JPH09139223A - Lamination compressing device for flat solid electrolytic fuel cell - Google Patents

Lamination compressing device for flat solid electrolytic fuel cell

Info

Publication number
JPH09139223A
JPH09139223A JP7295553A JP29555395A JPH09139223A JP H09139223 A JPH09139223 A JP H09139223A JP 7295553 A JP7295553 A JP 7295553A JP 29555395 A JP29555395 A JP 29555395A JP H09139223 A JPH09139223 A JP H09139223A
Authority
JP
Japan
Prior art keywords
fuel cell
flat plate
solid electrolyte
plate type
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7295553A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Isamu Yasuda
勇 安田
Yoshio Matsuzaki
良雄 松崎
Takashi Ogiwara
崇 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7295553A priority Critical patent/JPH09139223A/en
Publication of JPH09139223A publication Critical patent/JPH09139223A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve fuel utilizing efficiency without leaking fuel and oxidizing agent gas by placing an upper frame on the upper surface of a flat solid electrolytic fuel cell on a lower frame through a spherical body, and adding a laminating directional compression load. SOLUTION: A flat cell 1 having an air electrode and a fuel electrode arranged on both surfaces of a solid electrolytic layer is formed. A separator 2 for electrically connecting such a flat cell 1 and distributing fuel and oxidizing agent gas and a spacer 3 interposed between them are mutually laminated to form a flat solid electrolytic fuel cell, which is then placed on a lower frame 5. A temperature resisting spherical body 10 is placed on the central upper surface dent of the top separator 2, and an upper frame 6 having a dent on the lower surface is further placed thereon to hold the mutual positional relation. A compression load is added to the fuel cell between both the frames 5, 6 by a pressing device 8, whereby a well-balanced load acts on the contact surfaces of all the constituting members to enhance the sealing effect of the spacers, and the fuel utilizing rate is improved without leaking the fuel and oxidizing agent gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は平板型固体電解質燃
料電池の積層圧縮装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated compression device for a flat plate solid oxide fuel cell.

【0002】[0002]

【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が本来持っている
化学エネルギーを直接電気エネルギーに変換する燃料電
池が、省資源、環境保護の観点から注目されており、特
に固体電解質燃料電池は発電効率が高く、廃熱を有効に
利用できるなど多くの利点を有するため研究、開発が進
んでいる。
2. Description of the Related Art Recently, fuel cells which directly convert chemical energy inherent in fuel into electric energy by using, for example, air and hydrogen as oxidizing gas and fuel gas, respectively, have attracted attention from the viewpoint of resource saving and environmental protection. Research and development are progressing because solid electrolyte fuel cells have many advantages such as high power generation efficiency and effective use of waste heat.

【0003】図3は従来の内部マニホールド方式の平板
型固体電解質燃料電池の概略構成を示す図である。
FIG. 3 is a view showing a schematic structure of a conventional internal manifold type flat plate type solid electrolyte fuel cell.

【0004】固体電解質燃料電池に燃料ガスと酸化剤ガ
スとを供給するため、固体電解質燃料電池の矩形状セパ
レータ2および単電池1の矩形状固体電解質層の対角線
方向の隅部にそれぞれのガスの給排気孔を設け、これら
の孔から各単電池1の各電極面に各ガスを給排気するよ
うにしたものを内部マニホールド形式と称している。
In order to supply the fuel gas and the oxidant gas to the solid electrolyte fuel cell, the rectangular separator 2 of the solid electrolyte fuel cell and the rectangular solid electrolyte layer of the unit cell 1 are provided with the respective gas at the diagonal corners. A supply / exhaust hole is provided so that each gas is supplied / exhausted to / from each electrode surface of each unit cell 1 from these holes is called an internal manifold type.

【0005】内部マニホールド方式の平板型固体電解質
燃料電池は、イットリアなどをドープしたジルコニア焼
結体(YSZ)からなる平板型固体電解質層の両面に、
それぞれ(La、Sr)MnO3 の空気極と、Ni/Y
SZサーメットの燃料極とを配置してなる平板状単電池
1と、隣接する単電池同士を電気的に直列に接続し、か
つ各単電池に燃料ガスと酸化剤ガスとを分配するセパレ
ータ2とを交互に積層し、燃料極とセパレータの燃料ガ
ス流通路側との間に金属メッシュ(図示せず)を介在
し、単電池1の固体電解質層とセパレータ2の間にそれ
ぞれスペーサ3を介在してスタックに積層したものであ
り、各単電池の各電極面にそれぞれ燃料ガスと酸化剤ガ
スとを接触させることにより起電力を発生する。
The flat plate type solid electrolyte fuel cell of the internal manifold type has a flat plate type solid electrolyte layer made of zirconia sintered body (YSZ) doped with yttria or the like, on both sides.
Air electrode of (La, Sr) MnO 3 and Ni / Y
A flat plate-shaped unit cell 1 in which a fuel electrode of an SZ cermet is arranged, and a separator 2 for electrically connecting adjacent unit cells to each other in series and distributing a fuel gas and an oxidant gas to each unit cell. Are alternately laminated, a metal mesh (not shown) is interposed between the fuel electrode and the fuel gas flow passage side of the separator, and a spacer 3 is interposed between the solid electrolyte layer of the unit cell 1 and the separator 2. They are stacked in a stack, and an electromotive force is generated by bringing a fuel gas and an oxidant gas into contact with each electrode surface of each unit cell.

【0006】セパレータ2は燃料極と空気極とにそれぞ
れ供給される燃料ガスと酸化剤ガスとを分離してそれら
のクロスリークを防止する作用と、単電池同士を電気的
に直列に接続する作用とを有するものである。スタック
の内部で燃料ガスと酸化剤ガスがリークして混合する
と、燃料利用率が低下して燃料電池の効率が低下するの
は勿論、両ガスの混合により燃焼して局部的な温度上昇
を生じ、熱応力分布が不均一となり、クラックや歪みを
生じ、スタックの寿命を短縮させる。セパレータ2は燃
料電池の運転温度である約1000℃という高温におい
て、化学的に安定で、緻密でガスを透過せず、電気抵抗
が少なく、電子伝導性が高く、イオン伝導性が無視でき
るほど小さく、他の電池材料と化学的に反応しにくく、
膨張率が他の電池材料、特に固体電解質層として用いら
れるYSZと同一で、機械的強度が大きいなどの特性を
具備しなければならない。特に、(1)、酸化性雰囲気
でも還元性雰囲気でも安定であって、(2)、導電性が
よいこと、換言すれば電気抵抗が小さいことの2条件を
満足することが必要である。
The separator 2 functions to separate the fuel gas and the oxidant gas supplied to the fuel electrode and the air electrode, respectively, to prevent cross leak between them, and to electrically connect the unit cells to each other in series. And have. When the fuel gas and the oxidant gas leak and mix inside the stack, the fuel utilization rate decreases and the efficiency of the fuel cell decreases, as well as the combustion of both gases causes a local temperature rise. , The thermal stress distribution becomes non-uniform, cracks and strains occur, and the stack life is shortened. The separator 2 is chemically stable at a high temperature of about 1000 ° C., which is the operating temperature of the fuel cell, is dense, does not permeate gas, has low electric resistance, high electronic conductivity, and has negligible ionic conductivity. , Difficult to chemically react with other battery materials,
It should have the same expansion coefficient as other battery materials, especially YSZ used as a solid electrolyte layer, and high mechanical strength. In particular, it is necessary to satisfy the two conditions of (1) being stable in an oxidizing atmosphere and a reducing atmosphere, and (2) having good conductivity, in other words, having low electric resistance.

【0007】セパレータ2の材料としてストロンチウム
をドープしたランタンクロマイト酸化物(La、Sr)
CrO3 が広く使用されているが、これは上記2条件を
最も満足する材料であるためである。また、現在使用さ
れている代表的なセパレータ2は前述の(La、Sr)
CrO3 のような導電性酸化物板を単独に使用したもの
か、または、この導電性酸化物板と、NiやNi基合金
等で造った耐熱性金属板とを重ね合わせた複合セパレー
タである。複合セパレータの場合、その耐熱性金属板を
還元雰囲気下の燃料極側に使用し、導電性酸化物板を酸
化雰囲気下の空気極側に使用している。
Lanthanum chromite oxide (La, Sr) doped with strontium as a material for the separator 2
CrO 3 is widely used because it is the material that most satisfies the above two conditions. Moreover, the typical separator 2 currently used is the above-mentioned (La, Sr).
It is a single separator made of a conductive oxide plate such as CrO 3 , or a composite separator in which this conductive oxide plate and a heat resistant metal plate made of Ni, Ni-based alloy or the like are superposed. . In the case of the composite separator, the heat-resistant metal plate is used on the fuel electrode side under the reducing atmosphere, and the conductive oxide plate is used on the air electrode side under the oxidizing atmosphere.

【0008】スペーサ3はジルコニアで造られ、厚みが
数百ミクロンの矩形板である。中央部にほぼ四角形の孔
が開けられ、対角線上の四隅にガスの給排気孔が、単電
池1の固体電解質層およびセパレータ2の給排気孔の大
きさおよび配置と同一に開けられている。スペーサ3の
表面と裏面の周縁部はセパレータ2または単電池1の固
体電解質層と面接触して両ガスのシール作用をする。
The spacer 3 is a rectangular plate made of zirconia and having a thickness of several hundreds of microns. A substantially square hole is formed in the central portion, and gas supply / exhaust holes are formed at the four corners on the diagonal line in the same size and arrangement as the solid electrolyte layer of the unit cell 1 and the supply / exhaust holes of the separator 2. The peripheral portions of the front surface and the back surface of the spacer 3 are in surface contact with the separator 2 or the solid electrolyte layer of the unit cell 1 to seal both gases.

【0009】内部マニホールド方式の平板型固体電解質
燃料電池の作動時において、(1)電極とセパレータの
間の接触抵抗を低減するため、(2)上述したように燃
料ガスおよび酸化剤ガスの漏洩防止のために、スタック
に垂直方向すなわちスタック積層方向に荷重をかけ、燃
料電池の各構成部材間を密着させるようにしている。こ
のため、図3に示すように、スタックを下部架台5に載
せ、スタックの最上面に上部架台6を載せ、下部架台5
と上部架台6とにより構成した挟圧装置8(例えば、重
錘式、ねじ式、水圧式、油圧式、てこ式などの装置)に
より、両架台5、6間のスタックに垂直方向の圧縮荷重
を加えている。図3では挟圧装置8としてねじ式装置が
使用されている。
During operation of the flat plate type solid oxide fuel cell of the internal manifold type, (1) in order to reduce the contact resistance between the electrode and the separator, (2) as described above, the leakage of the fuel gas and the oxidant gas is prevented. Therefore, a load is applied to the stack in the vertical direction, that is, the stack stacking direction, so that the constituent members of the fuel cell are brought into close contact with each other. Therefore, as shown in FIG. 3, the stack is placed on the lower pedestal 5, and the upper pedestal 6 is placed on the uppermost surface of the stack.
A compressive load in a vertical direction on the stack between the pedestals 5 and 6 by a pinching device 8 (for example, a weight type, a screw type, a hydraulic type, a hydraulic type, a lever type device, etc.) configured by the upper and the pedestals 6. Is added. In FIG. 3, a screw type device is used as the pinching device 8.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図3の
ねじ式装置による場合、ねじ締めのバランスをすべての
箇所でとることは難しく、その結果スタックに平均的な
接触圧力が加わらず、部分的に荷重の集中する部分A
と、全く荷重が加わらない部分Bと、これらの中間部分
ができる。
However, in the case of the screw type device of FIG. 3, it is difficult to balance the screw tightening at all points, and as a result, the average contact pressure is not applied to the stack, and the stack is partially broken. Part A where the load is concentrated
Then, a part B to which no load is applied and an intermediate part between them are formed.

【0011】荷重が加わらない部分Bにおいては、スペ
ーサのシール効果がなく燃料ガスや酸化剤ガスがリーク
し、燃料利用率が低下して燃料電池の効率が低下するの
は勿論、両ガスの混合により燃焼を起こし局部的な温度
上昇を生じ、熱応力分布が不均一となり、クラックや歪
みを生じ、スタックの寿命を短縮させる。また、スタッ
ク中に荷重が加わる所と、加わらない所が生じることに
より、セパレータや単電池の機械的割れの原因となり、
発電特性を著しく低下させる。さらに電池の電極におい
て均一で十分な荷重が加わらないと、セパレータとの接
触抵抗が大きくなってしまう。このような欠点はねじ式
装置に限定されるものでなく、その他のすべての挟圧装
置8を使用する場合にも発生するものである。
In the portion B where no load is applied, the spacer does not have a sealing effect, and the fuel gas and the oxidant gas leak, the fuel utilization rate decreases, and the efficiency of the fuel cell decreases, as a matter of course. As a result, combustion is caused and a local temperature rise occurs, the thermal stress distribution becomes non-uniform, cracks and strains occur, and the life of the stack is shortened. In addition, a place where a load is applied and a place where a load is not applied occur in the stack, which causes mechanical cracking of the separator and the unit cell.
Remarkably deteriorates power generation characteristics. Furthermore, unless a uniform and sufficient load is applied to the electrodes of the battery, the contact resistance with the separator will increase. Such a defect is not limited to the screw type device, and also occurs when using all the other clamping devices 8.

【0012】本発明は上述の点にかんがみてなされたも
ので、常にスタックに積層方向に平行な圧縮荷重が掛か
り、その結果スタックの全構成部材の接触面に均一でバ
ランスのとれた積層方向の圧縮荷重を作用させることが
できる平板型固体電解質燃料電池の積層圧縮装置を提供
することを目的とする。
The present invention has been made in view of the above points, and a compressive load parallel to the stacking direction is always applied to the stack, and as a result, the contact surfaces of all the constituent members of the stack have a uniform and balanced stacking direction. An object of the present invention is to provide a laminated compression device for a flat plate type solid electrolyte fuel cell capable of exerting a compressive load.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明の平板型固体電解質燃料電池の積層圧縮装置
は平板型固体電解質層の両面にそれぞれ空気極と燃料極
とを配置してなる平板状単電池と、隣接する単電池同士
を電気的に直列に接続しかつ各単電池に燃料と酸化剤ガ
スとを分配するセパレータと、前記単電池と前記セパレ
ータとの間に介在されるスペーサとを交互に積層してな
る平板型固体電解質燃料電池にその積層方向に圧縮荷重
を加える装置において、該燃料電池を載置する下部架台
と、該下部架台上の燃料電池の最上面のほぼ中央部に載
せた球体と、該球体の上に載置した上部架台と、前記下
部架台と前記上部架台を接近させることにより前記両架
台間に挟持された燃料電池に積層方向の圧縮荷重を加え
る挟圧装置と、を包含することを特徴とする。
In order to achieve the above object, the laminated compression apparatus for a flat plate type solid electrolyte fuel cell of the present invention has an air electrode and a fuel electrode arranged on both sides of a flat plate type solid electrolyte layer. A flat cell, a separator electrically connecting adjacent cells to each other in series and distributing a fuel and an oxidant gas to each cell, and a spacer interposed between the cell and the separator. In a device for applying a compressive load in a stacking direction to a flat plate type solid electrolyte fuel cell formed by alternately stacking and, a lower pedestal on which the fuel cell is placed, and a substantially center of the uppermost surface of the fuel cell on the lower pedestal. A sphere placed on the sphere, an upper pedestal placed on the sphere, and a clamp for applying a compressive load in the stacking direction to the fuel cell sandwiched between the pedestals by bringing the lower cradle and the upper cradle close to each other. With a pressure device Characterized in that it.

【0014】また、本発明は挟圧装置がねじとばねによ
る荷重を利用したねじ式挟圧装置であることを特徴とす
る。ねじ式挟圧装置はコストが低廉な特徴がある。
Further, the present invention is characterized in that the pinching device is a screw type pinching device utilizing a load by a screw and a spring. The screw type pinching device is characterized by low cost.

【0015】また、本発明は球体がセラミックス、アル
ミナ、ジルコニア、マグネシアの中の一つまたは複数の
組合せの材料、Al−Mgスピネルを主成分とするセラ
ミックス、耐熱性金属、Ni−Cr合金、Fe−Cr合
金で作られることを特徴とする。また、耐熱性金属の表
面がアルミニウム合金化処理されていること、セラミッ
クスでコートされていること、または、セラミックスコ
ートの材質がジルコニア、アルミナ、イットリア、セリ
アの内の一つまたは複数の組合せであることを特徴とす
る。
In the present invention, the sphere is made of one or a combination of ceramics, alumina, zirconia and magnesia, ceramics containing Al-Mg spinel as a main component, heat resistant metal, Ni-Cr alloy, Fe. It is characterized by being made of a Cr alloy. Further, the surface of the heat-resistant metal is aluminum alloyed, coated with ceramics, or the material of the ceramics coating is one or a combination of zirconia, alumina, yttria, and ceria. It is characterized by

【0016】[0016]

【発明の実施の形態】以下に本発明を図面に基づいて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings.

【0017】図1は本発明による内部マニホールド方式
の平板型固体電解質燃料電池の積層圧縮装置の概略構成
を説明する図である。
FIG. 1 is a view for explaining the schematic structure of a laminated compression apparatus for an internal manifold type flat plate type solid oxide fuel cell according to the present invention.

【0018】本発明による平板型固体電解質燃料電池の
積層圧縮装置は、燃料電池を載置する下部架台5と、球
体10と、上部架台6と、挟圧装置8とを備えている。
下部架台5の上に平板型固体電解質燃料電池(スタッ
ク)を載置する。この平板型固体電解質燃料電池は平板
型固体電解質層の両面にそれぞれ空気極と燃料極とを配
置してなる平板状単電池と、隣接する単電池同士を電気
的に直列に接続しかつ各単電池に燃料と酸化剤ガスとを
分配するセパレータと、前記単電池と前記セパレータと
の間に介在されるスペーサとを交互に積層したものであ
る。球体10は燃料電池の作動温度(約1000℃)に
耐える材料、例えば耐熱性金属やセラミックスで作られ
ている。球体10はスタックの最上面(図1では最上セ
パレータ2の上面)のほぼ中央部に載せられている。た
とえば、スタックの最上面のほぼ中央部に浅い球状のく
ぼみ(図示せず)を設けることにより球体10の転動を
防止することができる。上部架台6が球体10に載せら
れている。上部架台6の下面の中央に浅い球状のくぼみ
(図示せず)を設けることにより球体10と上部架台6
の関係位置を保持することができる。
The laminated compression apparatus for a flat-plate type solid oxide fuel cell according to the present invention comprises a lower mount 5 on which the fuel cell is mounted, a sphere 10, an upper mount 6, and a pinching device 8.
A flat plate type solid electrolyte fuel cell (stack) is placed on the lower mount 5. This flat plate type solid electrolyte fuel cell has a flat plate type solid electrolyte layer having an air electrode and a fuel electrode on both sides, and a flat plate type single cell, and adjacent single cells are electrically connected in series to each other. A separator for distributing the fuel and the oxidant gas to the cell and a spacer interposed between the unit cell and the separator are alternately laminated. The sphere 10 is made of a material that can withstand the operating temperature of the fuel cell (about 1000 ° C.), for example, a heat-resistant metal or ceramics. The sphere 10 is placed substantially at the center of the top surface of the stack (the top surface of the top separator 2 in FIG. 1). For example, the rolling of the sphere 10 can be prevented by providing a shallow spherical recess (not shown) at approximately the center of the uppermost surface of the stack. The upper pedestal 6 is mounted on the sphere 10. By forming a shallow spherical recess (not shown) in the center of the lower surface of the upper mount 6, the spherical body 10 and the upper mount 6 are
Can hold the relative position of

【0019】前記球体10は次のような材料で作られて
いる。
The sphere 10 is made of the following materials.

【0020】(1)セラミックスで作られている。(1) Made of ceramics.

【0021】(2)アルミナ、ジルコニア、マグネシア
の中の一つまたは複数の組合せの材料で作られている。
(2) It is made of one or a combination of materials selected from alumina, zirconia, and magnesia.

【0022】(3)Al−Mgスピネルを主成分とする
セラミックスで作られている。
(3) Made of ceramics containing Al-Mg spinel as a main component.

【0023】(4)耐熱性金属で作られている。(4) Made of heat resistant metal.

【0024】(5)Ni−Cr合金で作られている。(5) Made of Ni-Cr alloy.

【0025】(6)Fe−Cr合金で作られている。(6) Made of Fe-Cr alloy.

【0026】(7)耐熱性金属の表面がアルミニウム合
金化処理されている。
(7) The surface of the heat resistant metal is aluminum alloyed.

【0027】(8)耐熱性金属の表面がセラミックスで
コートされている。
(8) The surface of the heat resistant metal is coated with ceramics.

【0028】(9)セラミックスコートの材質がジルコ
ニア、アルミナ、イットリア、セリアの内の一つまたは
複数の組合せである。
(9) The material of the ceramic coat is one or a combination of zirconia, alumina, yttria, and ceria.

【0029】挟圧装置8は両架台5、6間に挟持されて
いる燃料電池に積層方向の圧縮荷重を加えるため、下部
架台5と上部架台6を接近させるための装置であり、図
1の実施例ではねじとばねによる荷重を利用したねじ式
挟圧装置が使用されている。ねじとばねによりスタック
に運転中に作用する荷重の調整は室温において行われて
いる。
The clamping device 8 is a device for bringing the lower pedestal 5 and the upper pedestal 6 closer to each other in order to apply a compressive load in the stacking direction to the fuel cell sandwiched between the two pedestals 5 and 6, and is shown in FIG. In the embodiment, a screw type pinching device utilizing a load by a screw and a spring is used. The adjustment of the load exerted on the stack by the screws and the spring during operation is performed at room temperature.

【0030】以上説明したように構成した本発明の積層
圧縮装置と従来の積層圧縮装置とを別々に使用して実際
に運転中のスタックに垂直方向の荷重0.2Kgf/c
2を作用させた場合の圧力分布測定の結果を次に説明
する。
A vertical load of 0.2 Kgf / c is applied to the stack in actual operation by separately using the laminated compression apparatus of the present invention and the conventional laminated compression apparatus configured as described above.
The result of the pressure distribution measurement when m 2 is applied will be described below.

【0031】図2は本発明の積層圧縮装置を使用した場
合の圧力分布模様を示す図である。
FIG. 2 is a diagram showing a pressure distribution pattern when the laminated compression apparatus of the present invention is used.

【0032】図4は従来の積層圧縮装置を使用した場合
の圧力分布模様を示す図である。
FIG. 4 is a diagram showing a pressure distribution pattern in the case where a conventional laminated compression device is used.

【0033】圧力分布測定シートとして、シートに加え
られる圧力によって赤色に発色する、富士フィルム
(株)製のプレスケールを使用した。この圧力分布測定
シートはポリエチレンテレフタレートの片面にそれぞれ
異なる2種類の薬品を塗布した2枚のシートを薬品塗布
面どうし重ね合わせたものである。このような圧力分布
測定シートをスタックのセパレータと電池の空気極側と
の間に挿入して測定した。
As the pressure distribution measurement sheet, a prescale manufactured by Fuji Film Co., Ltd., which develops red color by the pressure applied to the sheet, was used. This pressure distribution measuring sheet is a sheet in which two different kinds of chemicals are coated on one surface of polyethylene terephthalate and the chemical coating surfaces are superposed. Such a pressure distribution measurement sheet was inserted between the separator of the stack and the air electrode side of the battery for measurement.

【0034】図2の圧力分布模様から本発明の積層圧縮
装置を使用した場合はセパレータと電池の空気極側との
接触面間にバランスのとれた積層方向の圧縮荷重が作用
していることは明瞭である。しかるに、図4の従来の積
層圧縮装置を使用した場合の圧力分布模様によればセパ
レータと電池の空気極側との接触面間に不均一な圧縮荷
重が作用していることは明らかである。
From the pressure distribution pattern of FIG. 2, when the laminated compression apparatus of the present invention is used, it is found that a balanced compressive load in the lamination direction acts between the contact surfaces of the separator and the air electrode side of the battery. It is clear. However, according to the pressure distribution pattern when the conventional laminated compression apparatus of FIG. 4 is used, it is clear that an uneven compression load is acting between the contact surfaces of the separator and the air electrode side of the battery.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば平
板型固体電解質層の両面にそれぞれ空気極と燃料極とを
配置してなる平板状単電池と、隣接する単電池同士を電
気的に直列に接続しかつ各単電池に燃料と酸化剤ガスと
を分配するセパレータと、前記単電池と前記セパレータ
との間に介在されるスペーサとを交互に積層してなる平
板型固体電解質燃料電池にその積層方向に圧縮荷重を加
える装置において、該燃料電池を載置する下部架台と、
該下部架台上の燃料電池の最上面のほぼ中央部に載せた
球体と、該球体の上に載置した上部架台と、前記下部架
台と前記上部架台を接近させることにより前記両架台間
に挟持された燃料電池に積層方向の圧縮荷重を加える挟
圧装置と、を包含するよに構成したので、燃料電池の運
転中常にスタックの最上部の中心に積層方向の圧縮荷重
が掛かり、スタックの全構成部材の接触面にバランスの
とれた積層方向の圧縮荷重を作用させることができるの
で、スペーサのシール効果が良くなり、燃料ガスや酸化
剤ガスがリークせず、燃料利用率が向上して燃料電池の
効率が向上するのは勿論、熱応力分布が均一となり、ク
ラックや歪みを生ずることなく、スタックの寿命を伸長
し、また、従来のようにスタック中に荷重の加わる所
と、加わらない所が生ずるため、セパレータや単電池の
機械的割れを発生することが無くなり、発電特性を著し
く向上させ、電池の電極において均一で十分な荷重が加
えられることからセパレータとの接触抵抗も低減される
という極めて優れた効果が得られる。
As described above, according to the present invention, a flat plate type single cell in which an air electrode and a fuel electrode are arranged on both sides of a flat plate type solid electrolyte layer and an adjacent single cell are electrically connected to each other. A flat plate type solid electrolyte fuel cell in which separators connected in series to each other and distributing a fuel and an oxidant gas to each unit cell and a spacer interposed between the unit cell and the separator are alternately laminated. A device for applying a compressive load in the stacking direction to a lower frame on which the fuel cell is mounted,
A sphere placed on substantially the center of the uppermost surface of the fuel cell on the lower pedestal, an upper pedestal placed on the sphere, and sandwiching the lower pedestal and the upper pedestal between the two pedestals. Since it is configured to include a pinching device that applies a compressive load in the stacking direction to the fuel cell, the compressive load in the stacking direction is always applied to the center of the top of the stack during operation of the fuel cell, and Since a well-balanced compressive load in the stacking direction can be applied to the contact surfaces of the constituent members, the spacer sealing effect improves, fuel gas and oxidant gas do not leak, and the fuel utilization rate improves In addition to improving the efficiency of the battery, the thermal stress distribution becomes uniform, the life of the stack is extended without cracks and distortions, and the places where load is applied to the stack as before and where it is not applied. But Therefore, mechanical cracking of the separator and the unit cell is not generated, the power generation characteristics are significantly improved, and a uniform and sufficient load is applied to the electrode of the battery, so that the contact resistance with the separator is also extremely reduced. Excellent effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による内部マニホールド方式の平板型固
体電解質燃料電池の積層圧縮装置の概略構成を説明する
図である。
FIG. 1 is a diagram illustrating a schematic configuration of a laminated compression device for an internal manifold type flat-plate solid electrolyte fuel cell according to the present invention.

【図2】本発明の積層圧縮装置を使用した場合の圧力分
布模様を示す図である。
FIG. 2 is a diagram showing a pressure distribution pattern when the laminated compression device of the present invention is used.

【図3】従来の内部マニホールド方式の平板型固体電解
質燃料電池の概略構成を示す図である。
FIG. 3 is a diagram showing a schematic configuration of a conventional internal manifold type flat plate solid electrolyte fuel cell.

【図4】従来の積層圧縮装置を使用した場合の圧力分布
模様を示す図である。
FIG. 4 is a diagram showing a pressure distribution pattern when a conventional laminated compression device is used.

【符号の説明】[Explanation of symbols]

1 単電池 2 セパレータ 3 スペーサ 5 下部架台 6 上部架台 8 挟圧装置 10 球体 A 荷重の集中する部分 B 全く荷重が加わらない部分 1 unit cell 2 separator 3 spacer 5 lower mount 6 upper mount 8 clamping device 10 sphere A part where load is concentrated B part where no load is applied at all

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 平板型固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料と酸化剤ガスとを分配するセパレータと、前記単電池
と前記セパレータとの間に介在されるスペーサとを交互
に積層してなる平板型固体電解質燃料電池にその積層方
向に圧縮荷重を加える装置において、該燃料電池を載置
する下部架台と、該下部架台上の燃料電池の最上面のほ
ぼ中央部に載せた球体と、該球体の上に載置した上部架
台と、前記下部架台と前記上部架台を接近させることに
より前記両架台間に挟持された燃料電池に積層方向の圧
縮荷重を加える挟圧装置と、を包含することを特徴とす
る平板型固体電解質燃料電池の積層圧縮装置。
1. A flat plate type cell having an air electrode and a fuel electrode arranged on both sides of a flat plate type solid electrolyte layer, and adjacent cell units are electrically connected in series, and fuel is supplied to each cell unit. In a device for applying a compressive load in the stacking direction to a flat plate type solid electrolyte fuel cell in which a separator that distributes an oxidant gas and a separator and a spacer that is interposed between the unit cell and the separator are alternately stacked. A lower pedestal on which the fuel cell is placed, a sphere placed on the lower pedestal at approximately the center of the uppermost surface of the fuel cell, an upper pedestal placed on the sphere, the lower pedestal and the upper portion And a clamping device for applying a compressive load in the stacking direction to the fuel cell sandwiched between the two racks by bringing the racks closer to each other.
【請求項2】 前記挟圧装置がねじとばねによる荷重を
利用したねじ式挟圧装置であることを特徴とする請求項
1に記載の平板型固体電解質燃料電池の積層圧縮装置。
2. The laminated compression device for a flat plate type solid electrolyte fuel cell according to claim 1, wherein the pinching device is a screw type pinching device utilizing a load of a screw and a spring.
【請求項3】 前記球体がセラミックスで作られている
ことを特徴とする請求項1に記載の平板型固体電解質燃
料電池の積層圧縮装置。
3. The laminated compression device for a flat plate type solid electrolyte fuel cell according to claim 1, wherein the sphere is made of ceramics.
【請求項4】 前記球体がアルミナ、ジルコニア、マグ
ネシアの中の一つまたは複数の組合せの材料で作られて
いることを特徴とする請求項3に記載の平板型固体電解
質燃料電池の積層圧縮装置。
4. The laminated compression apparatus for a flat plate type solid electrolyte fuel cell according to claim 3, wherein the sphere is made of one or more materials selected from the group consisting of alumina, zirconia, and magnesia. .
【請求項5】 前記球体がAl−Mgスピネルを主成分
とするセラミックスで作られていることを特徴とする請
求項3に記載の平板型固体電解質燃料電池の積層圧縮装
置。
5. The laminated compression device for a flat plate type solid electrolyte fuel cell according to claim 3, wherein the sphere is made of ceramics containing Al-Mg spinel as a main component.
【請求項6】 前記球体が耐熱性金属で作られているこ
とを特徴とする請求項1に記載の平板型固体電解質燃料
電池の積層圧縮装置。
6. The laminated compression apparatus for a flat plate type solid electrolyte fuel cell according to claim 1, wherein the sphere is made of a heat resistant metal.
【請求項7】 前記球体がNi−Cr合金で作られてい
ることを特徴とする請求項6に記載の平板型固体電解質
燃料電池の積層圧縮装置。
7. The laminated compression device for a flat plate type solid electrolyte fuel cell according to claim 6, wherein the sphere is made of a Ni—Cr alloy.
【請求項8】 前記球体がFe−Cr合金で作られてい
ることを特徴とする請求項6に記載の平板型固体電解質
燃料電池の積層圧縮装置。
8. The laminated compression device for a flat plate type solid electrolyte fuel cell according to claim 6, wherein the sphere is made of an Fe—Cr alloy.
【請求項9】 前記耐熱性金属の表面がアルミニウム合
金化処理されていることを特徴とする請求項6に記載の
平板型固体電解質燃料電池の積層圧縮装置。
9. The laminated compression device for a flat plate type solid electrolyte fuel cell according to claim 6, wherein the surface of the heat resistant metal is aluminum alloyed.
【請求項10】 前記耐熱性金属の表面がセラミックス
でコートされていることを特徴とする請求項6に記載の
平板型固体電解質燃料電池の積層圧縮装置。
10. The laminated compression apparatus for a flat plate type solid electrolyte fuel cell according to claim 6, wherein the surface of the heat resistant metal is coated with ceramics.
【請求項11】 前記セラミックスコートの材質がジル
コニア、アルミナ、イットリア、セリアの内の一つまた
は複数の組合せであることを特徴とする請求項10に記
載の平板型固体電解質燃料電池の積層圧縮装置。
11. The laminated compression apparatus for a flat plate type solid electrolyte fuel cell according to claim 10, wherein the material of the ceramic coat is one or a combination of zirconia, alumina, yttria, and ceria. .
JP7295553A 1995-11-14 1995-11-14 Lamination compressing device for flat solid electrolytic fuel cell Withdrawn JPH09139223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295553A JPH09139223A (en) 1995-11-14 1995-11-14 Lamination compressing device for flat solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295553A JPH09139223A (en) 1995-11-14 1995-11-14 Lamination compressing device for flat solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH09139223A true JPH09139223A (en) 1997-05-27

Family

ID=17822140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295553A Withdrawn JPH09139223A (en) 1995-11-14 1995-11-14 Lamination compressing device for flat solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH09139223A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645659B2 (en) 2000-07-19 2003-11-11 Toyota Jidosha Kabushiki Kaisha Fuel cell apparatus
US7163761B2 (en) 2002-11-14 2007-01-16 3M Innovative Properties Company Fuel cell stack
KR101296790B1 (en) * 2011-07-19 2013-08-14 (주)베스텍 compressing devices of election cell
JP2013257953A (en) * 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and method for assembling solid oxide fuel cell
US9054350B2 (en) 2010-12-01 2015-06-09 Honda Motor Co., Ltd. Fuel cell stack
CN108281683A (en) * 2018-03-07 2018-07-13 北京氢璞创能科技有限公司 A kind of fuel-cell device and its analogy method of polar plate flow passage gas distribution
FR3127850A1 (en) * 2021-10-05 2023-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for conditioning a plurality of stacks of superposed SOEC/SOFC type solid oxide cells at high temperature

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645659B2 (en) 2000-07-19 2003-11-11 Toyota Jidosha Kabushiki Kaisha Fuel cell apparatus
US7163761B2 (en) 2002-11-14 2007-01-16 3M Innovative Properties Company Fuel cell stack
US9054350B2 (en) 2010-12-01 2015-06-09 Honda Motor Co., Ltd. Fuel cell stack
KR101296790B1 (en) * 2011-07-19 2013-08-14 (주)베스텍 compressing devices of election cell
JP2013257953A (en) * 2012-06-11 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and method for assembling solid oxide fuel cell
CN108281683A (en) * 2018-03-07 2018-07-13 北京氢璞创能科技有限公司 A kind of fuel-cell device and its analogy method of polar plate flow passage gas distribution
FR3127850A1 (en) * 2021-10-05 2023-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for conditioning a plurality of stacks of superposed SOEC/SOFC type solid oxide cells at high temperature
WO2023057720A1 (en) * 2021-10-05 2023-04-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for conditioning a plurality of stacks of high-temperature soec/sofc solid oxide cells

Similar Documents

Publication Publication Date Title
JP3466960B2 (en) Flat cell with holding thin frame and fuel cell using the same
CA2391487C (en) Planar solid oxide fuel cell stack with metallic foil interconnect
US6492053B1 (en) Planar fuel cell assembly
US7449261B2 (en) Holding member for holding an electrochemical cell, a holding substrate for the same, an electrochemical system and a connecting member for electrochemical cells
JP2008538449A5 (en)
JP2008538449A (en) Self-supporting ceramic membrane and electrochemical cell and electrochemical cell stack structure including the same
US6821667B2 (en) Fuel cell stack having foil interconnects and laminated spacers
JP2000048831A (en) Solid electrolyte fuel cell
JPH09139223A (en) Lamination compressing device for flat solid electrolytic fuel cell
JPH09326259A (en) Solid electrolyte fuel cell
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
KR20180093087A (en) Fuel cell power generation unit and fuel cell stack
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JPH1140181A (en) Start-stopage of solid electrolyte type fuel cell, and high temperature holding method during operation or stand-by state
JPH09147884A (en) Flat solid electrolyte fuel cell
JP6389959B2 (en) Fuel cell stack and fuel cell stack manufacturing method
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH0845516A (en) Plate type solid electrolyte fuel cell using mesh with different wire diameters
JPH0714591A (en) Gas seal structure of solid electrolytic fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JPH06342668A (en) Method for sealing gas of solid electrolyte fuel cell
JPH09115526A (en) Internal manifold type flat solid electrolytic fuel cell
JPH07296829A (en) Support film type solid electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204