel cell
JPH11297334A (en) Hollow flat substrate, its manufacture and manufacture of solid electrolyte fuel cell
JP3966950B2 (en) Electrochemical cell support, electrochemical cell and production method thereof
JP2780885B2 (en) Solid electrolyte fuel cell
JPS63166159A (en) Solid electrolyte fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JP2003297388A (en) Fuel cell, cell stack, and fuel battery
JP3934970B2 (en) Fuel cell, cell stack and fuel cell
JP3898592B2 (en) Fuel cell manufacturing method
JP4028790B2 (en) Fuel cell and fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees