WO2018146809A1 - Electrochemical cell stack - Google Patents

Electrochemical cell stack Download PDF

Info

Publication number
WO2018146809A1
WO2018146809A1 PCT/JP2017/005125 JP2017005125W WO2018146809A1 WO 2018146809 A1 WO2018146809 A1 WO 2018146809A1 JP 2017005125 W JP2017005125 W JP 2017005125W WO 2018146809 A1 WO2018146809 A1 WO 2018146809A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
current collector
separator
cell stack
oxide
Prior art date
Application number
PCT/JP2017/005125
Other languages
French (fr)
Japanese (ja)
Inventor
憲和 長田
吉野 正人
啓輔 中澤
隆利 浅田
理子 犬塚
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2017/005125 priority Critical patent/WO2018146809A1/en
Priority to JP2018566731A priority patent/JPWO2018146809A1/en
Publication of WO2018146809A1 publication Critical patent/WO2018146809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Embodiments of the present invention relate to an electrochemical cell stack.
  • Solid oxide electrochemical cells are being developed as fuel cells for power generation, electrolysis cells for hydrogen production, and power storage systems that combine these. Since the solid oxide electrochemical cell uses a solid oxide as an electrolyte, the operating temperature is high (for example, 600 to 1000 ° C.), and a high reaction rate can be obtained without using an expensive noble metal catalyst. Is possible. For this reason, when this is operated as a fuel cell (solid oxide fuel cell: SOFC), high power generation efficiency is obtained, and when it is operated as an electrolysis cell (solid oxide type electrolysis cell: SOEC), it is high at a low electrolysis voltage. Hydrogen can be produced efficiently.
  • SOFC solid oxide fuel cell
  • SOEC solid oxide type electrolysis cell
  • a plurality of electrochemical cells are stacked to form an electrochemical cell stack.
  • the sealing material is pressed and sealed.
  • stress is applied from the sealing material to the electrochemical cell. Since the solid oxide electrochemical cell is generally made of a ceramic material, it may be deformed or damaged by this stress (particularly bending stress).
  • An object of the present invention is to provide an electrochemical cell stack that facilitates sealing an electrochemical cell without damaging it.
  • the electrochemical cell stack includes an electrochemical cell, first and second separators, first and second current collectors, a sealing material, and a member.
  • the electrochemical cell includes a hydrogen electrode, an electrolyte layer, and an oxygen electrode, and has first and second main surfaces.
  • the first and second separators face the first and second main surfaces, respectively.
  • the first current collector is disposed between the first main surface and the first separator, and electrically connects the electrochemical cell and the first separator.
  • the second current collector is disposed between the second main surface and the second separator, and electrically connects the electrochemical cell and the second separator.
  • the sealing material is disposed between the first main surface and the first separator, and forms a space between the electrochemical cell and the first separator.
  • the member is disposed between the second main surface and the second separator, and has a higher compressive strength than the second current collector.
  • FIG. 1 is an exploded perspective view of an electrochemical cell stack 10 according to an embodiment. It is an exploded sectional view of electrochemical cell stack 10 concerning an embodiment. It is sectional drawing of the electrochemical cell stack 10 which concerns on embodiment. It is sectional drawing of the electrochemical cell stack 10a which concerns on the modification 1. It is sectional drawing of the electrochemical cell stack 10b which concerns on the modification 2. It is sectional drawing of the electrochemical cell stack 10c which concerns on the modification 3.
  • the present invention is not limited to the following embodiment and examples.
  • the schematic diagram referred in the following description is a figure which shows the positional relationship of each structure, The ratio of the magnitude
  • FIG. 1 is an exploded perspective view illustrating a configuration of an electrochemical cell stack 10 according to the embodiment.
  • 2 and 3 are an exploded cross-sectional view and a cross-sectional view schematically showing a partial cross section of the electrochemical cell stack 10 according to the embodiment.
  • the electrochemical cell stack 10 is a flat plate type, in which an electrochemical cell 11, separators 12 and 13, an insulating layer 14, a sealing material 15, and current collectors 16 and 17 are laminated.
  • electrochemical cell 11 For ease of understanding, only one electrochemical cell 11 is shown, but it is usual to stack several to several tens of electrochemical cells 11. That is, usually, a plurality of cell units composed of the electrochemical cell 11, separators 12 and 13, insulating layer 14, sealing material 15, and current collectors 16 and 17 are stacked vertically.
  • Electrodes and end plates are added to the upper and lower ends of the electrochemical cell stack 10 (not shown). Moreover, a heater, a power supply, and a controller are added as needed.
  • the heater generates heat by current from the power source and heats the electrochemical cell 11.
  • the controller controls the heater, power supply, and the like.
  • the electrochemical cell 11 is a hydrogen support type having a planar shape, and a hydrogen electrode 112, an electrolyte layer 113, and an oxygen electrode 114 are sequentially stacked on a support substrate 111. That is, the electrochemical cell 11 includes a hydrogen electrode 112, an electrolyte layer 113, and an oxygen electrode 114, and has first and second main surfaces.
  • a reducing agent such as hydrogen
  • an oxidizing agent such as oxygen react electrochemically to generate electric energy and water vapor.
  • water vapor or the like is reduced by electrolysis at the hydrogen electrode 112 and oxygen ions are released from the oxygen electrode 114.
  • the support substrate 111 is a layer that serves as a support for the electrochemical cell 11, and maintains or improves the mechanical strength of the electrochemical cell 11.
  • the support substrate 111 is made of a porous material having an appropriate porosity for allowing gas to pass therethrough.
  • the thickness of the support substrate 111 is preferably in the range of 200 ⁇ m to 2 mm, for example. Both mechanical strength and gas permeability can be secured.
  • the hydrogen electrode 112 includes catalyst particles and oxygen ion conductive oxide particles.
  • the catalyst include metals such as nickel, silver, and platinum, and metal oxides such as nickel oxide and cobalt oxide.
  • the oxygen ion conductive oxide include ceria-based oxides such as samaria-stabilized ceria (SDC) or gadolinia-stabilized ceria (GDC), or zirconia-based oxides such as yttria-stabilized zirconia (YSZ). Can be mentioned.
  • SDC samaria-stabilized ceria
  • GDC gadolinia-stabilized ceria
  • YSZ zirconia-based oxides
  • YSZ yttria-stabilized zirconia
  • an oxide constituting the electrolyte layer 113 may be used.
  • the thickness of the hydrogen electrode 112 can be set as appropriate, for example, in the range of 50 ⁇ m to 1000 ⁇ m.
  • the electrolyte layer 113 is a solid oxide layer having electronic insulation and oxygen ion conductivity.
  • the solid oxide include stabilized zirconia, perovskite oxide, and ceria (CeO 2 ) -based electrolyte solid solution.
  • Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia.
  • the stabilizer include Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Nd 2 O 3 , CaO, and MgO.
  • the perovskite oxide include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide.
  • ceria-based electrolyte solid solution a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
  • the electrolyte layer 113 has electronic insulation and oxygen ion conductivity within a temperature range of 600 to 1000 ° C., for example. Within this temperature range, oxygen ions can pass through the electrolyte layer 113.
  • the thickness of the electrolyte layer 113 can be set as appropriate, and can be in the range of 5 ⁇ m to 500 ⁇ m, for example.
  • the oxygen electrode 114 is made of a material that can efficiently dissociate oxygen and has electron conductivity.
  • this material include lanthanum, strontium, manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide (LSMC).
  • LaSrMnCr oxide LaCoMn oxide (LCM), LaSrCu oxide (LSCu), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo oxide (LNC) LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), GdSrCo oxide (GSC), GdSrMn oxide (GSM) PrCaMn oxide (PCaM), PrSrMn oxide (PSM), PrBaCo oxide (PBC), SmSrCo oxide (SSC), NdSmCo oxide (NSC), BiSrCaCu oxide (BSCC), BaLaFeCo oxide (BLFC), BaSrFeCo An oxide (BSFC), a YSrFeCo oxide (YLFC), a YCuCoFe oxide (YCCF), or a
  • the oxygen electrode 114 is a mixture of these oxides, for example, LSM-YSZ, LSCF-SDC, LSCF-GDC, LSCF-YDC, LSCF-LDC, LSCF-CDC, LSM-ScSZ, LSM-SDC, LSM-GDC. But you can. Furthermore, for example, components such as Pt, Ru, Au, Ag, and Pd may be added to the oxygen electrode 114. The thickness of the oxygen electrode 114 can be set as appropriate, for example, in the range of 10 ⁇ m to 100 ⁇ m.
  • the separators 12 and 13 have functions of supplying a reactive gas (oxidant, reducing agent, or water vapor) to each electrode and collecting current evenly from the entire surface of the electrode.
  • the separators 12 and 13 have through holes 18 serving as an oxygen channel and a fuel channel in order to supply a reaction gas to each electrode.
  • the through hole 18 is, for example, a space that penetrates in the plate thickness direction of the separators 12 and 13 along the opposing sides.
  • the separators 12 and 13 have recesses 121 and 131 and grooves 122 and 132, respectively, and face the first and second main surfaces of the electrochemical cell 11, respectively.
  • the electrochemical cell 11 is disposed in the recesses 121 and 131.
  • a plurality of grooves 122 are arranged on the bottom surface of the recess 121 and are flow paths for supplying the reaction gas of the hydrogen electrode 112 in the X-axis direction.
  • a plurality of grooves 132 are arranged on the upper surface of the recess 131 and are flow paths for supplying the reaction gas of the oxygen electrode 114 in the Y-axis direction.
  • the reaction gas (hydrogen electrode gas) of the hydrogen electrode 112 enters the recess 121 from one of the pair of through holes 18 facing in the X-axis direction, flows in the X-axis direction along the groove 122, and reaches the hydrogen electrode 112.
  • the reaction gas that has reacted at the hydrogen electrode 112 passes through the groove 122 from the hydrogen electrode 112 and is discharged from the other through hole 18.
  • the reaction gas (oxygen electrode gas) of the oxygen electrode 114 enters the recess 131 from one of the pair of through holes 18 facing in the Y-axis direction, flows in the Y-axis direction along the groove 132, and reaches the oxygen electrode 114.
  • the reaction gas that has reacted at the oxygen electrode 114 passes through the groove 132 from the oxygen electrode 114 and is discharged from the other through-hole 18.
  • the hydrogen electrode gas and the oxygen electrode gas flow in directions orthogonal to each other (cross flow), but other configurations can also be employed.
  • the hydrogen electrode gas and the oxygen electrode gas may flow in the same direction within the surface of the electrochemical cell 11 (parallel flow: coflow) or in the reverse direction (counterflow: counterflow).
  • the separators 12 and 13 are generally formed of a plate-like conductive material in order to collect current evenly from the entire surface of the hydrogen electrode 112 and the oxygen electrode 114.
  • the electrochemical cell 11 is electrically connected to the current collectors 16 and 17 and the separators 12 and 13. Electric power is supplied to the electrochemical cell 11 from the outside through the separators 12 and 13, or electric power is supplied from the electrochemical cell 11 to the outside.
  • the separators 12 and 13 are preferably made of a material that is conductive at an operating temperature (600 to 1000 ° C.) and has a thermal expansion coefficient close to that of the electrochemical cell 11, such as steel, stainless steel, and a ferritic alloy.
  • the Ferro-based alloy is preferably a Crofer 22-based material or a ZMG-based material, and the stainless steel is preferably SUS310 or SUS430 (JIS standard).
  • the thickness of the separator 12 is preferably 0.3 to 3 mm.
  • the separators 12 and 13 and the insulating layer 14 have through holes 19 that penetrate in the stacking direction. Usually, a plurality of through holes 19 are provided around the electrochemical cell stack 10.
  • a tightening portion (for example, a bolt) is inserted into the through hole 19, and a fixing portion (for example, a nut) is fitted to the end portion and fixed.
  • the electrochemical cell 11, separators 12 and 13, insulating layer 14, sealing material 15, and current collectors 16 and 17 are laminated and fixed by these tightening portions and fixing portions.
  • the insulating layer 14 is disposed between the separators 12 and electrically insulates between them.
  • the insulating layer 14 can be made of a material that has high electrical insulation and can withstand high temperatures, such as alumina, zirconia, silica, or a material containing at least these.
  • the insulating layer 14 is desirably dense, but may be porous.
  • the shape of the insulating layer 14 is not particularly limited.
  • the sealing material 15 is disposed between the electrolyte layer 113 and the separator 13 of the electrochemical cell 11 and prevents gas leakage from between them.
  • the sealing material 15 makes one round around the side of the electrochemical cell 11 and surrounds the current collector 17. That is, the sealing material 15 forms and seals a space between the electrochemical cell 11 and the separator 13. However, the reactive gas can flow into and out of this space (oxygen electrode 114) through the groove 132 (between the upper surface of the separator 13 and the sealing material 15).
  • the sealing material 15 can be made of a material that has high electrical insulation and can withstand high temperatures, such as alumina, zirconia, silica, or a material containing at least these. This material may be the same as the insulating layer 14. In order to prevent gas leakage, it is desirable that the sealing material 15 be dense. However, the sealing material 15 may be made of a material that is porous at room temperature and becomes dense when exposed to high temperature under pressure.
  • the shape of the sealing material 15 is not particularly limited. That is, if it is annular (ring shape), it can be in various shapes such as a circle and a rectangle.
  • the current collector 16 is disposed between the electrochemical cell 11 and the separator 12 and electrically connects the hydrogen electrode 112 and the separator 12.
  • the current collector 17 (first current collector) is disposed between the electrochemical cell 11 and the separator 13 and electrically connects the oxygen electrode 114 and the separator 13.
  • the current collector 16 is divided into current collectors 161 and 162 having different compressive strengths.
  • the current collector 161 second current collector
  • the current collector 162 (a member having a higher compressive strength than the second current collector: the third current collector) has a relatively large compressive strength and is disposed on the outer periphery of the electrochemical cell 11 on the side opposite to the sealing material 15. Is done.
  • Compressive strength here is expressed by the amount of compression (deformation) for the same pressure, and is an amount corresponding to the Young's modulus.
  • the compressive strength is large, the amount of compression with respect to the same pressure is small (not easily crushed), and the Young's modulus is large. That is, unlike the breaking strength, the compressive strength generally represents resistance to pressure in the elastic deformation range.
  • the oxygen electrode 114 is not disposed on the facing surface of the current collector 162, the electrolyte layer 113 is disposed, and the sealing material 15 is disposed on the electrolyte layer 113.
  • the compressive strengths of the current collectors 161 and 162 are different in order to reduce bending stress when members such as the electrochemical cell 11 and the separators 12 and 13 are laminated and sealed.
  • a plurality of members are tightened and fixed by a tightening portion (for example, a bolt) and a fixing portion (for example, a nut).
  • the sealing material 15 is compressed to some extent to seal the space between the gas chemical cell 11 and the separator 13. For this reason, stress (bending stress) is applied from the sealing material 15 to the electrochemical cell 11, and the electrochemical cell 11 may be bent or damaged.
  • the current collector 162 Since the current collector 162 has a relatively high compressive strength, the current collector 162 is not crushed even when stress is applied from the sealing material 15, and the electrochemical cell 11 is prevented from being bent (bending stress is applied). If the current collector 162 is crushed by the stress from the sealing material 15, the electrochemical cell 11 may be bent and damaged.
  • the current collector 17 has a small compressive strength to some extent. For example, it is desirable that the current collector 17 has a compressive strength close to or equivalent to the current collector 161. If the compressive strength of the current collector 17 is too large, the distribution of stress applied to the electrochemical cell 11 from the sealing material 15 and the current collector 17 becomes non-uniform, which is not preferable. That is, the stress applied from the current collector 17 to the electrochemical cell 11 may be significantly greater than the stress applied from the sealing material 15 to the electrochemical cell 11.
  • the current collectors 16 and 17 are preferably conductive at an operating temperature (600 to 1000 ° C.).
  • the current collector 16 can be made of a material that can withstand a reducing gas, such as a metal (for example, one or more alloys selected from Ni, Au, Pt, Ag, Fe, and Cu).
  • the current collector 17 is made of a material that can withstand an oxidizing gas, for example, a metal (for example, one or more alloys selected from Ag, Au, and Pt), a conductive oxide (for example, LSM, LSC).
  • LSCF LSCF
  • LSF LSMC
  • LSMC LSMC
  • LCM LSCu
  • LS LN
  • GSC GSM
  • PCaM PSM
  • PBC PBC
  • SSC NSC
  • BSCC BLFC
  • BSFC BLFC
  • BSFC BLFC
  • YLFC YCCF
  • YBC YBC
  • the following methods (1) and (2) can be used to make the compressive strength different between the current collectors 161 and 162.
  • Different materials are used for the current collectors 161 and 162.
  • Current collector 161 Ni, Ag, Au, or Pt
  • Current collector 162 Ti, Fe, Cu, Ni, or an alloy thereof
  • the current collector 161 is Ni
  • the current collector 162 is a Ni alloy
  • the current collector 161 is porous Ni
  • the body 162 is made of a Ni alloy.
  • the current collector 162 may be made of the same material as the separator 12 as follows.
  • Current collector 161 Ni, Au, or Pt
  • Current collector 162 Steel, stainless steel, or ferritic alloy
  • current collector 161 is Ni and current collector 162 is a ferritic alloy, more preferably current collector 161 is porous Ni and current collector 162. Is referred to as “Crofer22APU”.
  • the current collector 162 does not function as a current collector. However, if the contact area of the current collector 161 is large, sufficient conductivity can be secured between the hydrogen electrode 112 and the separator 12.
  • Current collector 161 Ni, Au, Pt
  • Current collector 162 oxide (eg, gallium oxide, zirconia, ceria)
  • the current collector 161 is Ni
  • the current collector 162 is stabilized zirconia or doped ceria
  • the current collector 161 is porous Ni
  • the current collector 162 is YSZ or GDC.
  • a porous metal is used for at least one of the current collectors 161 and 162.
  • a porous metal is a metal material having a large number of pores.
  • the porous metal can be produced by (a) sintering metal powder or metal fiber, or (b) cooling in a state where gas bubbles are generated in the molten metal. Even when the metal materials themselves used for the current collectors 161 and 162 are the same, the current collector 161 can be made more porous than the current collector 162 by making the current collector 161 porous.
  • both the current collectors 161 and 162 are formed of a porous metal, and the porosity of the current collector 161 is made larger than that of the current collector 162, so that the compressive strength of the current collector 161 is higher than that of the current collector 162. Can be small.
  • the current collector 161 is porous Ni having a high porosity
  • the current collector 162 is porous Ni (or non-porous Ni) having a low porosity.
  • the current collector 16 is composed of current collectors 161 and 162 having different compressive strength, and the current collector 162 having high compressive strength is disposed on the opposite side of the sealing material 15 with the electrochemical cell 11 in between. Is done. For this reason, even if a pressure is applied to the sealing material 15, the current collector 162 is not crushed, and the current collector 162 is crushed, so that non-uniformity of stress applied to the electrochemical cell 11 is alleviated. That is, the bending stress to the electrochemical cell 11 at the time of gas sealing is reduced.
  • FIG. 4 is a cross-sectional view schematically showing a partial cross section of the electrochemical cell stack 10a according to the first modification.
  • the current collector 162 is made of the same material as that of the separator 12 and is integrated.
  • FIG. 5 is a cross-sectional view schematically showing a partial cross section of the electrochemical cell stack 10b according to the second modification.
  • the electrochemical cell stack 10b is a flat plate type, in which an electrochemical cell 11a, separators 12 and 13, an insulating layer 14, a sealing material 15, and current collectors 16 and 17 are laminated.
  • the electrochemical cell 11 a is an oxygen support type having a planar shape, and an oxygen electrode 114, an electrolyte layer 113, and a hydrogen electrode 112 are sequentially stacked on a support substrate 111. That is, in the electrochemical cell stack 10b, the hydrogen electrode 112 and the oxygen electrode 114 are interchanged as compared with the electrochemical cell stack 10.
  • the current collector 17 is disposed between the electrochemical cell 11 and the separator 12 and electrically connects the hydrogen electrode 112 and the separator 12.
  • the current collector 16 is disposed between the electrochemical cell 11 and the separator 13 and electrically connects the oxygen electrode 114 and the separator 13.
  • the current collector 16 includes current collectors 161 and 162 having different compressive strengths.
  • the current collector 161 has a relatively small compressive strength and is disposed at the center of the electrochemical cell 11.
  • the current collector 162 has a relatively large compressive strength and is disposed on the outer periphery of the electrochemical cell 11.
  • the hydrogen electrode 112 is not disposed on the facing surface of the current collector 162, the electrolyte layer 113 is disposed, and the sealing material 15 is disposed on the electrolyte layer 113.
  • the current collector 162 Since the current collector 162 has a relatively high compressive strength, the current collector 162 is not crushed even when stress is applied from the sealing material 15, and the electrochemical cell 11 is prevented from being bent (bending stress is applied).
  • the current collector 17 has a small compressive strength to some extent. For example, it is desirable that the current collector 17 has a compressive strength close to or equivalent to the current collector 161.
  • the current collector 17 can be made of a material that can withstand a reducing gas, such as a metal (for example, one or more alloys selected from Ni, Au, Pt, Ag, Fe, and Cu).
  • the current collector 16 is made of a material that can withstand an oxidizing gas, such as a metal (for example, one or more alloys selected from Ag, Au, and Pt), and a conductive oxide (for example, LSM, LSC). , LSCF, LSF, LSMC, LSMC, LCM, LSCu, LS, LN, GSC, GSM, PCaM, PSM, PBC, SSC, NSC, BSCC, BLFC, BSFC, YLFC, YCCF, YBC).
  • a reducing gas such as a metal (for example, one or more alloys selected from Ni, Au, Pt, Ag, Fe, and Cu).
  • the current collector 16 is made of a material that can withstand an oxidizing gas, such as a
  • the following methods (1) and (2) can be used to make the compressive strength different between the current collectors 161 and 162.
  • Different materials are used for the current collectors 161 and 162.
  • Current collector 161 Ag, Au, or Pt
  • Current collector 162 Alloy containing Ag, Au, or Pt
  • the current collector 161 is Ag and the current collector 162 is an Ag alloy, and more preferably, the current collector 161 is porous Ag and the current collector 162 is A (non-porous) Ag alloy is used.
  • the current collector 162 may be made of the same material as the separator 12 as follows.
  • Current collector 161 Ag, Au, or Pt
  • Current collector 162 Steel, stainless steel, or ferrite alloy
  • the current collector 161 is Ag and the current collector 162 is a ferrite alloy, and more preferably, the current collector 161 is porous Ag and the current collector 162. Is referred to as “Crofer22APU”.
  • the current collector 162 does not function as a current collector. However, if the contact area of the current collector 161 is large, sufficient conductivity can be secured between the oxygen electrode 114 and the separator 12.
  • Current collector 161 Ag, Au, Pt
  • Current collector 162 General ceramic, oxide (preferably gallium oxide, zirconia, ceria)
  • the current collector 161 is Ag
  • the current collector 162 is stabilized zirconia or doped ceria
  • the current collector 161 is YSZ or GDC.
  • the current collector 161 can be made porous so that the compressive strength of the current collector 171 can be made smaller than that of the current collector 162.
  • both the current collectors 161 and 162 are formed of a porous metal, and the porosity of the current collector 161 is made larger than that of the current collector 162, so that the compressive strength of the current collector 161 is higher than that of the current collector 162.
  • the current collector 161 is a porous Ag having a high porosity
  • the current collector 161 is a porous Ag (or non-porous Ag) having a low porosity.
  • FIG. 6 is a cross-sectional view schematically showing a partial cross section of an electrochemical cell stack 10c according to Modification 3.
  • the electrochemical cell stack 10c includes the electrochemical cell 11a, similar to the electrochemical cell stack 10b, but the current collector 162 is made of the same material as the separator 12 and is integrated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An electrochemical cell stack according to an embodiment of the present invention comprises an electrochemical cell, first and second separators, first and second collectors, a sealing material, and a member. The electrochemical cell comprises a hydrogen electrode, an electrolyte layer, and an oxygen electrode, and includes first and second main surfaces. The first and second separators face the first and second main surfaces, respectively. The first collector is disposed between the first main surface and the first separator, and electrically connects the electrochemical cell and the first separator. The second collector is disposed between the second main surface and the second separator, and electrically connects the electrochemical cell and the second separator. The sealing material is disposed between the first main surface and the first separator and forms a space between the electrochemical cell and the first separator. The member is disposed between the second main surface and the second separator and has a greater compressive strength than the second collector.

Description

電気化学セルスタックElectrochemical cell stack
 本発明の実施形態は、電気化学セルスタックに関する。 Embodiments of the present invention relate to an electrochemical cell stack.
 固体酸化物形電気化学セルは、発電用の燃料電池、水素製造用の電解セル、これらを組み合わせた電力貯蔵システムとして開発が進められている。固体酸化物形電気化学セルは、電解質として固体酸化物を用いていることから、作動温度が高く(例えば、600~1000℃)、高価な貴金属触媒を用いなくても、大きな反応速度を得ることが可能となる。このため、これを燃料電池(固体酸化物形燃料電池:SOFC)として動作させると高い発電効率が得られ、電解セル(固体酸化物形電解セル:SOEC)として動作させると、低い電解電圧で高効率に水素を製造できる。 Solid oxide electrochemical cells are being developed as fuel cells for power generation, electrolysis cells for hydrogen production, and power storage systems that combine these. Since the solid oxide electrochemical cell uses a solid oxide as an electrolyte, the operating temperature is high (for example, 600 to 1000 ° C.), and a high reaction rate can be obtained without using an expensive noble metal catalyst. Is possible. For this reason, when this is operated as a fuel cell (solid oxide fuel cell: SOFC), high power generation efficiency is obtained, and when it is operated as an electrolysis cell (solid oxide type electrolysis cell: SOEC), it is high at a low electrolysis voltage. Hydrogen can be produced efficiently.
 多くの電力や水素を発生するために、複数の電気化学セルを積層して、電気化学セルスタックとする。このとき、電気化学セルでのガスリークを防ぐため、シール材を押圧して封止する。この結果、シール材から電気化学セルに応力が加わる。固体酸化物形電気化学セルは一般的にセラミックス系材料から構成されるため、この応力(特に曲げ応力)によって、変形、破損するおそれがある。 In order to generate a lot of power and hydrogen, a plurality of electrochemical cells are stacked to form an electrochemical cell stack. At this time, in order to prevent gas leakage in the electrochemical cell, the sealing material is pressed and sealed. As a result, stress is applied from the sealing material to the electrochemical cell. Since the solid oxide electrochemical cell is generally made of a ceramic material, it may be deformed or damaged by this stress (particularly bending stress).
特開2014-041704号公報JP 2014-041704 A 特開2016-126893号公報JP 2016-126893 A
 本発明は、電気化学セルを破損せずにシールすることを容易とする電気化学セルスタックを提供することを目的とする。 An object of the present invention is to provide an electrochemical cell stack that facilitates sealing an electrochemical cell without damaging it.
 実施形態に係る電気化学セルスタックは、電気化学セル、第1、第2のセパレータ、第1、第2の集電体、シール材、部材を備える。電気化学セルは、水素極、電解質層、および酸素極を備え、第1、第2の主面を有する。第1、第2のセパレータは、前記第1、第2の主面とそれぞれ対向する。第1の集電体は、前記第1の主面と前記第1のセパレータの間に配置され、前記電気化学セルと前記第1のセパレータを電気的に接続する。第2の集電体は、前記第2の主面と前記第2のセパレータの間に配置され、前記電気化学セルと前記第2のセパレータを電気的に接続する。シール材は、前記第1の主面と前記第1のセパレータの間に配置され、前記電気化学セルと前記第1のセパレータの間に空間を形成する。前記部材は、前記第2の主面と前記第2のセパレータの間に配置され、前記第2の集電体より圧縮強度が大きい。 The electrochemical cell stack according to the embodiment includes an electrochemical cell, first and second separators, first and second current collectors, a sealing material, and a member. The electrochemical cell includes a hydrogen electrode, an electrolyte layer, and an oxygen electrode, and has first and second main surfaces. The first and second separators face the first and second main surfaces, respectively. The first current collector is disposed between the first main surface and the first separator, and electrically connects the electrochemical cell and the first separator. The second current collector is disposed between the second main surface and the second separator, and electrically connects the electrochemical cell and the second separator. The sealing material is disposed between the first main surface and the first separator, and forms a space between the electrochemical cell and the first separator. The member is disposed between the second main surface and the second separator, and has a higher compressive strength than the second current collector.
実施形態に係る電気化学セルスタック10の分解斜視図である。1 is an exploded perspective view of an electrochemical cell stack 10 according to an embodiment. 実施形態に係る電気化学セルスタック10の分解断面図である。It is an exploded sectional view of electrochemical cell stack 10 concerning an embodiment. 実施形態に係る電気化学セルスタック10の断面図である。It is sectional drawing of the electrochemical cell stack 10 which concerns on embodiment. 変形例1に係る電気化学セルスタック10aの断面図である。It is sectional drawing of the electrochemical cell stack 10a which concerns on the modification 1. 変形例2に係る電気化学セルスタック10bの断面図である。It is sectional drawing of the electrochemical cell stack 10b which concerns on the modification 2. 変形例3に係る電気化学セルスタック10cの断面図である。It is sectional drawing of the electrochemical cell stack 10c which concerns on the modification 3.
 以下、実施形態に係る固体酸化物電気化学セルスタックについて説明するが、本発明は以下の実施の形態や実施例に限定されるものではない。また、以下の説明で参照する模式図は、各構成の位置関係を示す図であり、粒子の大きさや各層の厚さの比等は実際のものと必ずしも一致するものではない。 Hereinafter, although the solid oxide electrochemical cell stack according to the embodiment will be described, the present invention is not limited to the following embodiment and examples. Moreover, the schematic diagram referred in the following description is a figure which shows the positional relationship of each structure, The ratio of the magnitude | size of a particle | grain, the thickness of each layer, etc. do not necessarily correspond with an actual thing.
 図1は、実施形態に係る電気化学セルスタック10の構成を表す分解斜視図である。図2、図3は、実施形態に係る電気化学セルスタック10の一部の断面を模式的に表す分解断面図および断面図である。
 電気化学セルスタック10は、平板型であり、電気化学セル11,セパレータ12、13,絶縁層14、シール材15,集電体16,17が積層されている。
FIG. 1 is an exploded perspective view illustrating a configuration of an electrochemical cell stack 10 according to the embodiment. 2 and 3 are an exploded cross-sectional view and a cross-sectional view schematically showing a partial cross section of the electrochemical cell stack 10 according to the embodiment.
The electrochemical cell stack 10 is a flat plate type, in which an electrochemical cell 11, separators 12 and 13, an insulating layer 14, a sealing material 15, and current collectors 16 and 17 are laminated.
 ここでは、判り易さのために、1つの電気化学セル11のみを示しているが、数個から数十個の電気化学セル11を積層するのが通例である。すなわち、通例、電気化学セル11,セパレータ12、13,絶縁層14、シール材15,集電体16,17から構成されるセルユニットが上下に複数積層される。 Here, for ease of understanding, only one electrochemical cell 11 is shown, but it is usual to stack several to several tens of electrochemical cells 11. That is, usually, a plurality of cell units composed of the electrochemical cell 11, separators 12 and 13, insulating layer 14, sealing material 15, and current collectors 16 and 17 are stacked vertically.
 電気化学セルスタック10の上下端には、電極、エンドプレートが付加される(図示せず)。また、必要に応じて、ヒーター、電源、制御器が付加される。ヒーターは、電源からの電流で発熱し、電気化学セル11を加熱する。制御器は、ヒーター、電源などを制御する。 Electrodes and end plates are added to the upper and lower ends of the electrochemical cell stack 10 (not shown). Moreover, a heater, a power supply, and a controller are added as needed. The heater generates heat by current from the power source and heats the electrochemical cell 11. The controller controls the heater, power supply, and the like.
 電気化学セル11は、平面形状を有する水素支持型であり、支持基板111上に、水素極112,電解質層113,酸素極114が順に積層されている。すなわち、電気化学セル11は、水素極112、電解質層113、および酸素極114を備え、第1、第2の主面を有する。
 発電時には、例えば、水素等の還元剤と酸素等の酸化剤とが電気化学的に反応して電気エネルギーと水蒸気が生成される。電解時には、水素極112で水蒸気等を電気分解により還元し、酸素極114から酸素イオンを放出する。
The electrochemical cell 11 is a hydrogen support type having a planar shape, and a hydrogen electrode 112, an electrolyte layer 113, and an oxygen electrode 114 are sequentially stacked on a support substrate 111. That is, the electrochemical cell 11 includes a hydrogen electrode 112, an electrolyte layer 113, and an oxygen electrode 114, and has first and second main surfaces.
At the time of power generation, for example, a reducing agent such as hydrogen and an oxidizing agent such as oxygen react electrochemically to generate electric energy and water vapor. During electrolysis, water vapor or the like is reduced by electrolysis at the hydrogen electrode 112 and oxygen ions are released from the oxygen electrode 114.
 支持基板111は、電気化学セル11の支持体となる層であり、電気化学セル11の機械的強度の維持または向上が図られる。 The support substrate 111 is a layer that serves as a support for the electrochemical cell 11, and maintains or improves the mechanical strength of the electrochemical cell 11.
 支持基板111は、ガスを透過するために適度な気孔率を有する多孔質材料から構成される。支持基板111の厚さは、例えば200μm~2mmの範囲が好ましい。機械的強度とガス透過性の双方を確保できる。 The support substrate 111 is made of a porous material having an appropriate porosity for allowing gas to pass therethrough. The thickness of the support substrate 111 is preferably in the range of 200 μm to 2 mm, for example. Both mechanical strength and gas permeability can be secured.
 水素極112は、触媒の粒子および酸素イオン伝導性の酸化物の粒子を含む。触媒には、例えば、ニッケル、銀、または白金などの金属や、酸化ニッケル、または酸化コバルトなどの金属酸化物が挙げられる。酸素イオン伝導性の酸化物には、例えば、サマリア安定化セリア(SDC)、またはガドリニア安定化セリア(GDC)などのセリア系酸化物、またはイットリア安定化ジルコニア(YSZ)などのジルコニア系酸化物が挙げられる。酸素イオン伝導性の酸化物として、電解質層113を構成する酸化物を使用してもよい。 The hydrogen electrode 112 includes catalyst particles and oxygen ion conductive oxide particles. Examples of the catalyst include metals such as nickel, silver, and platinum, and metal oxides such as nickel oxide and cobalt oxide. Examples of the oxygen ion conductive oxide include ceria-based oxides such as samaria-stabilized ceria (SDC) or gadolinia-stabilized ceria (GDC), or zirconia-based oxides such as yttria-stabilized zirconia (YSZ). Can be mentioned. As the oxygen ion conductive oxide, an oxide constituting the electrolyte layer 113 may be used.
 水素極112の厚さは、適宜に設定でき、例えば、50μm~1000μmの範囲内とできる。 The thickness of the hydrogen electrode 112 can be set as appropriate, for example, in the range of 50 μm to 1000 μm.
 電解質層113は、電子絶縁性と酸素イオン伝導性を有する固体酸化物の層である。固体酸化物には、例えば、安定化ジルコニア、ペロブスカイト型酸化物、またはセリア(CeO)系電解質固溶体が挙げられる。
 安定化ジルコニアとは、安定化剤をジルコニア中に固溶させたジルコニアである。安定化剤としては、例えば、Y、Sc、Yb、Gd、Nd、CaO、MgOが挙げられる。また、ペロブスカイト型酸化物としては、例えば、LaSrGaMg酸化物、LaSrGaMgCo酸化物、およびLaSrGaMgCoFe酸化物が挙げられる。また、セリア系電解質固溶体としては、CeOを含む材料に、Sm、Gd、Y、またはLaなどを固溶させた固溶体が挙げられる。
The electrolyte layer 113 is a solid oxide layer having electronic insulation and oxygen ion conductivity. Examples of the solid oxide include stabilized zirconia, perovskite oxide, and ceria (CeO 2 ) -based electrolyte solid solution.
Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia. Examples of the stabilizer include Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Nd 2 O 3 , CaO, and MgO. Examples of the perovskite oxide include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide. As the ceria-based electrolyte solid solution, a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
 電解質層113は、例えば、600~1000℃の温度範囲内で電子絶縁性と酸素イオン伝導性を有する。この温度範囲内で、酸素イオンが電解質層113を通過できる。
 また、電解質層113の厚さは、適宜に設定でき、例えば、5μm~500μmの範囲とできる。
The electrolyte layer 113 has electronic insulation and oxygen ion conductivity within a temperature range of 600 to 1000 ° C., for example. Within this temperature range, oxygen ions can pass through the electrolyte layer 113.
In addition, the thickness of the electrolyte layer 113 can be set as appropriate, and can be in the range of 5 μm to 500 μm, for example.
 酸素極114は、酸素を効率よく解離でき、かつ電子伝導性を有する材料で構成される。この材料には、例えば、ランタン・ストロンチウム・マンガン(LaSrMn)系ペロブスカイト型酸化物(LSM)、LaSrCo酸化物(LSC)、LaSrCoFe酸化物(LSCF)、LaSrFe酸化物(LSF)、LaSrMnCo酸化物(LSMC)、LaSrMnCr酸化物(LSMC)、LaCoMn酸化物(LCM)、LaSrCu酸化物(LSCu)、LaSrFeNi酸化物(LSFN)、LaNiFe酸化物(LNF)、LaBaCo酸化物(LBC)、LaNiCo酸化物(LNC)、LaSrAlFe酸化物(LSAF)、LaSrCoNiCu酸化物(LSCNC)、LaSrFeNiCu酸化物(LSFNC)、LaNi酸化物(LN)、GdSrCo酸化物(GSC)、GdSrMn酸化物(GSM)、PrCaMn酸化物(PCaM)、PrSrMn酸化物(PSM)、PrBaCo酸化物(PBC)、SmSrCo酸化物(SSC)、NdSmCo酸化物(NSC)、BiSrCaCu酸化物(BSCC)、BaLaFeCo酸化物(BLFC)、BaSrFeCo酸化物(BSFC)、YSrFeCo酸化物(YLFC)、YCuCoFe酸化物(YCCF)、またはYBaCu酸化物(YBC)が挙げられる。 The oxygen electrode 114 is made of a material that can efficiently dissociate oxygen and has electron conductivity. Examples of this material include lanthanum, strontium, manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide (LSMC). ), LaSrMnCr oxide (LSMC), LaCoMn oxide (LCM), LaSrCu oxide (LSCu), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo oxide (LNC) LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), GdSrCo oxide (GSC), GdSrMn oxide (GSM) PrCaMn oxide (PCaM), PrSrMn oxide (PSM), PrBaCo oxide (PBC), SmSrCo oxide (SSC), NdSmCo oxide (NSC), BiSrCaCu oxide (BSCC), BaLaFeCo oxide (BLFC), BaSrFeCo An oxide (BSFC), a YSrFeCo oxide (YLFC), a YCuCoFe oxide (YCCF), or a YBaCu oxide (YBC) can be used.
 酸素極114は、これらの酸化物の混合体、例えば、LSM-YSZ、LSCF-SDC、LSCF-GDC、LSCF-YDC、LSCF-LDC、LSCF-CDC、LSM-ScSZ、LSM-SDC、LSM-GDCでもよい。
 さらに、酸素極114に、例えばPt、Ru、Au、Ag、Pdなどの成分を添加してもよい。
 酸素極114の厚さは、適宜に設定でき、例えば、10μm~100μmの範囲とできる。
The oxygen electrode 114 is a mixture of these oxides, for example, LSM-YSZ, LSCF-SDC, LSCF-GDC, LSCF-YDC, LSCF-LDC, LSCF-CDC, LSM-ScSZ, LSM-SDC, LSM-GDC. But you can.
Furthermore, for example, components such as Pt, Ru, Au, Ag, and Pd may be added to the oxygen electrode 114.
The thickness of the oxygen electrode 114 can be set as appropriate, for example, in the range of 10 μm to 100 μm.
 セパレータ12、13は、それぞれの電極への反応ガス(酸化剤、還元剤、または水蒸気)の供給と、電極全面からの均等な集電の機能を有する。セパレータ12、13は、それぞれの電極に反応ガスを供給するため、酸素流路および燃料流路となる貫通孔18を有する。貫通孔18は、例えば、それぞれ対向する辺に沿い、セパレータ12、13の板厚方向に貫通した空間である。 The separators 12 and 13 have functions of supplying a reactive gas (oxidant, reducing agent, or water vapor) to each electrode and collecting current evenly from the entire surface of the electrode. The separators 12 and 13 have through holes 18 serving as an oxygen channel and a fuel channel in order to supply a reaction gas to each electrode. The through hole 18 is, for example, a space that penetrates in the plate thickness direction of the separators 12 and 13 along the opposing sides.
 セパレータ12、13はそれぞれ、凹部121,131,溝122,132を有し、電気化学セル11の第1、第2の主面とそれぞれ対向する。
 凹部121,131内に電気化学セル11が配置される。
 溝122は、凹部121の底面に複数配置され、X軸方向に水素極112の反応ガスを供給するための流路である。
 溝132は、凹部131の上面に複数配置され、Y軸方向に酸素極114の反応ガスを供給するための流路である。
The separators 12 and 13 have recesses 121 and 131 and grooves 122 and 132, respectively, and face the first and second main surfaces of the electrochemical cell 11, respectively.
The electrochemical cell 11 is disposed in the recesses 121 and 131.
A plurality of grooves 122 are arranged on the bottom surface of the recess 121 and are flow paths for supplying the reaction gas of the hydrogen electrode 112 in the X-axis direction.
A plurality of grooves 132 are arranged on the upper surface of the recess 131 and are flow paths for supplying the reaction gas of the oxygen electrode 114 in the Y-axis direction.
 水素極112の反応ガス(水素極ガス)は、X軸方向に対向する一対の貫通孔18の一方から凹部121に入り、溝122に沿ってX軸方向に流れ、水素極112に到達する。水素極112で反応済みの反応ガスは、水素極112から溝122を通って、他方の貫通孔18から排出される。
 酸素極114の反応ガス(酸素極ガス)は、Y軸方向に対向する一対の貫通孔18の一方から凹部131に入り、溝132に沿ってY軸方向に流れ、酸素極114に到達する。酸素極114で反応済みの反応ガスは、酸素極114から溝132を通って、他方の貫通孔18から排出される。
The reaction gas (hydrogen electrode gas) of the hydrogen electrode 112 enters the recess 121 from one of the pair of through holes 18 facing in the X-axis direction, flows in the X-axis direction along the groove 122, and reaches the hydrogen electrode 112. The reaction gas that has reacted at the hydrogen electrode 112 passes through the groove 122 from the hydrogen electrode 112 and is discharged from the other through hole 18.
The reaction gas (oxygen electrode gas) of the oxygen electrode 114 enters the recess 131 from one of the pair of through holes 18 facing in the Y-axis direction, flows in the Y-axis direction along the groove 132, and reaches the oxygen electrode 114. The reaction gas that has reacted at the oxygen electrode 114 passes through the groove 132 from the oxygen electrode 114 and is discharged from the other through-hole 18.
 図1では、水素極ガス、酸素極ガスは互いに直交する方向に流れているが(クロスフロー)、これ以外の構成も採用できる。例えば、水素極ガス、酸素極ガスが、電気化学セル11の面内で同じ方向に流れたり(並行流:コフロー)、逆方向に流れたり(対向流:カウンターフロー)してもよい。 In FIG. 1, the hydrogen electrode gas and the oxygen electrode gas flow in directions orthogonal to each other (cross flow), but other configurations can also be employed. For example, the hydrogen electrode gas and the oxygen electrode gas may flow in the same direction within the surface of the electrochemical cell 11 (parallel flow: coflow) or in the reverse direction (counterflow: counterflow).
 セパレータ12、13は、水素極112、酸素極114の全面から均等に集電するため、一般に板状の導電性材料から形成される。電気化学セル11は、集電体16、17およびセパレータ12、13と電気的に接続される。このセパレータ12、13を介して、電気化学セル11に外部から電力が供給され、または電気化学セル11から外部に電力が供給される。 The separators 12 and 13 are generally formed of a plate-like conductive material in order to collect current evenly from the entire surface of the hydrogen electrode 112 and the oxygen electrode 114. The electrochemical cell 11 is electrically connected to the current collectors 16 and 17 and the separators 12 and 13. Electric power is supplied to the electrochemical cell 11 from the outside through the separators 12 and 13, or electric power is supplied from the electrochemical cell 11 to the outside.
 セパレータ12、13は、動作温度(600~1000℃)で導電性があり、かつ電気化学セル11と熱膨張係数が近い材料、例えば、鉄鋼、ステンレス鋼、フェライト系合金から構成することが好ましい。フェライト系合金としては、Crofer22系材料やZMG系材料が、ステンレス鋼としては、SUS310やSUS430(JIS規格)などが好ましい。
 セパレータ12の厚さは、0.3~3mmが好ましい。
The separators 12 and 13 are preferably made of a material that is conductive at an operating temperature (600 to 1000 ° C.) and has a thermal expansion coefficient close to that of the electrochemical cell 11, such as steel, stainless steel, and a ferritic alloy. The Ferro-based alloy is preferably a Crofer 22-based material or a ZMG-based material, and the stainless steel is preferably SUS310 or SUS430 (JIS standard).
The thickness of the separator 12 is preferably 0.3 to 3 mm.
 セパレータ12、13、絶縁層14は、積層方向に貫通する貫通孔19を有する。通常、貫通孔19は、電気化学セルスタック10の周囲に複数設けられる。 The separators 12 and 13 and the insulating layer 14 have through holes 19 that penetrate in the stacking direction. Usually, a plurality of through holes 19 are provided around the electrochemical cell stack 10.
 貫通孔19に、締付部(例えば、ボルト)が挿入され、その端部に固定部(例えば、ナット)が嵌め合わされて固定される。これら締付部および固定部により、電気化学セル11,セパレータ12、13,絶縁層14、シール材15,集電体16,17が積層して固定される。 A tightening portion (for example, a bolt) is inserted into the through hole 19, and a fixing portion (for example, a nut) is fitted to the end portion and fixed. The electrochemical cell 11, separators 12 and 13, insulating layer 14, sealing material 15, and current collectors 16 and 17 are laminated and fixed by these tightening portions and fixing portions.
 絶縁層14は、セパレータ12間に配置され、これらの間を電気的に絶縁する。
 絶縁層14は、電気的な絶縁性が高く、かつ高温に耐える材料、例えば、アルミナ、ジルコニア、シリカ、少なくともこれらが含まれる材料から構成できる。絶縁層14は、緻密であるのが望ましいが、多孔質でもよい。なお、絶縁層14の形状は特に問わない。
The insulating layer 14 is disposed between the separators 12 and electrically insulates between them.
The insulating layer 14 can be made of a material that has high electrical insulation and can withstand high temperatures, such as alumina, zirconia, silica, or a material containing at least these. The insulating layer 14 is desirably dense, but may be porous. The shape of the insulating layer 14 is not particularly limited.
 シール材15は、電気化学セル11の電解質層113とセパレータ13の間に配置され、これらの間からのガスリークを防止する。シール材15は、電気化学セル11の辺に沿って、環状に1周し、集電体17を囲む。すなわち、シール材15は、電気化学セル11とセパレータ13の間に空間を形成、密封する。但し、反応ガスは溝132(セパレータ13の上面とシール材15間)を通って、この空間内(酸素極114)に流入、流出できる。 The sealing material 15 is disposed between the electrolyte layer 113 and the separator 13 of the electrochemical cell 11 and prevents gas leakage from between them. The sealing material 15 makes one round around the side of the electrochemical cell 11 and surrounds the current collector 17. That is, the sealing material 15 forms and seals a space between the electrochemical cell 11 and the separator 13. However, the reactive gas can flow into and out of this space (oxygen electrode 114) through the groove 132 (between the upper surface of the separator 13 and the sealing material 15).
 シール材15は、電気的な絶縁性が高く、かつ高温に耐える材料、例えば、アルミナ、ジルコニア、シリカ、少なくともこれらが含まれる材料から構成できる。この材料は、絶縁層14と同じとしてもよい。
 ガスリークを防ぐため、シール材15は緻密なものが望ましい。但し、シール材15は室温では多孔質で、圧力をかけて高温に暴露することにより、緻密になる材料で構成してもよい。
 なお、シール材15の形状は特に問わない。すなわち、環状(リング状)であれば、円形、四角形など種々の形状とすることができる。
The sealing material 15 can be made of a material that has high electrical insulation and can withstand high temperatures, such as alumina, zirconia, silica, or a material containing at least these. This material may be the same as the insulating layer 14.
In order to prevent gas leakage, it is desirable that the sealing material 15 be dense. However, the sealing material 15 may be made of a material that is porous at room temperature and becomes dense when exposed to high temperature under pressure.
The shape of the sealing material 15 is not particularly limited. That is, if it is annular (ring shape), it can be in various shapes such as a circle and a rectangle.
 集電体16は、電気化学セル11とセパレータ12の間に配置され、水素極112とセパレータ12を電気的に接続する。
 集電体17(第1の集電体)は、電気化学セル11とセパレータ13の間に配置され、酸素極114とセパレータ13を電気的に接続する。
The current collector 16 is disposed between the electrochemical cell 11 and the separator 12 and electrically connects the hydrogen electrode 112 and the separator 12.
The current collector 17 (first current collector) is disposed between the electrochemical cell 11 and the separator 13 and electrically connects the oxygen electrode 114 and the separator 13.
 集電体16は、圧縮強度の異なる集電体161、162に区分される。集電体161(第2の集電体)は、圧縮強度が相対的に小さく、電気化学セル11の中央部に配置される。集電体162(第2の集電体より圧縮強度の大きい部材:第3の集電体)は、圧縮強度が相対的に大きく、シール材15と反対側の電気化学セル11の外周に配置される。 The current collector 16 is divided into current collectors 161 and 162 having different compressive strengths. The current collector 161 (second current collector) has a relatively small compressive strength and is disposed in the center of the electrochemical cell 11. The current collector 162 (a member having a higher compressive strength than the second current collector: the third current collector) has a relatively large compressive strength and is disposed on the outer periphery of the electrochemical cell 11 on the side opposite to the sealing material 15. Is done.
 ここで言う圧縮強度は、同じ圧力に対する圧縮量(変形量)の大小で表され、ヤング率と対応する量である。圧縮強度が大きいと、同じ圧力に対する圧縮量は小さく(潰れ難く)、ヤング率は大きい。すなわち、圧縮強度は、破断強度と異なり、概ね弾性変形範囲での圧力に対する耐性を表す。 Compressive strength here is expressed by the amount of compression (deformation) for the same pressure, and is an amount corresponding to the Young's modulus. When the compressive strength is large, the amount of compression with respect to the same pressure is small (not easily crushed), and the Young's modulus is large. That is, unlike the breaking strength, the compressive strength generally represents resistance to pressure in the elastic deformation range.
 集電体162の対面には、酸素極114は配置されておらず、電解質層113が配置されており、電解質層113上にシール材15が配置されている。 The oxygen electrode 114 is not disposed on the facing surface of the current collector 162, the electrolyte layer 113 is disposed, and the sealing material 15 is disposed on the electrolyte layer 113.
 このように、集電体161、162の圧縮強度が異なるのは、電気化学セル11、セパレータ12,13などの部材を積層、シールしたときの曲げ応力を低減するためである。既述のように、複数の部材が締付部(例えば、ボルト)、固定部(例えば、ナット)によって締め付け、固定される。このとき、シール材15は、ある程度圧縮されることで、気化学セル11とセパレータ13の間の空間を密封する。このため、シール材15から電気化学セル11に応力(曲げ応力)が印加され、電気化学セル11が曲がったり、破損したりする畏れがある。 Thus, the compressive strengths of the current collectors 161 and 162 are different in order to reduce bending stress when members such as the electrochemical cell 11 and the separators 12 and 13 are laminated and sealed. As described above, a plurality of members are tightened and fixed by a tightening portion (for example, a bolt) and a fixing portion (for example, a nut). At this time, the sealing material 15 is compressed to some extent to seal the space between the gas chemical cell 11 and the separator 13. For this reason, stress (bending stress) is applied from the sealing material 15 to the electrochemical cell 11, and the electrochemical cell 11 may be bent or damaged.
 集電体162は、圧縮強度が比較的大きいため、シール材15から応力が加わっても潰れず、電気化学セル11が曲げられること(曲げ応力が加わること)が防止される。仮に、シール材15からの応力で集電体162が潰れると、電気化学セル11が曲げられて、破損する畏れがある。 Since the current collector 162 has a relatively high compressive strength, the current collector 162 is not crushed even when stress is applied from the sealing material 15, and the electrochemical cell 11 is prevented from being bent (bending stress is applied). If the current collector 162 is crushed by the stress from the sealing material 15, the electrochemical cell 11 may be bent and damaged.
 集電体17は、ある程度圧縮強度が小さく、例えば、集電体161に近いか、同等の圧縮強度を有することが望ましい。集電体17の圧縮強度が大きすぎると、シール材15および集電体17から電気化学セル11に印加される応力の分布が不均一になるので好ましくない。すなわち、集電体17から電気化学セル11に印加される応力が、シール材15から電気化学セル11に印加される応力よりも、著しく大きくなる可能性がある。 The current collector 17 has a small compressive strength to some extent. For example, it is desirable that the current collector 17 has a compressive strength close to or equivalent to the current collector 161. If the compressive strength of the current collector 17 is too large, the distribution of stress applied to the electrochemical cell 11 from the sealing material 15 and the current collector 17 becomes non-uniform, which is not preferable. That is, the stress applied from the current collector 17 to the electrochemical cell 11 may be significantly greater than the stress applied from the sealing material 15 to the electrochemical cell 11.
 集電体16、17は、動作温度(600~1000℃)で導電性を有することが好ましい。
 集電体16は、還元性のガスに耐える材料、例えば、金属(一例として、Ni、Au、Pt、Ag、Fe、Cuより選ばれる一種もしくはそれら二種以上からなる合金)から構成できる。
 集電体17は、酸化性のガスに耐える材料、例えば、金属(一例として、Ag、Au、Ptより選ばれる一種もしくはそれら二種以上からなる合金)、導電性酸化物(例えば、LSM、LSC、LSCF、LSF、LSMC、LSMC、LCM、LSCu、LS、LN、GSC、GSM、PCaM、PSM、PBC、SSC、NSC、BSCC、BLFC、BSFC、YLFC、YCCF、YBC)から構成できる。
The current collectors 16 and 17 are preferably conductive at an operating temperature (600 to 1000 ° C.).
The current collector 16 can be made of a material that can withstand a reducing gas, such as a metal (for example, one or more alloys selected from Ni, Au, Pt, Ag, Fe, and Cu).
The current collector 17 is made of a material that can withstand an oxidizing gas, for example, a metal (for example, one or more alloys selected from Ag, Au, and Pt), a conductive oxide (for example, LSM, LSC). , LSCF, LSF, LSMC, LSMC, LCM, LSCu, LS, LN, GSC, GSM, PCaM, PSM, PBC, SSC, NSC, BSCC, BLFC, BSFC, YLFC, YCCF, YBC).
 集電体161,162間で圧縮強度を異ならせるには次の手法(1)、(2)を用いることができる。
 (1)集電体161,162で異なる材料を用いる。
 例えば、次のような組み合わせとする。
 集電体161:Ni、Ag、Au、またはPt
 集電体162:Ti、Fe、Cu、Ni、またはこれらの合金
 好ましくは、集電体161をNi、集電体162をNi合金とし、より好ましくは集電体161を多孔質Ni、集電体162をNi合金とする。
The following methods (1) and (2) can be used to make the compressive strength different between the current collectors 161 and 162.
(1) Different materials are used for the current collectors 161 and 162.
For example, the following combinations are used.
Current collector 161: Ni, Ag, Au, or Pt
Current collector 162: Ti, Fe, Cu, Ni, or an alloy thereof Preferably, the current collector 161 is Ni, the current collector 162 is a Ni alloy, and more preferably, the current collector 161 is porous Ni. The body 162 is made of a Ni alloy.
 次のように、集電体162をセパレータ12と同一の材料としてもよい。
 集電体161:Ni、Au、またはPt
 集電体162:鉄鋼、ステンレス鋼、またはフェライト系合金
 好ましくは、集電体161をNi、集電体162をフェライト系合金とし、より好ましくは集電体161を多孔質Ni、集電体162をCrofer22APUとする。
The current collector 162 may be made of the same material as the separator 12 as follows.
Current collector 161: Ni, Au, or Pt
Current collector 162: Steel, stainless steel, or ferritic alloy Preferably, current collector 161 is Ni and current collector 162 is a ferritic alloy, more preferably current collector 161 is porous Ni and current collector 162. Is referred to as “Crofer22APU”.
 さらに、集電体162に導電性が小さい、あるいは事実上ない材料を用いることも可能である。この場合、集電体162は、集電体として機能しないが、集電体161の接触面積が大きければ、水素極112とセパレータ12間に十分な導電性を確保できる。
 集電体161:Ni、Au、Pt
 集電体162:酸化物(例えば、酸化ガリウム、ジルコニア、セリア)
 好ましくは、集電体161をNi、集電体162を安定化ジルコニアもしくはドープセリアとし、より好ましくは集電体161を多孔質Ni、集電体162をYSZもしくはGDCとする。
Furthermore, it is possible to use a material with low conductivity or virtually no conductivity for the current collector 162. In this case, the current collector 162 does not function as a current collector. However, if the contact area of the current collector 161 is large, sufficient conductivity can be secured between the hydrogen electrode 112 and the separator 12.
Current collector 161: Ni, Au, Pt
Current collector 162: oxide (eg, gallium oxide, zirconia, ceria)
Preferably, the current collector 161 is Ni, the current collector 162 is stabilized zirconia or doped ceria, more preferably the current collector 161 is porous Ni, and the current collector 162 is YSZ or GDC.
 (2)集電体161,162の空孔率を異ならせる。
 集電体161、162の少なくとも一方に多孔質金属を用いる。
 多孔質金属は多数の空孔を有する金属材料である。多孔質金属は、(a)金属粉末や金属繊維を焼結することで、または(b)溶融金属中にガスの気泡を発生させた状態で冷却することで、作成できる。
 集電体161,162に用いられる金属材料自体は同一の場合でも、集電体161を多孔質とすることで、集電体161の圧縮強度を集電体162より小さくできる。
 また、集電体161,162の双方を多孔質金属で形成し、集電体161の空孔率を集電体162より大きくすることで、集電体161の圧縮強度を集電体162より小さくできる。
 好ましくは集電体161を空孔率の大きい多孔質Ni、集電体162を空孔率の小さい多孔質Ni(または非多孔質Ni)とする。
(2) Varying the porosity of the current collectors 161 and 162.
A porous metal is used for at least one of the current collectors 161 and 162.
A porous metal is a metal material having a large number of pores. The porous metal can be produced by (a) sintering metal powder or metal fiber, or (b) cooling in a state where gas bubbles are generated in the molten metal.
Even when the metal materials themselves used for the current collectors 161 and 162 are the same, the current collector 161 can be made more porous than the current collector 162 by making the current collector 161 porous.
In addition, both the current collectors 161 and 162 are formed of a porous metal, and the porosity of the current collector 161 is made larger than that of the current collector 162, so that the compressive strength of the current collector 161 is higher than that of the current collector 162. Can be small.
Preferably, the current collector 161 is porous Ni having a high porosity, and the current collector 162 is porous Ni (or non-porous Ni) having a low porosity.
 本実施形態では、集電体16は、圧縮強度の異なる集電体161,162から構成され、圧縮強度の大きい集電体162は電気化学セル11を挟んで、シール材15の反対側に配置される。このため、シール材15に圧力が印加されていても、集電体162は潰れず、集電体162が潰れることで、電気化学セル11に印加される応力の不均一性が緩和される。すなわち、ガスシール時の電気化学セル11への曲げ応力が低減される。 In the present embodiment, the current collector 16 is composed of current collectors 161 and 162 having different compressive strength, and the current collector 162 having high compressive strength is disposed on the opposite side of the sealing material 15 with the electrochemical cell 11 in between. Is done. For this reason, even if a pressure is applied to the sealing material 15, the current collector 162 is not crushed, and the current collector 162 is crushed, so that non-uniformity of stress applied to the electrochemical cell 11 is alleviated. That is, the bending stress to the electrochemical cell 11 at the time of gas sealing is reduced.
(変形例1)
 図4は、変形例1に係る電気化学セルスタック10aの一部の断面を模式的に表す断面図である。
 ここでは、集電体162をセパレータ12と同一の材料とし、かつ一体化している。
(Modification 1)
FIG. 4 is a cross-sectional view schematically showing a partial cross section of the electrochemical cell stack 10a according to the first modification.
Here, the current collector 162 is made of the same material as that of the separator 12 and is integrated.
(変形例2)
 図5は、変形例2に係る電気化学セルスタック10bの一部の断面を模式的に表す断面図である。
 電気化学セルスタック10bは、平板型であり、電気化学セル11a,セパレータ12、13,絶縁層14、シール材15,集電体16,17が積層されている。
(Modification 2)
FIG. 5 is a cross-sectional view schematically showing a partial cross section of the electrochemical cell stack 10b according to the second modification.
The electrochemical cell stack 10b is a flat plate type, in which an electrochemical cell 11a, separators 12 and 13, an insulating layer 14, a sealing material 15, and current collectors 16 and 17 are laminated.
 電気化学セル11aは、平面形状を有する酸素支持型であり、支持基板111上に、酸素極114,電解質層113,水素極112が順に積層されている。すなわち、電気化学セルスタック10bは、電気化学セルスタック10と比較すると、水素極112と酸素極114が入れ替わっている。 The electrochemical cell 11 a is an oxygen support type having a planar shape, and an oxygen electrode 114, an electrolyte layer 113, and a hydrogen electrode 112 are sequentially stacked on a support substrate 111. That is, in the electrochemical cell stack 10b, the hydrogen electrode 112 and the oxygen electrode 114 are interchanged as compared with the electrochemical cell stack 10.
 集電体17は、電気化学セル11とセパレータ12の間に配置され、水素極112とセパレータ12を電気的に接続する。
 集電体16は、電気化学セル11とセパレータ13の間に配置され、酸素極114とセパレータ13を電気的に接続する。
The current collector 17 is disposed between the electrochemical cell 11 and the separator 12 and electrically connects the hydrogen electrode 112 and the separator 12.
The current collector 16 is disposed between the electrochemical cell 11 and the separator 13 and electrically connects the oxygen electrode 114 and the separator 13.
 集電体16は、圧縮強度の異なる集電体161、162を有する。集電体161は、圧縮強度が相対的に小さく、電気化学セル11の中央部に配置される。集電体162は、圧縮強度が相対的に大きく、電気化学セル11の外周に配置される。
 集電体162の対面には、水素極112は配置されておらず、電解質層113が配置されており、電解質層113上にシール材15が配置されている。
The current collector 16 includes current collectors 161 and 162 having different compressive strengths. The current collector 161 has a relatively small compressive strength and is disposed at the center of the electrochemical cell 11. The current collector 162 has a relatively large compressive strength and is disposed on the outer periphery of the electrochemical cell 11.
The hydrogen electrode 112 is not disposed on the facing surface of the current collector 162, the electrolyte layer 113 is disposed, and the sealing material 15 is disposed on the electrolyte layer 113.
 集電体162は、圧縮強度が比較的大きいため、シール材15から応力が加わっても潰れず、電気化学セル11が曲げられること(曲げ応力が加わること)が防止される。 Since the current collector 162 has a relatively high compressive strength, the current collector 162 is not crushed even when stress is applied from the sealing material 15, and the electrochemical cell 11 is prevented from being bent (bending stress is applied).
 既述のように、集電体17は、ある程度圧縮強度が小さく、例えば、集電体161に近いか、同等の圧縮強度を有することが望ましい。 As described above, the current collector 17 has a small compressive strength to some extent. For example, it is desirable that the current collector 17 has a compressive strength close to or equivalent to the current collector 161.
 集電体17は、還元性のガスに耐える材料、例えば、金属(一例として、Ni、Au、Pt、Ag、Fe、Cuより選ばれる一種もしくはそれら二種以上からなる合金)から構成できる。
 集電体16は、酸化性のガスに耐える材料、例えば、金属(一例として、Ag、Au、Ptより選ばれる一種もしくはそれら二種以上からなる合金)、導電性酸化物(例えば、LSM、LSC、LSCF、LSF、LSMC、LSMC、LCM、LSCu、LS、LN、GSC、GSM、PCaM、PSM、PBC、SSC、NSC、BSCC、BLFC、BSFC、YLFC、YCCF、YBC)から構成できる。
 電気化学セルスタック10bは、電気化学セルスタック10と、集電体16、17が曝される雰囲気が逆なので、その構成材料が入れ替わっている。
The current collector 17 can be made of a material that can withstand a reducing gas, such as a metal (for example, one or more alloys selected from Ni, Au, Pt, Ag, Fe, and Cu).
The current collector 16 is made of a material that can withstand an oxidizing gas, such as a metal (for example, one or more alloys selected from Ag, Au, and Pt), and a conductive oxide (for example, LSM, LSC). , LSCF, LSF, LSMC, LSMC, LCM, LSCu, LS, LN, GSC, GSM, PCaM, PSM, PBC, SSC, NSC, BSCC, BLFC, BSFC, YLFC, YCCF, YBC).
In the electrochemical cell stack 10b, since the atmosphere to which the current collectors 16 and 17 are exposed is opposite to that of the electrochemical cell stack 10, the constituent materials thereof are switched.
 集電体161,162間で圧縮強度を異ならせるには次の手法(1)、(2)を用いることができる。
 (1)集電体161,162で異なる材料を用いる。
 例えば、次のような組み合わせとする。
 集電体161:Ag、Au、またはPt
 集電体162:Ag、Au、またはPtを含む合金
 好ましくは、集電体161をAg、集電体162をAg合金とし、より好ましくは集電体161を多孔質Ag、集電体162を(非多孔質の)Ag合金とする。
The following methods (1) and (2) can be used to make the compressive strength different between the current collectors 161 and 162.
(1) Different materials are used for the current collectors 161 and 162.
For example, the following combinations are used.
Current collector 161: Ag, Au, or Pt
Current collector 162: Alloy containing Ag, Au, or Pt Preferably, the current collector 161 is Ag and the current collector 162 is an Ag alloy, and more preferably, the current collector 161 is porous Ag and the current collector 162 is A (non-porous) Ag alloy is used.
 次のように、集電体162をセパレータ12と同一の材料としてもよい。
 集電体161:Ag、Au、またはPt
 集電体162:鉄鋼、ステンレス鋼、またはフェライト系合金
 好ましくは、集電体161をAg、集電体162をフェライト系合金とし、より好ましくは集電体161を多孔質Ag、集電体162をCrofer22APUとする。
The current collector 162 may be made of the same material as the separator 12 as follows.
Current collector 161: Ag, Au, or Pt
Current collector 162: Steel, stainless steel, or ferrite alloy Preferably, the current collector 161 is Ag and the current collector 162 is a ferrite alloy, and more preferably, the current collector 161 is porous Ag and the current collector 162. Is referred to as “Crofer22APU”.
 さらに、集電体162に導電性が小さい、あるいは事実上ない材料を用いることも可能である。この場合、集電体162は、集電体として機能しないが、集電体161の接触面積が大きければ、酸素極114とセパレータ12間に十分な導電性を確保できる。
 集電体161:Ag、Au、Pt
 集電体162:セラミック一般、酸化物(好ましくは、酸化ガリウム、ジルコニア、セリア)
 好ましくは、集電体161をAg、集電体162を安定化ジルコニアもしくはドープセリアとし、より好ましくは集電体161を多孔質Ag、集電体161をYSZもしくはGDCとする。
Furthermore, it is possible to use a material with low conductivity or virtually no conductivity for the current collector 162. In this case, the current collector 162 does not function as a current collector. However, if the contact area of the current collector 161 is large, sufficient conductivity can be secured between the oxygen electrode 114 and the separator 12.
Current collector 161: Ag, Au, Pt
Current collector 162: General ceramic, oxide (preferably gallium oxide, zirconia, ceria)
Preferably, the current collector 161 is Ag, the current collector 162 is stabilized zirconia or doped ceria, more preferably the current collector 161 is porous Ag, and the current collector 161 is YSZ or GDC.
(2)集電体161,162の空孔率を異ならせる。
 集電体161,162の少なくとも一方に多孔質金属を用いる。
 集電体161,162に用いられる金属材料自体は同一の場合でも、集電体161を多孔質とすることで、集電体171の圧縮強度を集電体162より小さくできる。
 また、集電体161,162の双方を多孔質金属で形成し、集電体161の空孔率を集電体162より大きくすることで、集電体161の圧縮強度を集電体162より小さくできる。
 好ましくは集電体161を空孔率の大きい多孔質Ag、集電体161を空孔率の小さい多孔質Ag(または非多孔質Ag)とする。
(2) Varying the porosity of the current collectors 161 and 162.
A porous metal is used for at least one of the current collectors 161 and 162.
Even if the metal materials themselves used for the current collectors 161 and 162 are the same, the current collector 161 can be made porous so that the compressive strength of the current collector 171 can be made smaller than that of the current collector 162.
In addition, both the current collectors 161 and 162 are formed of a porous metal, and the porosity of the current collector 161 is made larger than that of the current collector 162, so that the compressive strength of the current collector 161 is higher than that of the current collector 162. Can be small.
Preferably, the current collector 161 is a porous Ag having a high porosity, and the current collector 161 is a porous Ag (or non-porous Ag) having a low porosity.
(変形例3)
 図6は、変形例3に係る電気化学セルスタック10cの一部の断面を模式的に表す断面図である。
 電気化学セルスタック10cは、電気化学セルスタック10bと同様、電気化学セル11aを有するが、集電体162をセパレータ12と同一の材料とし、かつ一体化している。
(Modification 3)
FIG. 6 is a cross-sectional view schematically showing a partial cross section of an electrochemical cell stack 10c according to Modification 3.
The electrochemical cell stack 10c includes the electrochemical cell 11a, similar to the electrochemical cell stack 10b, but the current collector 162 is made of the same material as the separator 12 and is integrated.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (7)

  1.  水素極、電解質層、および酸素極を備え、第1、第2の主面を有する電気化学セルと、
     前記第1、第2の主面とそれぞれ対向する第1、第2のセパレータと、
     前記第1の主面と前記第1のセパレータの間に配置され、前記電気化学セルと前記第1のセパレータを電気的に接続する第1の集電体と、
     前記第1の主面と前記第1のセパレータの間に配置され、前記電気化学セルと前記第1のセパレータの間に空間を形成するシール材と、
     前記第2の主面と前記第2のセパレータの間に配置され、前記電気化学セルと前記第2のセパレータを電気的に接続する第2の集電体と、
     前記第2の主面と前記第2のセパレータの間に配置される、前記第2の集電体より圧縮強度の大きい部材と、
    を具備する電気化学セルスタック。
    An electrochemical cell comprising a hydrogen electrode, an electrolyte layer, and an oxygen electrode and having first and second main surfaces;
    First and second separators respectively facing the first and second main surfaces;
    A first current collector disposed between the first main surface and the first separator and electrically connecting the electrochemical cell and the first separator;
    A sealing material disposed between the first main surface and the first separator, and forming a space between the electrochemical cell and the first separator;
    A second current collector disposed between the second main surface and the second separator and electrically connecting the electrochemical cell and the second separator;
    A member having a compressive strength greater than that of the second current collector, disposed between the second main surface and the second separator;
    An electrochemical cell stack comprising:
  2.  前記部材は、導電性を有し、前記電気化学セルと前記第2のセパレータを電気的に接続する第3の集電体として機能する
     請求項1記載の電気化学セルスタック。
    The electrochemical cell stack according to claim 1, wherein the member has conductivity and functions as a third current collector that electrically connects the electrochemical cell and the second separator.
  3.  前記シール材は、前記第1の集電体を囲み、
     前記部材は、前記第2の集電体を囲む
     請求項1記載の電気化学セルスタック。
    The sealing material surrounds the first current collector;
    The electrochemical cell stack according to claim 1, wherein the member surrounds the second current collector.
  4.  前記部材は、前記電気化学セルに対して前記シール材の反対側に配置される
     請求項1記載の電気化学セルスタック。
    The electrochemical cell stack according to claim 1, wherein the member is disposed on the opposite side of the sealing material with respect to the electrochemical cell.
  5.  前記第1の集電体の圧縮強度は、前記部材の圧縮強度よりも小さい、
     請求項1記載の電気化学セルスタック。
    The compressive strength of the first current collector is smaller than the compressive strength of the member.
    The electrochemical cell stack according to claim 1.
  6.  前記部材は、前記第2のセパレータと同一の材料から構成される
     請求項1記載の電気化学セルスタック。
    The electrochemical cell stack according to claim 1, wherein the member is made of the same material as the second separator.
  7.  前記部材は、前記第2のセパレータと一体化している
     請求項6記載の電気化学セルスタック。
    The electrochemical cell stack according to claim 6, wherein the member is integrated with the second separator.
PCT/JP2017/005125 2017-02-13 2017-02-13 Electrochemical cell stack WO2018146809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/005125 WO2018146809A1 (en) 2017-02-13 2017-02-13 Electrochemical cell stack
JP2018566731A JPWO2018146809A1 (en) 2017-02-13 2017-02-13 Electrochemical cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005125 WO2018146809A1 (en) 2017-02-13 2017-02-13 Electrochemical cell stack

Publications (1)

Publication Number Publication Date
WO2018146809A1 true WO2018146809A1 (en) 2018-08-16

Family

ID=63108081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005125 WO2018146809A1 (en) 2017-02-13 2017-02-13 Electrochemical cell stack

Country Status (2)

Country Link
JP (1) JPWO2018146809A1 (en)
WO (1) WO2018146809A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079258A (en) * 1996-09-04 1998-03-24 Tokyo Gas Co Ltd Current collecting method for flat type solid electrolyte fuel cell
JP2006049073A (en) * 2004-08-04 2006-02-16 Mitsubishi Materials Corp Solid oxide fuel cell
JP2017022093A (en) * 2015-07-13 2017-01-26 日本碍子株式会社 Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079258A (en) * 1996-09-04 1998-03-24 Tokyo Gas Co Ltd Current collecting method for flat type solid electrolyte fuel cell
JP2006049073A (en) * 2004-08-04 2006-02-16 Mitsubishi Materials Corp Solid oxide fuel cell
JP2017022093A (en) * 2015-07-13 2017-01-26 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JPWO2018146809A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
TWI761479B (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and manufacturing method for electrochemical element
JP6578970B2 (en) Solid oxide fuel cell
JP6279519B2 (en) Fuel cell stack and single fuel cell
US20140017597A1 (en) Fuel cell
JP2015183252A (en) Cell stack and electrolytic module, and electrolytic apparatus
JP6573720B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
KR20120033661A (en) Metal-supported solid oxide fuel cell and manufacturing method
WO2018146809A1 (en) Electrochemical cell stack
JP2018014309A (en) Method for manufacturing electrochemical reaction cell stack, and electrochemical reaction cell stack
KR102564764B1 (en) Electrochemical devices, energy systems, and solid oxide fuel cells
JP6808396B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7245210B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7465849B2 (en) Electrochemical reaction single cells and electrochemical reaction cell stacks
KR102254281B1 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and manufacturing method of electrochemical reaction unit
JP2018206693A (en) Conductive member, electrochemical reaction unit and electrochemical reaction cell stack
JP2018113127A (en) Method for manufacturing electrochemical reaction cell stack
JP2018088332A (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6393714B2 (en) Electrochemical reaction cell and electrochemical reaction cell stack
JP2007329018A (en) Insulation part for solid oxide fuel cell and solid oxide fuel cell
JPWO2016204017A1 (en) Fuel cell stack and fuel cell stack manufacturing method
JP2022028167A (en) Electrochemical reaction single cell
JP2024058262A (en) Electrochemical reaction unit cell
JP2024063296A (en) Electrochemical reaction unit cell
JP2021163682A (en) Electrochemical reaction cell stack
JP2021163681A (en) Electrochemical reaction cell stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895774

Country of ref document: EP

Kind code of ref document: A1