JPH0845516A - Plate type solid electrolyte fuel cell using mesh with different wire diameters - Google Patents

Plate type solid electrolyte fuel cell using mesh with different wire diameters

Info

Publication number
JPH0845516A
JPH0845516A JP6178556A JP17855694A JPH0845516A JP H0845516 A JPH0845516 A JP H0845516A JP 6178556 A JP6178556 A JP 6178556A JP 17855694 A JP17855694 A JP 17855694A JP H0845516 A JPH0845516 A JP H0845516A
Authority
JP
Japan
Prior art keywords
mesh
solid electrolyte
cell
fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6178556A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6178556A priority Critical patent/JPH0845516A/en
Publication of JPH0845516A publication Critical patent/JPH0845516A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the current collecting efficiency and the absorption rate of internal stress of a fuel cell, so as to improve the performance, by making the wire diameter of a heat-resisting metallic mesh, the finer at the layer the closer to a fuel electrode. CONSTITUTION:A mesh 7 is divided into several sections on the plane by dividers 10, and it has the area to cover all the surface of the fuel electrode of a unit cell. The wire diameter of the mesh 7 is made finer at the layer near the fuel electrode of the unit cell, and composed of a rough meshwork with the larger wire diameter at the other layers. When the wire diameter of the mesh is fine, the meshwork is made smaller, and the mesh contacts closely to the electrode so as to increase the conductivity and improve the current collecting efficiency. And since the wire diameter is large at the mesh near a separator, the meshwork is made larger so as to facilitate the ecconomy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料極とセパレータとの
間に線径の異なるニッケルまたは他の耐熱性金属のメッ
シュまたはフェルトを用いた平板型固体電解質燃料電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate type solid electrolyte fuel cell using a mesh or felt of nickel or other heat resistant metal having different wire diameters between a fuel electrode and a separator.

【0002】[0002]

【従来の技術】最近、例えば酸素と水素等をそれぞれ、
酸化剤および燃料として、燃料が本来持っている化学エ
ネルギーを直接電気エネルギーに変換する電解質燃料電
池が、省資源、環境保護などの観点から注目されてい
る。特に、平板型固体電解質燃料電池は、作動温度が高
く、発電効率が高く、高温の廃熱の利用により総合効率
が高いので、研究開発が進んでいる。
2. Description of the Related Art Recently, for example, oxygen and hydrogen, respectively,
As an oxidant and a fuel, an electrolyte fuel cell, which directly converts chemical energy originally possessed by the fuel into electric energy, has been attracting attention from the viewpoints of resource saving and environmental protection. In particular, flat plate solid oxide fuel cells have high operating temperature, high power generation efficiency, and high overall efficiency due to the use of high-temperature waste heat.

【0003】この平板型固体電解質燃料電池は平板型固
体電解質層を挟むように燃料極と空気極を配置してなる
平板型単電池と、隣接する単電池を電気的に直列に接続
しかつ各単電池に燃料ガスと酸化剤ガスとを分配するセ
パレータとを交互に積層して複層のスタックとして構成
されたものである。通常、固体電解質層はイットリアな
どをドープしたジルコニア焼結体(YSZ)で造られ、
その両面にそれぞれ燃料極としてNi/YSZサーメッ
トを、空気極として(La、Sr)MnO3 をスクリー
ン印刷などによりコーティングしたものである。
In this flat plate type solid electrolyte fuel cell, a flat plate type cell in which a fuel electrode and an air electrode are arranged so as to sandwich a flat plate type solid electrolyte layer and an adjacent single cell are electrically connected in series and This is configured as a multi-layer stack by alternately stacking separators for distributing fuel gas and oxidant gas on a single cell. Usually, the solid electrolyte layer is made of a zirconia sintered body (YSZ) doped with yttria or the like,
Ni / YSZ cermet as a fuel electrode and (La, Sr) MnO 3 as an air electrode were coated on both surfaces by screen printing or the like.

【0004】内部マニホールド型固体電解質燃料電池は
セパレータが酸化剤および燃料のガスの給排気、分配お
よび電気的接続の機能を兼ね備える一体型の構造であ
る。そのため、セパレータの辺部にガスの給排気の孔が
開けられ、この孔から単電池の電極面にガスが給排気さ
れ、さらに、電極面の隅々にガスを均等に分配するた
め、および、隣あう単電池を直列に接続するため電極面
に多数の溝が施されている。一方、単電池の固体電解質
層の電極が付いていない部分にガス給排気の孔が開けら
れ、単電池を積層する過程でこれらの孔を連結し、スタ
ック内部にガス通路を形成している。単電池の燃料極側
に対面するセパレータの表面の電極と接しない部分と単
電池の固体電解質層の電極のない面との間にスペーサが
気密状態に挟持されている。
The internal manifold type solid oxide fuel cell has an integral structure in which the separator has the functions of supplying and discharging, distributing, and electrically connecting an oxidant and a fuel gas. Therefore, a gas supply / exhaust hole is formed in the side portion of the separator, the gas is supplied / exhausted from the hole to the electrode surface of the unit cell, and further, in order to evenly distribute the gas in every corner of the electrode surface, and A large number of grooves are formed on the electrode surface to connect adjacent cells in series. On the other hand, gas supply / exhaust holes are formed in the portion of the solid electrolyte layer of the unit cell where no electrode is attached, and these holes are connected in the process of stacking the unit cells to form a gas passage inside the stack. A spacer is hermetically sandwiched between a portion of the surface of the separator facing the fuel electrode side of the unit cell, which is not in contact with the electrode, and a surface of the solid electrolyte layer of the unit cell, which does not have an electrode.

【0005】また、平板状の耐熱性金属のメッシュまた
はフェルトが、ー層または複層となって、単電池の燃料
極とこれに対面するセパレータの表面との間に弾力圧縮
状態に挟持されている。これは集電効率の向上と燃料ガ
スの流通のために使用されるものである。耐熱性金属と
はたとえばNiやNi−Cr合金やFe−Cr合金であ
る。このメッシュを使用することにより固体電解質燃料
電池の集電効率は向上するが、電解質燃料電池が作動温
度1000℃で受ける熱サイクルにより、燃料極の上面
に接触するメッシュの材質である金属と、燃料極の材質
としてのNi/YSZサーメットと、燃料極の下面に付
着した固体電解質層の材質であるYSZとの熱膨張率の
差に起因して、固体電解質層、特にその周縁部が熱応力
割れを起こして破壊する。
Further, the flat plate-shaped heat-resistant metal mesh or felt becomes a single layer or multiple layers, and is sandwiched between the fuel electrode of the unit cell and the surface of the separator facing it in an elastically compressed state. There is. This is used for improving the efficiency of current collection and distribution of fuel gas. The heat resistant metal is, for example, Ni, Ni—Cr alloy, or Fe—Cr alloy. The use of this mesh improves the current collection efficiency of the solid oxide fuel cell, but due to the thermal cycle that the electrolyte fuel cell receives at an operating temperature of 1000 ° C., the metal that is the material of the mesh that contacts the upper surface of the fuel electrode and the fuel Due to the difference in the coefficient of thermal expansion between Ni / YSZ cermet as the material of the electrode and YSZ which is the material of the solid electrolyte layer adhered to the lower surface of the fuel electrode, the solid electrolyte layer, especially its peripheral portion, undergoes thermal stress cracking. Cause and destroy.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、単純に
ニッケル等の耐熱性金属のメッシュまたはフェルトを燃
料極とセパレータの間に挟持させても、ニッケルと燃料
極とは1000℃で溶着し、冷却時に熱膨張率の不一致
のために熱サイクルによる応力割れが生じる欠点があ
る。
However, even if a mesh or felt of a heat-resistant metal such as nickel is simply sandwiched between the fuel electrode and the separator, the nickel and the fuel electrode are welded at 1000 ° C. and are cooled. There is a drawback that stress cracking occurs due to thermal cycling due to mismatch of thermal expansion coefficients.

【0007】本発明は上述の点に鑑みてなされたもの
で、線径の異なる耐熱性金属メッシュを用いることによ
り、集電率を向上し且つ熱サイクルによる固体電解質層
の応力割れを防止し、長期間にわたり効率的な安全運転
を実施できる平板型固体電解質燃料電池を提供すること
を目的とする。
The present invention has been made in view of the above points. By using heat resistant metal meshes having different wire diameters, the current collection rate is improved and stress cracking of the solid electrolyte layer due to thermal cycle is prevented, It is an object of the present invention to provide a flat plate type solid electrolyte fuel cell capable of performing efficient safe operation for a long period of time.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は固体電解質層を挟むように燃料極と空気極
を配置してなる平板型単電池と、隣接する単電池を電気
的に直列に接続しかつ各単電池に燃料ガスと酸化剤ガス
とを分配するセパレータとを交互に積層し、前記単電池
の燃料極側に対面する前記セパレータの電極に接しない
表面と前記単電池の固体電解質層の電極の存在しない表
面との間にスペーサを気密状態に挟持し、前記単電池の
燃料極側に対面する前記セパレータの表面と前記単電池
の燃料極との間に複数層の耐熱性金属メッシュを弾力圧
縮状態に挟持した平板型固体電解質燃料電池において、
前記耐熱性金属メッシュの線径を前記単電池の燃料極に
近い層で細くしたことを特徴とする。また、本発明は耐
熱性金属メッシュが燃料極に近い層において平面的に複
数個に分割され、かつセパレータに接触する層は1枚に
纏められていることを特徴とする。
In order to solve the above-mentioned problems, the present invention electrically connects a flat-type cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer and an adjacent cell to each other. The cells connected in series and separators that distribute the fuel gas and the oxidant gas to each cell are alternately laminated, and the surface of the cell and the surface of the cell that does not contact the electrode of the separator facing the fuel electrode side of the cell. A spacer is sandwiched in an airtight state between the surface of the solid electrolyte layer where no electrode is present, and a plurality of layers of heat resistance are provided between the surface of the separator facing the fuel electrode side of the unit cell and the fuel electrode of the unit cell. In a flat plate type solid electrolyte fuel cell in which a flexible metal mesh is sandwiched in an elastically compressed state,
The wire diameter of the heat resistant metal mesh is thinned in a layer close to the fuel electrode of the unit cell. Further, the present invention is characterized in that the heat-resistant metal mesh is divided into a plurality of layers in a plane close to the fuel electrode, and the layer in contact with the separator is integrated into one layer.

【0009】[0009]

【作用】セパレータと燃料極との間に、耐熱性金属メッ
シュ(以下メッシュと称する)を複数層介在させ、燃料
極に近い層のメッシュほど線径を細くしたので網目も細
かくなり、燃料極に密接するようになるので集電効率は
向上し、また、電池内の熱膨張差による内部応力を吸収
する。また、メッシュが燃料極に近い層において平面的
に複数個に分割され、セパレータに接触する層は1枚に
纏められることにより、燃料極に近いほど内部応力が分
散され、且つ集電効率は向上する。
[Function] A plurality of heat-resistant metal meshes (hereinafter referred to as meshes) are interposed between the separator and the fuel electrode, and the mesh diameter of the mesh closer to the fuel electrode is smaller, so the mesh also becomes finer and the fuel electrode The close contact improves the current collection efficiency and also absorbs the internal stress due to the difference in thermal expansion in the battery. Further, the mesh is divided into a plurality of planes in a layer close to the fuel electrode, and the layers in contact with the separator are gathered into one sheet, so that the internal stress is dispersed closer to the fuel electrode and the collection efficiency is improved. To do.

【0010】[0010]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0011】図1は本発明の平板型固体電解質燃料電池
の断面図、図2は本発明の平板型固体電解質燃料電池の
内部構造の一部を示す斜視図である。
FIG. 1 is a cross-sectional view of the flat plate type solid electrolyte fuel cell of the present invention, and FIG. 2 is a perspective view showing a part of the internal structure of the flat plate type solid electrolyte fuel cell of the present invention.

【0012】本発明の平板型固体電解質燃料電池は固体
電解質層4を挟むように燃料極5と空気極6を配置して
なる平板型単電池3と、隣接する単電池3を電気的に直
列に接続しかつ各単電池に燃料ガスと酸化剤ガスとを分
配するセパレータ1とを交互に積層して構成されてい
る。
In the flat plate type solid electrolyte fuel cell of the present invention, a flat plate type cell 3 in which a fuel electrode 5 and an air electrode 6 are arranged so as to sandwich a solid electrolyte layer 4 and an adjacent unit cell 3 are electrically connected in series. , And separators 1 for distributing the fuel gas and the oxidant gas to each unit cell are alternately laminated.

【0013】セパレータ1はストロンチゥムドープラン
タンクロマイトを加圧成型し、空気中で焼成して得た平
板型焼結体である。4隅にガスの給排気孔が開けられ、
さらに、単電池3の電極面の隅々にガスを均等に分配す
るため、電極面に溝1cが施されている。溝1cと溝1
cの間は隣あう単電池3を直列に接続するため突起1b
となっている。表面の溝1cは左右2個の対角線方向の
給排気孔に連通し、また、裏面の溝1cは左右2個の対
角線方向の別の給排気孔に連通している。セパレータ1
の表面と裏面の周縁部はスペーサ2または単電池3の固
体電解質層4と重ねるための面となる。
The separator 1 is a flat plate-type sintered body obtained by pressure-molding strontium dough tan chromite and firing it in air. Gas supply and exhaust holes are opened in the four corners,
Further, in order to evenly distribute the gas to every corner of the electrode surface of the unit cell 3, the electrode surface is provided with a groove 1c. Groove 1c and groove 1
Between c, the protrusions 1b are provided to connect the adjacent cells 3 in series.
Has become. The front surface groove 1c communicates with two diagonal left and right air supply / exhaust holes, and the back surface groove 1c communicates with two left and right diagonal air supply / exhaust holes. Separator 1
The peripheral portions of the front surface and the back surface of the above are surfaces to be overlapped with the spacer 2 or the solid electrolyte layer 4 of the unit cell 3.

【0014】スペーサ2は部分安定化ジルコニア又は耐
熱性金属で造られ、厚みが約150ミクロンである。中
央部にほぼ正方形の孔が開けられ、かつ対角線上の4隅
にガスの給排気孔が開けられている。スペーサ2の表面
と裏面の周縁部はセパレータ1または単電池3の固体電
解質層4と重ねるためのシール面となる。
The spacer 2 is made of partially stabilized zirconia or refractory metal and is about 150 microns thick. A substantially square hole is formed in the center, and gas supply / exhaust holes are formed in the four corners on the diagonal. The peripheral portions of the front surface and the back surface of the spacer 2 serve as sealing surfaces for overlapping the separator 1 or the solid electrolyte layer 4 of the unit cell 3.

【0015】単電池3は固体電解質層4を挟むように燃
料極5としてNi/YSZサーメットを、空気極6とし
て(La、Sr)MnO3 をスクリーン印刷などにより
コーティングしたものである。固体電解質層4はイット
リアなどをドープしたジルコニア焼結体(YSZ)で造
られる。固体電解質層4の4隅にガスの給排気孔が開け
られている。このガス給排気孔はセパレータ1の給排気
孔の大きさおよび配置と同一である。また、固体電解質
層4の表面と裏面の周縁部はセパレータ1またはスペー
サ2と重ねるための面となる。
The unit cell 3 is formed by coating Ni / YSZ cermet as the fuel electrode 5 and (La, Sr) MnO 3 as the air electrode 6 by screen printing so as to sandwich the solid electrolyte layer 4. The solid electrolyte layer 4 is made of a zirconia sintered body (YSZ) doped with yttria or the like. Gas supply / exhaust holes are formed at four corners of the solid electrolyte layer 4. The gas supply / exhaust holes have the same size and arrangement as those of the separator 1. Further, the peripheral portions of the front surface and the back surface of the solid electrolyte layer 4 are surfaces for overlapping the separator 1 or the spacer 2.

【0016】複数層のメッシュ7またはフェルトがセパ
レータ1と燃料極5の間に弾力圧縮状態に介在してい
る。図2では2層のメッシュ7A、7Bが介在し、メッ
シュ7Aはセパレータ1に接触し、メッシュ7Bが燃料
極5に接触する。図示していないが、メッシュ7A、7
Bの間に必要に応じ任意の層数のメッシュ7が介在す
る。メッシュ7は分割部10により平面的に複数個に分
割され(図2においてメッシュ7Bは4個のピースに分
割されている)、単電池3の燃料極5の全面を覆う広さ
を有している。しかし、セパレータ1に接触するメッシ
ュ7Aは集電効率を良くするため分割せず1枚に纏めら
れている。メッシュ7の線径は単電池の燃料極に近い層
で細くし、その他の層は線径の大きな目の荒いメッシュ
で構成する。
A plurality of layers of mesh 7 or felt are interposed between the separator 1 and the fuel electrode 5 in an elastically compressed state. In FIG. 2, two layers of meshes 7A and 7B are interposed, the mesh 7A contacts the separator 1, and the mesh 7B contacts the fuel electrode 5. Although not shown, the mesh 7A, 7
A mesh 7 having an arbitrary number of layers is interposed between B as required. The mesh 7 is divided into a plurality of pieces in a plane by the dividing portion 10 (the mesh 7B is divided into four pieces in FIG. 2), and has a size that covers the entire surface of the fuel electrode 5 of the unit cell 3. There is. However, the mesh 7A that comes into contact with the separator 1 is not divided but is integrated into one sheet in order to improve current collection efficiency. The wire diameter of the mesh 7 is made thin in a layer close to the fuel electrode of the unit cell, and the other layers are made of a coarse mesh having a large wire diameter.

【0017】メッシュ7はニッケル等の耐熱性金属で造
られ、還元雰囲気下で電子伝導性および伸縮性が良好で
ある。メッシュの線径が細いと、当然メッシュの網目が
小さくなり、そのためメッシュが電極に密接し、導電率
が良くなり、集電効率が向上する。また、セパレータ1
に近いメッシュは線径が太いので網目が大きくなり、経
済的に有利となる。すべてのメッシュを線径が細くて、
網目の小さいものにすると経済的に不利である。
The mesh 7 is made of a heat resistant metal such as nickel and has good electron conductivity and stretchability in a reducing atmosphere. If the wire diameter of the mesh is small, the mesh of the mesh is naturally small, so that the mesh is in close contact with the electrode, the conductivity is improved, and the current collection efficiency is improved. Also, the separator 1
Since the wire diameter of the mesh close to is large, the mesh becomes large, which is economically advantageous. The diameter of all meshes is thin,
It is economically disadvantageous to use a small mesh.

【0018】このような構成になる平板型固体電解質燃
料電池に、その周縁部のガス給気孔から各ガスを供給
し、単電池3の両電極の表面に流し、周縁部のガス排気
孔から排出することにより、電力が発生する。
Each gas is supplied to the flat plate type solid oxide fuel cell having the above-mentioned structure from the gas supply holes in the peripheral portion thereof, flows on the surfaces of both electrodes of the unit cell 3, and is discharged from the gas exhaust holes in the peripheral portion. By doing so, electric power is generated.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、セ
パレータの表面と単電池の燃料極との間に複数層のニッ
ケルやコバルトのメッシュを弾力圧縮状態に挟持させ、
メッシュの線径を変化させ燃料極に近い層のメッシュは
細くしたので、次のような優れた効果が得られる。 (1)燃料電池の熱サイクルでメッシュと燃料極の間に
熱膨張差のため発生する内部応力を分散・吸収し、電池
の耐久性を向上させる。 (2)集電効率を改善し、電池の性能を向上させる。 (3)燃料極に近い層のメッシュは細くし、その他の層
は線径の大きな目の荒いメッシュで構成するのでコスト
的に有利となる。
As described above, according to the present invention, a plurality of layers of nickel or cobalt mesh are elastically compressed between the surface of the separator and the fuel electrode of the unit cell,
By changing the wire diameter of the mesh and thinning the mesh of the layer close to the fuel electrode, the following excellent effects can be obtained. (1) Disperse and absorb the internal stress generated due to the difference in thermal expansion between the mesh and the fuel electrode during the thermal cycle of the fuel cell, and improve the durability of the cell. (2) The efficiency of current collection is improved and the performance of the battery is improved. (3) The mesh of the layer close to the fuel electrode is made thin, and the other layers are made of coarse mesh having a large wire diameter, which is advantageous in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の平板型固体電解質燃料電池の断面図で
ある。
FIG. 1 is a sectional view of a flat plate type solid electrolyte fuel cell of the present invention.

【図2】本発明の平板型固体電解質燃料電池の内部構造
の一部を示す斜視図である。
FIG. 2 is a perspective view showing a part of the internal structure of the flat plate type solid electrolyte fuel cell of the present invention.

【符号の説明】 1 セパレータ 2 スペーサ 3 単電池 4 固体電解質層 5 燃料極 6 空気極 7 メッシュ 10 分割部[Explanation of Codes] 1 Separator 2 Spacer 3 Single Cell 4 Solid Electrolyte Layer 5 Fuel Electrode 6 Air Electrode 7 Mesh 10 Dividing Part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層を挟むように燃料極と空気
極を配置してなる平板型単電池と、隣接する単電池を電
気的に直列に接続しかつ各単電池に燃料ガスと酸化剤ガ
スとを分配するセパレータとを交互に積層し、前記単電
池の燃料極側に対面する前記セパレータの表面と前記単
電池の燃料極との間に複数層の耐熱性金属メッシュを弾
力圧縮状態に挟持した平板型固体電解質燃料電池におい
て、前記耐熱性金属メッシュの線径を前記単電池の燃料
極に近い層で細くしたことを特徴とする平板型固体電解
質燃料電池。
1. A flat plate type cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and adjacent cell units are electrically connected in series, and a fuel gas and an oxidizer are provided in each cell unit. By alternately laminating separators for distributing gas, a plurality of layers of heat resistant metal mesh are elastically compressed between the surface of the separator facing the fuel electrode side of the unit cell and the fuel electrode of the unit cell. In the sandwiched flat plate type solid electrolyte fuel cell, the wire diameter of the heat-resistant metal mesh is thinned in a layer close to the fuel electrode of the unit cell.
【請求項2】 前記耐熱性金属メッシュが燃料極に近い
層において平面的に複数個に分割され、かつセパレータ
に接触する層は1枚に纏められていることを特徴とする
請求項1に記載の平板型固体電解質燃料電池。
2. The heat resistant metal mesh is divided into a plurality of planes in a layer close to the fuel electrode, and the layers in contact with the separator are combined into one sheet. Flat-plate solid oxide fuel cell.
【請求項3】 前記耐熱性金属がニッケルである請求項
1または2に記載の平板型固体電解質燃料電池。
3. The plate type solid electrolyte fuel cell according to claim 1, wherein the heat resistant metal is nickel.
【請求項4】 前記メッシュがフェルトであることを特
徴とする請求項1または2に記載の平板型固体電解質燃
料電池。
4. The flat-plate solid electrolyte fuel cell according to claim 1, wherein the mesh is felt.
【請求項5】 前記単電池の燃料極側に対面する前記セ
パレータの電極に接しない表面と前記単電池の固体電解
質層の電極の存在しない表面との間にスペーサを気密状
態に挾持したことを特徴とする請求項1に記載の平板型
固体電解質燃料電池。
5. A spacer is sandwiched between a surface of the separator facing the fuel electrode side of the unit cell which is not in contact with the electrode and a surface of the solid electrolyte layer of the unit cell where the electrode is not present in an airtight state. The flat plate type solid electrolyte fuel cell according to claim 1, which is characterized in that.
JP6178556A 1994-07-29 1994-07-29 Plate type solid electrolyte fuel cell using mesh with different wire diameters Withdrawn JPH0845516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6178556A JPH0845516A (en) 1994-07-29 1994-07-29 Plate type solid electrolyte fuel cell using mesh with different wire diameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6178556A JPH0845516A (en) 1994-07-29 1994-07-29 Plate type solid electrolyte fuel cell using mesh with different wire diameters

Publications (1)

Publication Number Publication Date
JPH0845516A true JPH0845516A (en) 1996-02-16

Family

ID=16050557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6178556A Withdrawn JPH0845516A (en) 1994-07-29 1994-07-29 Plate type solid electrolyte fuel cell using mesh with different wire diameters

Country Status (1)

Country Link
JP (1) JPH0845516A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331944A (en) * 2005-05-27 2006-12-07 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2007141765A (en) * 2005-11-22 2007-06-07 Hitachi Ltd Solid oxide fuel cell and its manufacture method
WO2007074666A1 (en) * 2005-12-28 2007-07-05 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
WO2007077724A1 (en) * 2005-12-28 2007-07-12 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2008108656A (en) * 2006-10-27 2008-05-08 Honda Motor Co Ltd Fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331944A (en) * 2005-05-27 2006-12-07 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2007141765A (en) * 2005-11-22 2007-06-07 Hitachi Ltd Solid oxide fuel cell and its manufacture method
WO2007074666A1 (en) * 2005-12-28 2007-07-05 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2007179899A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
WO2007077724A1 (en) * 2005-12-28 2007-07-12 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2007179926A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
US8039169B2 (en) 2005-12-28 2011-10-18 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US9401515B2 (en) 2005-12-28 2016-07-26 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP2008108656A (en) * 2006-10-27 2008-05-08 Honda Motor Co Ltd Fuel cell

Similar Documents

Publication Publication Date Title
JP4811622B2 (en) Solid oxide fuel cell
CA2923380C (en) Fuel cell and fuel cell stack with suppressed poisoning
US6096451A (en) Solid-electrolyte fuel cell
JP2000048831A (en) Solid electrolyte fuel cell
US6265095B1 (en) Interconnect for solid oxide fuel cells
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JPH0845516A (en) Plate type solid electrolyte fuel cell using mesh with different wire diameters
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JP4244579B2 (en) Flat stacked solid oxide fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH09139223A (en) Lamination compressing device for flat solid electrolytic fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JPH09147884A (en) Flat solid electrolyte fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JPH06140056A (en) Solid electrolytic fuel cell having inside manifold structure to increase current collecting rate
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JPH0714591A (en) Gas seal structure of solid electrolytic fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JPH0462757A (en) Solid electrolyte type fuel cell
JPH07153471A (en) Internal manifold type solid electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002