JPH1079258A - Current collecting method for flat type solid electrolyte fuel cell - Google Patents

Current collecting method for flat type solid electrolyte fuel cell

Info

Publication number
JPH1079258A
JPH1079258A JP8233901A JP23390196A JPH1079258A JP H1079258 A JPH1079258 A JP H1079258A JP 8233901 A JP8233901 A JP 8233901A JP 23390196 A JP23390196 A JP 23390196A JP H1079258 A JPH1079258 A JP H1079258A
Authority
JP
Japan
Prior art keywords
separator
solid electrolyte
fuel
air electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8233901A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Yoshio Matsuzaki
良雄 松崎
Takashi Ogiwara
崇 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP8233901A priority Critical patent/JPH1079258A/en
Publication of JPH1079258A publication Critical patent/JPH1079258A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To establish a current collecting method in which contacting of an air electrode with a separator is well kept to allow continued effect of current collection even if a nickel felt or nickel mesh on the fuel electrode side is compressed during the fuel cell being in operation, which does not require a structure involving a load application from the fuel electrode to air electrode, and can prevent cracking of the electrolyte resulting from difference in the coefficient of thermal expansion caused by joining of the fuel electrode with a current collecting material to be installed between the fuel electrode and separator by using a substance having a small modulus of elasticity to the current collecting material. SOLUTION: The current collecting method according to the invention applies to a flat plate type solid electrolyte fuel cell on internal manifold system of such a structure that flat plate unit cells each formed by installing an air electrode 3 and fuel electrode 2 on the surfaces of a flat plate solid electrolyte layer and separators 4, in which adjoining unit cells are connected in series electrically and the fuel and oxidator gas are distributed to the unit cells, are laminated one over another, wherein it is arranged so that the electrolyte layer is bent convex toward the fuel electrode 2 with the load at the time of laminating and the air electrode 3 keeps the contacting condition with the separator 4, and a current collecting member 6 having a small modulus of elasticity is inserted to the side with the fuel electrode 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は平板型固体電解質燃
料電池の集電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collecting method for a flat solid electrolyte fuel cell.

【0002】[0002]

【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が本来持っている
化学エネルギーを直接電気エネルギーに変換する燃料電
池が、省資源、環境保護の観点から注目されており、特
に固体電解質燃料電池は発電効率が高く、廃熱を有効に
利用できるなど多くの利点を有するため研究、開発が進
んでいる。
2. Description of the Related Art Recently, fuel cells which directly convert chemical energy inherent in fuel into electric energy by using, for example, air and hydrogen as oxidizing gas and fuel gas, respectively, have attracted attention from the viewpoint of resource saving and environmental protection. Research and development are progressing because solid electrolyte fuel cells have many advantages such as high power generation efficiency and effective use of waste heat.

【0003】固体電解質燃料電池に燃料ガスと酸化剤ガ
スとを供給するため、固体電解質燃料電池のセパレータ
および固体電解質層にそれぞれのガスの給排気孔を設
け、この孔から各単電池の各電極面に各ガスを給排気す
るようにしたものを内部マニホールド形式と称してい
る。内部マニホールド形式の平板型固体電解質燃料電池
は、イットリアなどをドープしたジルコニア焼結体(Y
SZ)からなる平板型固体電解質層の両面に、それぞれ
(La、Sr)MnO3 の空気極と、Ni/YSZサー
メットの燃料極とを配置してなる平板状単電池と、隣接
する単電池同士を電気的に直列に接続し、かつ各単電池
に燃料ガスと酸化剤ガスとを分配するセパレータとを交
互に積層し、燃料極とセパレータの燃料ガス流通路側と
の間に金属メッシュを介在し、単電池の固体電解質層と
セパレータの間にそれぞれシール剤またはスペーサを介
在してスタックに積層したものであり、各単電池の各電
極面にそれぞれ燃料ガスと酸化剤ガスとを接触させるこ
とにより起電力を発生する。
In order to supply a fuel gas and an oxidizing gas to a solid electrolyte fuel cell, gas supply / exhaust holes are provided in a separator and a solid electrolyte layer of the solid electrolyte fuel cell, and each electrode of each unit cell is formed through this hole. The one that supplies and exhausts each gas to and from the surface is called an internal manifold type. A flat solid electrolyte fuel cell of the internal manifold type is made of a zirconia sintered body (Y
SZ), a flat cell having an air electrode of (La, Sr) MnO 3 and a fuel electrode of Ni / YSZ cermet on both surfaces thereof, and adjacent cells. Are electrically connected in series, and separators for distributing fuel gas and oxidizing gas are alternately stacked on each cell, and a metal mesh is interposed between the fuel electrode and the fuel gas flow path side of the separator. Are stacked in a stack with a sealant or spacer interposed between the solid electrolyte layer and the separator of the unit cell, respectively, by contacting a fuel gas and an oxidizing gas with each electrode surface of each unit cell. Generates electromotive force.

【0004】[0004]

【発明が解決しようとする課題】従来、内部マニホール
ド形式の平板型固体電解質燃料電池の運転時において、
電極とセパレータの間の接触抵抗を低減するため、また
燃料ガスと酸化剤ガスとの漏洩を防止するため、重錘
式、ねじ式、水圧式等の方法でスタックに垂直方向に荷
重を掛けている。
Conventionally, during operation of a flat solid electrolyte fuel cell of the internal manifold type,
In order to reduce the contact resistance between the electrode and the separator, and to prevent leakage of fuel gas and oxidizing gas, apply a load to the stack vertically using a weight type, screw type, hydraulic type, etc. I have.

【0005】この場合、空気極とセパレータとの間の集
電は、燃料極とこれに対面するセパレータとの間に集電
体としてニッケルフェルトやニッケルメッシュのような
柔軟なものを詰め込んでスタックの上から積層荷重を掛
けることにより空気極をセパレータに押し付け接触させ
て行っている。
In this case, current collection between the air electrode and the separator is performed by packing a flexible material such as nickel felt or nickel mesh as a current collector between the fuel electrode and the separator facing the fuel electrode. By applying a laminating load from above, the air electrode is pressed against the separator and brought into contact therewith.

【0006】しかしながら、前述の燃料極側のニッケル
フェルトやニッケルメッシュが、燃料電池の運転中に圧
縮され縮小すると、空気極とセパレータとの間の接触が
弱まり、そのため接触抵抗が増大し、遂には空気極とセ
パレータとが絶縁し集電が不可能となる。
[0006] However, when the above-mentioned nickel felt or nickel mesh on the fuel electrode side is compressed and reduced during operation of the fuel cell, the contact between the air electrode and the separator is weakened, so that the contact resistance is increased, and finally the contact resistance is increased. Since the air electrode and the separator are insulated from each other, current collection becomes impossible.

【0007】したがって、従来のように燃料極側から荷
重を掛ける場合は、弾性率の大きい、剛直な集電体を使
用しなければならなかった。このような材料は燃料極と
接合すると、熱膨張係数の差異に起因する熱応力により
固体電解質層の割れを引き起こす。
Therefore, when a load is applied from the fuel electrode side as in the prior art, a rigid current collector having a large elastic modulus must be used. When such a material is joined to the fuel electrode, the solid electrolyte layer is cracked by thermal stress caused by a difference in thermal expansion coefficient.

【0008】本発明は上述の点にかんがみてなされたも
ので、平板型固体電解質燃料電池の運転中に、燃料極側
のニッケルフェルトやニッケルメッシュが圧縮されて
も、空気極とセパレータとの間の接触を保持して集電作
用を続行することができ、気孔率の大きな弾性率の小さ
い集電材料を燃料極とセパレータの間に用いることによ
り電解質の割れを防止する集電方法を提供することを目
的とする。
[0008] The present invention has been made in view of the above points, and even if the nickel felt or nickel mesh on the fuel electrode side is compressed during the operation of the flat solid electrolyte fuel cell, the distance between the air electrode and the separator is reduced. The present invention provides a current collecting method that can continue the current collecting operation while maintaining contact with the fuel cell, and prevents a crack in the electrolyte by using a current collecting material having a large porosity and a small elastic modulus between the fuel electrode and the separator. The purpose is to:

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は平板型固体電解質層の両面にそれぞれ空気
極と燃料極とを配置してなる平板状単電池と、隣接する
単電池同士を電気的に直列に接続しかつ各単電池に燃料
と酸化剤ガスとを分配するセパレータとを交互に積層し
た内部マニホールド方式の平板型固体電解質燃料電池に
おける集電方法において、前記積層時の荷重により前記
固体電解質層が燃料極側に凸となるように湾曲し且つ空
気極がセパレータと接触状態を保持するようにし、燃料
極側に弾性率の小さな集電体を挿入したことを特徴とす
る。
In order to achieve the above object, the present invention provides a flat cell having an air electrode and a fuel electrode disposed on both surfaces of a flat solid electrolyte layer, and a cell having adjacent cells. Are electrically connected in series and separators for distributing fuel and oxidizing gas to each unit cell are alternately stacked. In the current collector method of the internal manifold type flat solid electrolyte fuel cell, Thus, the solid electrolyte layer is curved so as to protrude toward the fuel electrode side, the air electrode keeps contact with the separator, and a current collector having a small elastic modulus is inserted on the fuel electrode side. .

【0010】また、本発明はセパレータのカソードと対
面する側の酸化剤ガス流路凸部を空気極側のセパレータ
とスペーサとのガスシール面より突起させ空気極とその
突起部の厚さの合計がスペーサの厚さより大きいことを
特徴とする。またセパレータのカソードと対面する側の
酸化剤ガス流路凸部を空気極側の電解質とスペーサとの
ガスシール面より突起させることを特徴とする。この時
の突起部はカソード成分、セパレータ成分または導電性
セラミックスからなることを特徴とする。また、カソー
ドの厚みをスペーサの厚みより厚くすることを特徴と
す。
Further, according to the present invention, the projection of the oxidizing gas flow channel on the side facing the cathode of the separator is projected from the gas sealing surface between the separator and the spacer on the air electrode side, and the total thickness of the air electrode and the projection is obtained. Is larger than the thickness of the spacer. Further, the separator is characterized in that the oxidant gas flow channel convex portion on the side facing the cathode of the separator projects from the gas seal surface between the electrolyte and the spacer on the air electrode side. At this time, the projection is made of a cathode component, a separator component or a conductive ceramic. Further, the thickness of the cathode is made larger than the thickness of the spacer.

【0011】[0011]

【発明の実施の形態】以下に本発明を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0012】図1は本発明による集電方法を実施した内
部マニホールド方式の平板型固体電解質燃料電池の断面
図である。
FIG. 1 is a cross-sectional view of a flat solid electrolyte fuel cell of an internal manifold type in which a current collecting method according to the present invention is implemented.

【0013】図1の平板型固体電解質燃料電池はYSZ
からなる平板型固体電解質層1を挟むようにその両面に
それぞれ(La、Sr)MnO3 の空気極3とNi/Y
SZサーメットの燃料極2とを配置してなる平板状単電
池と、隣接する単電池同士を電気的に直列に接続しかつ
各単電池に燃料ガスと空気(酸化剤ガス)とを分配する
セパレータ4とを交互に積層し、単電池の固体電解質層
1とセパレータ4の間にそれぞれスペーサ5を介在して
スタックに積層したものである。なお、内部マニホール
ド方式の平板型固体電解質燃料電池は単電池、セパレー
タ4やスペーサ5等の電池材料が空気および燃料の各ガ
スの給排気、分配および集電機能を兼ね備える一体型の
構造である。セパレータ4は空気極3の電極面の隅々に
空気を均等に分配するため、ガス流通溝11が形成さ
れ、溝11と溝11との間は隣り合う単電池を直列に接
続するためのガス流通路凸部12となっている。スペー
サ5の固体電解質層1と接触する面はガスシール面10
aとなり、セパレータと接触する面はガスシール面10
bとなる。
The flat solid electrolyte fuel cell shown in FIG.
(La, Sr) MnO 3 air electrode 3 and Ni / Y
A flat cell having an SZ cermet fuel electrode 2 disposed therein, and a separator which electrically connects adjacent cells in series and distributes fuel gas and air (oxidant gas) to each cell. 4 are alternately stacked, and stacked in a stack with a spacer 5 interposed between the solid electrolyte layer 1 and the separator 4 of the unit cell. In addition, the flat plate-type solid electrolyte fuel cell of the internal manifold type is an integrated structure in which cell materials such as a unit cell, a separator 4 and a spacer 5 have functions of supplying and exhausting, distributing, and collecting current of each gas of air and fuel. The gas flow grooves 11 are formed in the separator 4 to evenly distribute air to the corners of the electrode surface of the air electrode 3, and gas between the grooves 11 is used to connect adjacent cells in series. It is a flow passage convex portion 12. The surface of the spacer 5 that contacts the solid electrolyte layer 1 is a gas seal surface 10.
a, the surface in contact with the separator is the gas seal surface 10
b.

【0014】なお、本発明の集電方法によれば、運転中
固体電解質層1が燃料極2側に凸となるように湾曲し、
且つ燃料極側から荷重が掛らなくても、空気極3がセパ
レータ4と接触状態を保持するようにし、燃料極2側に
は弾性率の小さな集電体6を載せ(換言すれば燃料極2
とその上側のセパレータ4との間に集電体6を挿入して
いる)大きな荷重が電解質にかからないように集電する
ようにしている。この集電体6は弾力性に富んだニッケ
ルフェルトやニッケルメッシュである。
According to the current collecting method of the present invention, during operation, the solid electrolyte layer 1 is curved so as to project toward the fuel electrode 2,
In addition, even when no load is applied from the fuel electrode side, the air electrode 3 is kept in contact with the separator 4, and the current collector 6 having a small elastic modulus is mounted on the fuel electrode 2 side (in other words, the fuel electrode 2
(The current collector 6 is inserted between the current collector 6 and the upper separator 4). The current is collected so that a large load is not applied to the electrolyte. The current collector 6 is a nickel felt or a nickel mesh having a high elasticity.

【0015】本発明のこの構造は、従来の平板型固体電
解質燃料電池におけるような、燃料極側からニッケルフ
ェルトやニッケルメッシュにより大きな荷重を掛けるこ
とにより、空気極をセパレータに押し付け接触させる構
造とは異なっている(空気極をセパレータに押し付けて
いない)。そのため、ニッケルフェルトやニッケルメッ
シュが燃料電池の運転中に圧縮され縮小されても、空気
極とセパレータとの間の接触が弱まり接触抵抗が増大
し、遂には空気極とセパレータとが絶縁するような欠点
を発生しない。さらに、弾性率の小さな集電材料をアノ
ードとセパレータの集電に用いるため集電材料とアノー
ドが接合した場合にも熱膨張係数の差異による電解質の
割れを生じない。
This structure of the present invention is different from a structure in which a large load is applied from the fuel electrode side to nickel felt or nickel mesh to press the air electrode against the separator as in a conventional flat solid electrolyte fuel cell. It is different (the cathode is not pressed against the separator). Therefore, even if nickel felt or nickel mesh is compressed and reduced during operation of the fuel cell, the contact between the air electrode and the separator is weakened, the contact resistance is increased, and finally the air electrode and the separator are insulated. No disadvantages occur. Furthermore, since a current collecting material having a small elastic modulus is used for current collection between the anode and the separator, even when the current collecting material and the anode are joined, the electrolyte does not crack due to a difference in thermal expansion coefficient.

【0016】本発明の実施態様は次のようである。 (1)セパレータ4の酸化剤ガス流路凸部12を空気極
側セパレータ4とスペーサ5とのガスシール面10bよ
り突起させ、その突起部13と空気極との厚みの合計A
をスペーサ5の厚みより大きくさせ、その差分だけ固体
電解質層が燃料極側に凸となるように湾曲する。 (2)セパレータ4のカソード3と対面する側の酸化剤
ガス流路凸部12を該セパレータ4のガスシール面10
aよりBだけ上方に突起させる(図2参照)。その結
果、積層時の荷重により空気極の厚みとBの厚みだけ固
体電解質層1が燃料極2側に凸となるように湾曲する。 (3)突起部13または15がカソード成分である。 (4)突起部がセパレータ成分である。 (5)突起部が導電性セラミックスである。 (6)セパレータ4の空気極3と対面する側の酸化剤ガ
ス流路凸部12を該セパレータ4のガスシール面10a
より突起させず、空気極3の厚みをスペーサ5の厚みよ
り厚くする(図3参照)。
An embodiment of the present invention is as follows. (1) The oxidant gas flow path projection 12 of the separator 4 is projected from the gas sealing surface 10b between the air electrode side separator 4 and the spacer 5, and the total thickness A of the projection 13 and the air electrode is obtained.
Is larger than the thickness of the spacer 5, and the solid electrolyte layer is curved so as to project toward the fuel electrode by the difference. (2) The oxidant gas flow path convex portion 12 on the side of the separator 4 facing the cathode 3 is connected to the gas seal surface 10 of the separator 4.
Projection is made B above a (see FIG. 2). As a result, the solid electrolyte layer 1 is curved by the load at the time of lamination so as to protrude toward the fuel electrode 2 by the thickness of the air electrode and the thickness of B. (3) The projection 13 or 15 is a cathode component. (4) The protrusion is a separator component. (5) The projection is made of a conductive ceramic. (6) The oxidant gas flow path projection 12 on the side of the separator 4 facing the air electrode 3 is connected to the gas seal surface 10a of the separator 4.
The thickness of the air electrode 3 is made larger than the thickness of the spacer 5 without protruding further (see FIG. 3).

【0017】[0017]

【実施例】平板型固体電解質燃料電池に本発明の集電方
法を次のように実施した。
EXAMPLES The current collecting method of the present invention was applied to a flat plate type solid electrolyte fuel cell as follows.

【0018】ランタンクロマイト製セパレータ4の酸化
剤流路凸部12に、ランタンマンガネートをスクリーン
印刷法により50μm塗布し、1150℃で焼成した。
Lanthanum manganate was applied to the convex portion 12 of the oxidant channel of the lanthanum chromite separator 4 by a screen printing method to a thickness of 50 μm and fired at 1150 ° C.

【0019】厚さ100μm、120mm角の3Y−Y
SZ電解質層1の片面には空気極3としてランタンマン
ガネートを100μm形成し、反対面には厚さ30μm
のNi/YSZ燃料極2を形成した(有効電極面積は1
00×100mmである)。
3Y-Y having a thickness of 100 μm and a square of 120 mm
On one surface of the SZ electrolyte layer 1, 100 μm of lanthanum manganate is formed as an air electrode 3 and on the other surface, a thickness of 30 μm is formed.
Ni / YSZ fuel electrode 2 was formed (effective electrode area was 1
00 × 100 mm).

【0020】セパレータ4と電解質層1のガスシール面
との間に厚さ100μmの耐熱金属製ガスケット(スペ
ーサ)5を挿入した。
A heat-resistant metal gasket (spacer) 5 having a thickness of 100 μm was inserted between the separator 4 and the gas sealing surface of the electrolyte layer 1.

【0021】燃料極2とセパレータ4との集電には、密
度0.67g/cm3 のニッケルフェルト6を用いた。
For collecting current between the fuel electrode 2 and the separator 4, a nickel felt 6 having a density of 0.67 g / cm 3 was used.

【0022】セパレータ4と電解質層1のガスシール面
に対し(比べ)電極部は燃料極2側に50μm凸状に湾
曲するように構成した。
The electrode portion (compared with) the gas seal surface of the separator 4 and the electrolyte layer 1 was formed so as to protrude 50 μm toward the fuel electrode 2 side.

【0023】1000℃において、燃料電池の上部より
0.03kg/cm2 の荷重をかけ、酸化剤として空
気、燃料として水素をそれぞれ用い、発電試験を行っ
た。
At 1000 ° C., a power generation test was performed by applying a load of 0.03 kg / cm 2 from above the fuel cell and using air as the oxidant and hydrogen as the fuel.

【0024】発電試験の結果は次のようである。The results of the power generation test are as follows.

【0025】発電試験を行った時のスタックの中の一層
当たりの内部抵抗を、1時間後のそれを1.00とした
ときの10、100時間後の値を測定した結果は次のよ
うである。
When the internal resistance per layer in the stack at the time of the power generation test was set to 1.00 after 1 hour and the value after 10 and 100 hours was measured, the results are as follows. is there.

【0026】 1時間後 10時間後 100時間後 1.00 1.00 1.01 この結果から、燃料極2、空気極3とセパレータ4との
接触が、時間が経過しても良好にとれていることが分か
る。
After 1 hour After 10 hours After 100 hours 1.00 1.00 1.01 From this result, the contact between the fuel electrode 2, the air electrode 3 and the separator 4 can be taken well even after the lapse of time. You can see that there is.

【0027】また、発電試験終了後燃料電池の温度を室
温に下げ、電解質層を取り出して調べたところ、割れは
生じていなかった。
After the power generation test, the temperature of the fuel cell was lowered to room temperature, and the electrolyte layer was taken out and examined. As a result, no crack was found.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば平
板型固体電解質層の両面にそれぞれ空気極と燃料極とを
配置してなる平板状単電池と、隣接する単電池同士を電
気的に直列に接続しかつ各単電池に燃料と酸化剤ガスと
を分配するセパレータとを交互に積層した内部マニホー
ルド方式の平板型固体電解質燃料電池における集電方法
において、前記積層時の荷重により前記固体電解質層が
燃料極側に凸となるように湾曲し且つ空気極がセパレー
タと接触状態を保持するようにし、燃料極側に弾性率の
小さな集電体を挿入したので、次のような極めて優れた
効果が得られる。 (1)燃料電池運転中にニッケルフェルトやニッケルメ
ッシュ等の集電体が圧縮されて縮小しても空気極とセパ
レータとの間の接触を保持することができ、接触の低下
または無くなることがない。 (2)従来のように燃料極側から荷重を掛ける場合は、
弾性率の大きい、剛直な集電体を使用しなければならな
かった。このような材料は燃料極と接合すると、熱応力
により固体電解質層の割れを引き起こす。しかるに、本
発明の場合は燃料極側からは荷重は掛らないので、弾性
率の小さい柔軟な集電体材料を使用することができ、固
体電解質層の割れを防止することができる。
As described above, according to the present invention, a flat cell having an air electrode and a fuel electrode disposed on both surfaces of a flat solid electrolyte layer and an adjacent cell are electrically connected to each other. In a current collecting method in a flat solid electrolyte fuel cell of an internal manifold type in which separators connected in series and alternately distributing a fuel and an oxidizing gas to each unit cell are stacked, the solid is charged by the load at the time of stacking. The electrolyte layer is curved so as to protrude toward the fuel electrode side, the air electrode keeps contact with the separator, and a current collector with a small elastic modulus is inserted on the fuel electrode side. The effect is obtained. (1) Even if the current collector such as nickel felt or nickel mesh is compressed and reduced during the operation of the fuel cell, the contact between the air electrode and the separator can be maintained, and the contact does not decrease or disappear. . (2) When a load is applied from the fuel electrode side as in the past,
A rigid current collector with a high modulus of elasticity had to be used. When such a material is bonded to the fuel electrode, the solid electrolyte layer is cracked by thermal stress. However, in the case of the present invention, since no load is applied from the fuel electrode side, a flexible current collector material having a small elastic modulus can be used, and cracking of the solid electrolyte layer can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による内部マニホールド方式の平板型固
体電解質燃料電池の断面図である。
FIG. 1 is a sectional view of a flat solid electrolyte fuel cell of an internal manifold type according to the present invention.

【図2】本発明による内部マニホールド方式の平板型固
体電解質燃料電池の断面図である。
FIG. 2 is a cross-sectional view of an internal manifold type flat solid electrolyte fuel cell according to the present invention.

【図3】本発明による内部マニホールド方式の平板型固
体電解質燃料電池の断面図である。
FIG. 3 is a cross-sectional view of a flat solid electrolyte fuel cell of the internal manifold type according to the present invention.

【符号の説明】[Explanation of symbols]

1 固体電解質層 2 燃料極 3 空気極 4 セパレータ 5 スペーサ 6 集電体 10a ガスシール面 10b ガスシール面 11 ガス流路溝 12 ガス流路凸部 13 突起部 15 突起部 DESCRIPTION OF SYMBOLS 1 Solid electrolyte layer 2 Fuel electrode 3 Air electrode 4 Separator 5 Spacer 6 Current collector 10a Gas seal surface 10b Gas seal surface 11 Gas flow channel 12 Gas flow channel protrusion 13 Projection 15 Projection

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平板型固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料と酸化剤ガスとを分配するセパレータとを交互に積層
した内部マニホールド方式の平板型固体電解質燃料電池
における集電方法において、前記積層時の荷重により前
記固体電解質層が燃料極側に凸となるように湾曲し且つ
空気極がセパレータと接触状態を保持するようにし、燃
料極側に弾性率の小さな集電体を挿入したことを特徴と
する平板型固体電解質燃料電池の集電方法。
1. A flat cell in which an air electrode and a fuel electrode are respectively disposed on both surfaces of a flat solid electrolyte layer, an adjacent cell is electrically connected in series, and a fuel cell is connected to each cell. And a separator for distributing the oxidizing gas and the separator, the internal manifold type flat solid electrolyte fuel cell in which the solid electrolyte layer is convex toward the fuel electrode side by the load at the time of stacking. A current collecting method for a flat solid electrolyte fuel cell, characterized in that a current collector having a low elasticity is inserted on the fuel electrode side so that the air electrode keeps contact with the separator.
【請求項2】 セパレータの酸化剤ガス流路凸部を空気
極側のセパレータまたはシール剤とのガスシール面より
突起させ、その突起部と空気極との厚さの合計がスペー
サまたはシール剤の厚さより大きいことを特徴とする請
求項1に記載の平板型固体電解質燃料電池の集電方法。
2. An oxidizing gas passage convex portion of a separator is projected from a gas sealing surface of a separator or a sealing agent on an air electrode side, and the total thickness of the projecting portion and the air electrode is equal to that of a spacer or a sealing agent. The method of claim 1, wherein the thickness is larger than the thickness.
【請求項3】 セパレータのカソードと対面する側の酸
化剤ガス流路凸部を空気極側の電解質とスペーサまたは
シール剤とのガスシール面より突起させることを特徴と
する請求項1に記載の平板型固体電解質燃料電池の集電
方法。
3. The separator according to claim 1, wherein the oxidant gas flow path convex portion on the side facing the cathode of the separator projects from the gas sealing surface between the electrolyte on the air electrode side and the spacer or the sealant. A current collecting method for a flat solid electrolyte fuel cell.
【請求項4】突起部がカソード成分からなることを特徴
とする請求項2または3に記載の平板型固体電解質燃料
電池の集電方法。
4. The method according to claim 2, wherein the projections are made of a cathode component.
【請求項5】突起部がセパレータ成分からなることを特
徴とする請求項2または3に記載の平板型固体電解質燃
料電池の集電方法。
5. The current collection method for a flat solid electrolyte fuel cell according to claim 2, wherein the projections are made of a separator component.
【請求項6】突起部が導電性セラミックスからなること
を特徴とする請求項2または3に記載の平板型固体電解
質燃料電池の集電方法。
6. The method according to claim 2, wherein the projections are made of a conductive ceramic.
【請求項7】カソードの厚みをスペーサまたはシール剤
の厚みより厚くすることを特徴とする請求項1に記載の
平板型固体電解質燃料電池の集電方法。
7. The method according to claim 1, wherein the thickness of the cathode is greater than the thickness of the spacer or the sealant.
JP8233901A 1996-09-04 1996-09-04 Current collecting method for flat type solid electrolyte fuel cell Withdrawn JPH1079258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8233901A JPH1079258A (en) 1996-09-04 1996-09-04 Current collecting method for flat type solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8233901A JPH1079258A (en) 1996-09-04 1996-09-04 Current collecting method for flat type solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH1079258A true JPH1079258A (en) 1998-03-24

Family

ID=16962364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8233901A Withdrawn JPH1079258A (en) 1996-09-04 1996-09-04 Current collecting method for flat type solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH1079258A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203283A (en) * 2004-01-16 2005-07-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
WO2006137585A2 (en) * 2005-06-24 2006-12-28 Honda Motor Co., Ltd. Fuel cell and separator
JP2007179899A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
WO2014057877A1 (en) 2012-10-12 2014-04-17 住友電気工業株式会社 Fuel battery and operation method thereof
WO2018146809A1 (en) * 2017-02-13 2018-08-16 株式会社 東芝 Electrochemical cell stack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203283A (en) * 2004-01-16 2005-07-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
WO2006137585A2 (en) * 2005-06-24 2006-12-28 Honda Motor Co., Ltd. Fuel cell and separator
WO2006137585A3 (en) * 2005-06-24 2007-05-10 Honda Motor Co Ltd Fuel cell and separator
JP2007179899A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell and fuel cell stack
WO2014057877A1 (en) 2012-10-12 2014-04-17 住友電気工業株式会社 Fuel battery and operation method thereof
US9692062B2 (en) 2012-10-12 2017-06-27 Sumitomo Electric Industries, Ltd. Fuel cell and method for operating the fuel cell
WO2018146809A1 (en) * 2017-02-13 2018-08-16 株式会社 東芝 Electrochemical cell stack

Similar Documents

Publication Publication Date Title
JP2008060072A (en) Compression assembly, solid oxide fuel cell stack, compression method of solid oxide fuel cell, and its use
JP2006120589A (en) Flat plate lamination type fuel cell
EP1618619B1 (en) Solid oxide fuel cell stack with floating cells
JP2001035514A (en) Sheet metal for current-carrying and solid electrolyte fuel cell using the same
CA2880153C (en) Fuel cell and fuel cell stack with maintained electrical connection
JP2000048831A (en) Solid electrolyte fuel cell
WO2004049483A2 (en) Solid oxide fuel cell stack
JP2017517837A (en) Electrically insulating three-layer gasket for SFOC unit
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JP4461949B2 (en) Solid oxide fuel cell
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JPH10312818A (en) Solid electrolyte type fuel cell
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH06196198A (en) Solid electrolyte type fuel cell
JPH0850911A (en) Platelike solid electrolytic fuel cell
JPH07282835A (en) Sealing material for solid electrolyte fuel cell, sealing method for solid electrolyte fuel cell using this material, and solid electrolyte fuel cell
JPH0714591A (en) Gas seal structure of solid electrolytic fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH09147884A (en) Flat solid electrolyte fuel cell
JPH0845516A (en) Plate type solid electrolyte fuel cell using mesh with different wire diameters
JP3301558B2 (en) Flat solid electrolyte fuel cell
JP3157678B2 (en) Solid oxide fuel cell
JP2000306590A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104