JPH1125999A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH1125999A
JPH1125999A JP9173844A JP17384497A JPH1125999A JP H1125999 A JPH1125999 A JP H1125999A JP 9173844 A JP9173844 A JP 9173844A JP 17384497 A JP17384497 A JP 17384497A JP H1125999 A JPH1125999 A JP H1125999A
Authority
JP
Japan
Prior art keywords
conductive member
fuel
fuel cell
electrode
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9173844A
Other languages
Japanese (ja)
Inventor
Takashi Shigehisa
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9173844A priority Critical patent/JPH1125999A/en
Publication of JPH1125999A publication Critical patent/JPH1125999A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell small in the electric resistance of an electro- conductive member, and excellent in electric conductivity between the conductive member and a fuel electrode. SOLUTION: This fuel cell is equipped with plural fuel cells 1 formed by an air electrode 2 on one side face of a cylindrical solid electrolyte 3 and a fuel electrode 4 on the other side face having an inter-connector 5 electrically connected to the air electrode 2 or the fuel electrode 4, and an electrical- conductive member 10 electrically connecting the inter-connector 5 of the fuel cell 1 and the air electrode 2 or the fuel electrode 4 of the other fuel cell 1 to each other. The electrical-conductive member 10 is formed by folding an electrical-conductive sheet made of the metal fiber aggregate containing Ni as the main component several times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池に係わり、特に、複数の燃料電池セルを電気的に接
続する際の導電部材を改良した固体電解質型燃料電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly, to a solid oxide fuel cell having an improved conductive member for electrically connecting a plurality of fuel cells.

【0002】[0002]

【従来の技術】図4は従来の円筒型の固体電解質型燃料
電池セルを示すもので、円筒型燃料電池セル1は、例え
ば、LaMnO3 系材料からなる円筒状の空気極2の表
面にY2 3 安定化ZrO2 からなる固体電解質3を被
覆し、この固体電解質3の表面にNi−ジルコニア系の
燃料極4が被覆されており、LaCrO3 系よりなるイ
ンターコネクタ5の緻密質な膜が空気極2に接続され、
外部に露出している。
2. Description of the Related Art FIG. 4 shows a conventional cylindrical solid electrolyte fuel cell. A cylindrical fuel cell 1 has a surface on a cylindrical air electrode 2 made of, for example, a LaMnO 3 material. A solid electrolyte 3 made of 2 O 3 stabilized ZrO 2 is coated, and a surface of the solid electrolyte 3 is coated with a Ni-zirconia fuel electrode 4, and a dense film of an interconnector 5 made of LaCrO 3 is Is connected to the cathode 2,
It is exposed to the outside.

【0003】そして、燃料電池セル1は、図5に示すよ
うに、上下左右方向の燃料電池セル1同士が導電部材1
0を介して電気的に接続されている。即ち、左右方向に
隣接する燃料電池セル1の燃料極4同士が導電部材10
により電気的に接続されている。
[0005] As shown in FIG. 5, the fuel cells 1 are vertically connected to each other in a horizontal direction.
0 is electrically connected. That is, the fuel electrodes 4 of the fuel cells 1 adjacent to each other in the left-right direction are
Are electrically connected to each other.

【0004】また、図5における上下方向の燃料電池セ
ル1同士は、一方の燃料電池セル1の燃料極4と、他方
の燃料電池セル1のインターコネクタ5との間に、Ni
を主成分とする金属繊維の集合体による一枚の導電シー
トからなる導電部材10が配置され、この導電部材10
により、一方の燃料電池セル1の燃料極4と、他方の燃
料電池セル1のインターコネクタ5とが電気的に導通し
ている。図示しないが、集電材−インターコネクタ、集
電材−燃料極もNi金属繊維からなる導電部材10によ
り接続されている。
[0005] In addition, the fuel cells 1 in the vertical direction in FIG. 5 are connected between the fuel electrode 4 of one fuel cell 1 and the interconnector 5 of the other fuel cell 1 by Ni.
A conductive member 10 composed of a single conductive sheet made of an aggregate of metal fibers mainly composed of
Thereby, the fuel electrode 4 of one fuel cell 1 and the interconnector 5 of the other fuel cell 1 are electrically connected. Although not shown, the current collector-interconnector and the current collector-fuel electrode are also connected by the conductive member 10 made of Ni metal fiber.

【0005】導電部材10を設ける理由は、燃料電池セ
ル1相互間の電気的な導通と燃料電池セル1相互間の機
械的な応力緩和にある。このため、導電部材10はガス
の透過性があり、弾力性のある金属繊維の集合体が用い
られている。また導電部材10の金属繊維の材料として
は、雰囲気が水素雰囲気から発電によって生じた水蒸気
を含む雰囲気まで安定であるという理由から、Ni金属
が利用されている。
The reason why the conductive member 10 is provided is that electrical conduction between the fuel cells 1 and relaxation of mechanical stress between the fuel cells 1 occur. For this reason, the conductive member 10 is a gas-permeable and resilient aggregate of metal fibers. As a material of the metal fiber of the conductive member 10, Ni metal is used because the atmosphere is stable from a hydrogen atmosphere to an atmosphere containing water vapor generated by power generation.

【0006】燃料電池は、図5に示したような燃料電池
セル1同士が電気的に接続されたスタックを作製し、こ
れらを複数組合せるとともに、その集合体の両端(正極
側および負極側)に集電部材を配置して構成される。
As for the fuel cell, a stack in which the fuel cells 1 are electrically connected as shown in FIG. 5 is produced, a plurality of these are combined, and both ends (a positive electrode side and a negative electrode side) of the assembly are assembled. And a current collecting member.

【0007】燃料電池は、図4に示したように、燃料電
池セル1の空気極2側に酸素を含有するガス、たとえば
空気6を流し、燃料極4側に燃料、例えば水素7を流し
ながら、1000℃近傍の温度で発電する。
As shown in FIG. 4, in the fuel cell, a gas containing oxygen, for example, air 6 flows on the air electrode 2 side of the fuel cell 1 and a fuel, for example, hydrogen 7 flows on the fuel electrode 4 side. And power generation at a temperature near 1000 ° C.

【0008】[0008]

【発明が解決しようとする課題】Ni金属繊維からなる
導電部材10は、セル1間の電気的な導通を行うことが
一つの役割であるため、導電部材10の電気抵抗による
損失は小さい方がよく、本来なら緻密質であることが望
まれる。一方、発電時においては燃料極4に十分な水素
ガスを効率よく供給しなければならず、導電部材10は
水素ガスが十分に透過できるように、ポーラスであるこ
とが望まれる。このように相反する要求のため、スタッ
ク化した場合には、セル1の性能を十分に発揮できない
という問題があった。
Since one of the roles of the conductive member 10 made of Ni metal fiber is to provide electrical conduction between the cells 1, the smaller the loss due to the electric resistance of the conductive member 10, the better. Well, it is originally desired to be dense. On the other hand, at the time of power generation, a sufficient amount of hydrogen gas must be efficiently supplied to the fuel electrode 4, and the conductive member 10 is desired to be porous so that the hydrogen gas can sufficiently pass therethrough. Due to such conflicting requirements, there is a problem that when stacked, the performance of the cell 1 cannot be sufficiently exhibited.

【0009】また、導電部材10は、インターコネクタ
5、燃料極4および集電材と接触するが、これらの界面
では圧接しただけであり、導電部材10は一枚の導電シ
ートから形成されていたので接触界面での電気的な導通
が弱く、スタック化した場合にセル1の性能を十分に発
揮できず、また、セル1の間に機械的な力が作用した場
合には、導電部材10によるセル1の間の応力緩和のた
めのクッション性が不足していた。
The conductive member 10 comes into contact with the interconnector 5, the fuel electrode 4, and the current collector, but only presses at the interface between them, and the conductive member 10 is formed from a single conductive sheet. The electric conduction at the contact interface is weak, so that the performance of the cell 1 cannot be sufficiently exerted when the cells are stacked, and when a mechanical force acts between the cells 1, the cell 1 The cushioning property for stress relaxation during the period of 1 was insufficient.

【0010】本発明は、導電部材の電気抵抗が小さく、
導電部材と燃料極等との電気的導通が良好であるととも
に、セル間の応力緩和のためのクッション性を充分付与
できる固体電解質型燃料電池を提供することを目的とす
る。
According to the present invention, the electric resistance of the conductive member is small,
It is an object of the present invention to provide a solid oxide fuel cell that has good electrical conduction between a conductive member and a fuel electrode or the like and can sufficiently impart cushioning properties for relaxing stress between cells.

【0011】[0011]

【課題を解決するための手段】本発明の固体電解質型燃
料電池は、円筒状の固体電解質の片面に空気極を、他面
に燃料極を形成してなり、前記空気極または前記燃料極
に電気的に接続されるインターコネクタを有する複数の
燃料電池セルと、該燃料電池セルのインターコネクタと
他の燃料電池セルの前記空気極または前記燃料極とを電
気的に接続する導電部材とを具備してなる固体電解質型
燃料電池において、前記導電部材がNiを主成分とする
金属繊維の集合体からなる導電シートを複数回折り畳ん
で形成してなるものである。
The solid electrolyte fuel cell of the present invention comprises an air electrode formed on one side and a fuel electrode formed on the other side of a cylindrical solid electrolyte. A plurality of fuel cells having interconnectors electrically connected to each other; and a conductive member electrically connecting the interconnector of the fuel cell and the air electrode or the fuel electrode of another fuel cell. The conductive member is formed by folding a plurality of conductive sheets each made of an aggregate of metal fibers containing Ni as a main component.

【0012】ここで、空気極または燃料極に当接する導
電部材の一方の端面に、空気極または燃料極の外面形状
に合致する凹部を形成するとともに、インターコネクタ
に当接する導電部材の他方の端面に、インターコネクタ
の外面形状に合致する凹部を形成してなることが望まし
い。また、導電部材の厚みが1〜8mmであることが望
ましい。さらに、導電シートの厚みが3mm以下である
ことが望ましい。
Here, a concave portion is formed on one end surface of the conductive member that contacts the air electrode or the fuel electrode, the concave portion conforming to the outer surface shape of the air electrode or the fuel electrode, and the other end surface of the conductive member that contacts the interconnector. In addition, it is desirable to form a concave portion that matches the outer surface shape of the interconnector. Further, it is desirable that the thickness of the conductive member is 1 to 8 mm. Further, the thickness of the conductive sheet is desirably 3 mm or less.

【0013】[0013]

【作用】燃料電池セルをスタック化する上で最も重要な
ことはセル間を電気的な損失がなく接合することであ
る。そのために接合部材にはそれ自身の抵抗が小さいこ
とと接合の界面において接触抵抗が小さいことが要求さ
れる。それ自身の抵抗が小さいためには、抵抗率の小さ
い緻密質な部材を用いるべきである。しかしながら燃料
電池セルでは燃料ガスがその性能を大きく左右するので
そのガスを遮断してはならない。また、セル間の応力緩
和のため十分なクッション性を持たなくてはならない。
The most important factor in stacking fuel cells is to join the cells without electrical loss. For this purpose, the joining member is required to have low resistance of itself and low contact resistance at the interface of joining. In order for its own resistance to be low, a dense member having low resistivity should be used. However, in a fuel cell, the fuel gas greatly affects its performance, so that the gas must not be shut off. In addition, it must have sufficient cushioning properties to relieve stress between cells.

【0014】本発明の固体電解質型燃料電池では、導電
部材が一枚の導電シートを折り畳むことにより形成され
ているので、セル間の応力緩和のため十分なクッション
性を有することができ、セル相互間に機械的な応力が作
用した場合でもその応力を緩和することができる。ま
た、導電部材は一枚の導電シートから形成されているた
めに、導電部材間に電気的な損失を抑制できる。さら
に、上記のように十分なクッション性を有するため、燃
料極やインターコネクタとの接触する面では、これら燃
料極やインターコネクタが導電部材を圧接し、接触面積
を大きくすることができ、電気的な導通を向上すること
ができる。
In the solid oxide fuel cell according to the present invention, since the conductive member is formed by folding a single conductive sheet, it is possible to have a sufficient cushioning property for alleviating stress between cells, and to provide a cell-to-cell connection. Even if a mechanical stress acts between them, the stress can be relieved. Further, since the conductive member is formed from one conductive sheet, electrical loss between the conductive members can be suppressed. Furthermore, since it has a sufficient cushioning property as described above, on the surface that comes into contact with the fuel electrode and the interconnector, the fuel electrode and the interconnector press against the conductive member, and the contact area can be increased. Continuity can be improved.

【0015】さらに、導電部材が一枚の導電シートを折
り畳むことにより形成されているので、燃料極やインタ
ーコネクタと接触する端面に、これらの外面形状に合わ
せて凹部を形成することにより、より接触面積を大きく
し、これにより、接触抵抗の低減が可能となる。
Furthermore, since the conductive member is formed by folding a single conductive sheet, a concave portion is formed on the end face that comes into contact with the fuel electrode or the interconnector according to the shape of the outer surface, thereby providing more contact. The area is increased, which allows a reduction in contact resistance.

【0016】また、導電部材の厚みを1〜8mmとする
ことにより、セルの反りや熱応力等の機械的、熱的応力
を充分に吸収するクッション性を有することができる。
By setting the thickness of the conductive member to 1 to 8 mm, it is possible to have a cushioning property for sufficiently absorbing mechanical and thermal stresses such as cell warpage and thermal stress.

【0017】さらに、導電シートの厚みを3mm以下と
することにより、折り畳んだ導電シート同士の接触を向
上することができ、接触抵抗の低減が可能となる。
Further, by setting the thickness of the conductive sheet to 3 mm or less, the contact between the folded conductive sheets can be improved, and the contact resistance can be reduced.

【0018】[0018]

【発明の実施の形態】本発明の固体電解質型燃料電池
は、図5に示したように、複数の燃料電池セル1が電気
的に導通して構成されている。燃料電池セル1は、図4
に示したように、円筒状の固体電解質3の内面に空気極
2が、外面に燃料極4が形成されており、空気極2に電
気的に接続されたインターコネクタ5が、燃料極4と導
通せずに、外部に露出している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 5, a solid oxide fuel cell according to the present invention comprises a plurality of fuel cells 1 electrically connected. The fuel cell 1 is shown in FIG.
As shown in FIG. 3, the air electrode 2 is formed on the inner surface of the cylindrical solid electrolyte 3 and the fuel electrode 4 is formed on the outer surface. The interconnector 5 electrically connected to the air electrode 2 is connected to the fuel electrode 4. It is exposed outside without conducting.

【0019】そして、図5における左右方向に隣接する
燃料電池セル1の燃料極4同士が導電部材10により電
気的に接続されている。
Then, the fuel electrodes 4 of the fuel cells 1 adjacent to each other in the left-right direction in FIG.

【0020】一方、図5における上下方向の燃料電池セ
ル1同士は、図1に示すように、上側の燃料電池セル1
の燃料極4と、下側の燃料電池セル1のインターコネク
タ5との間に、Niを主成分とする金属繊維の集合体か
らなる導電シートを複数回折り畳んで形成してなる導電
部材10が配置され、この導電部材10により、上側の
燃料電池セル1の燃料極4と、下側の燃料電池セル1の
インターコネクタ5とが電気的に導通している。この導
電部材10は、嵩密度が0.44〜2.21g/cm3
とされている。
On the other hand, as shown in FIG. 1, the fuel cells 1 in the vertical direction in FIG.
Between the fuel electrode 4 and the interconnector 5 of the lower fuel cell 1, there is provided a conductive member 10 formed by folding a plurality of conductive sheets made of an aggregate of metal fibers containing Ni as a main component. The fuel electrode 4 of the upper fuel cell 1 and the interconnector 5 of the lower fuel cell 1 are electrically connected by the conductive member 10. The conductive member 10 has a bulk density of 0.44 to 2.21 g / cm 3.
It has been.

【0021】このように、Niを主成分とする金属繊維
の集合体からなる導電部材10の嵩密度を0.44〜
2.21g/cm3 としたのは、嵩密度が0.44g/
cm3よりも小さい場合には導電部材10の電気抵抗が
大きく、燃料電池セルをスタック化した場合に十分な出
力が得られない。嵩密度が2.21g/cm3 を越える
と燃料ガスの透過性が悪くなり、接触している燃料極に
燃料ガスを供給できず、十分な発電性能が得られない。
また、弾力性も低下し、セル間の応力を吸収することが
できなくなる。導電部材10の嵩密度は、導電部材10
の電気抵抗を小さくし、燃料ガスの透過性を向上すると
いう観点から、導電部材10の嵩密度は特に0.44〜
1.33g/cm3 であることが望ましい。
As described above, the conductive member 10 made of an aggregate of metal fibers containing Ni as a main component has a bulk density of 0.44 to 0.44.
The reason for setting to 2.21 g / cm 3 is that the bulk density is 0.44 g / cm 3.
If it is smaller than cm 3, the electric resistance of the conductive member 10 is large, and sufficient output cannot be obtained when the fuel cells are stacked. If the bulk density exceeds 2.21 g / cm 3 , the permeability of the fuel gas becomes poor, so that the fuel gas cannot be supplied to the contacting fuel electrode, and sufficient power generation performance cannot be obtained.
In addition, the elasticity is reduced, and the stress between the cells cannot be absorbed. The bulk density of the conductive member 10
From the viewpoint of reducing the electric resistance of the conductive member 10 and improving the permeability of the fuel gas, the bulk density of the conductive member 10 is particularly 0.44 to
It is desirably 1.33 g / cm 3 .

【0022】ここで、導電部材10の嵩密度は0.44
〜2.21g/cm3 である場合には、導電部材10が
Ni金属である場合の比重の5〜25%である。つま
り、導電部材10がNi金属の塊からなる場合の比重を
ρ1 、導電部材10が金属繊維の集合体からなる場合の
嵩密度をρ2 とした時、ρ2 /ρ1 が5〜25%である
ことを意味する。導電部材10の嵩密度を0.44〜
2.21g/cm3 と高くするためには、Ni金属繊維
の集合体(フェルト等)をプレス機により所定圧力によ
り押圧することにより達成できる。ちなみに、Ni金属
である場合の比重は8.845であり、通常のNiフェ
ルトの嵩密度は0.35g/cm3 であり、導電部材1
0の嵩密度は、導電部材10がNi金属である場合の比
重の4%程度である。金属繊維は、Niを主成分とし、
Fe、CoおよびCrのうち少なくとも一種を含有して
も良い。
Here, the bulk density of the conductive member 10 is 0.44.
In the case of 導電 2.21 g / cm 3 , the specific gravity is 5 to 25% of the specific gravity when the conductive member 10 is made of Ni metal. That is, when the specific gravity when the conductive member 10 is made of a lump of Ni metal is ρ 1 and the bulk density when the conductive member 10 is an aggregate of metal fibers is ρ 2 , ρ 2 / ρ 1 is 5 to 25. %. The bulk density of the conductive member 10 is 0.44 to
The increase to 2.21 g / cm 3 can be achieved by pressing an aggregate (felt or the like) of Ni metal fibers with a predetermined pressure by a press. Incidentally, the specific gravity in the case of Ni metal is 8.845, the bulk density of ordinary Ni felt is 0.35 g / cm 3 , and the conductive member 1
The bulk density of 0 is about 4% of the specific gravity when the conductive member 10 is made of Ni metal. The metal fiber is mainly composed of Ni,
At least one of Fe, Co and Cr may be contained.

【0023】導電部材10は、図2に示すように、導電
シート21を6回折り返したものであり、折り返し部2
3が6か所形成されている。燃料極4に当接する導電部
材10の上側の端面には、上側のセル1の燃料極4の外
面形状に合致する凹部24が形成され、下側のセル1の
インターコネクタ5に当接する導電部材10の下側の端
面には、インターコネクタ5の外面形状に合致する凹部
25が形成されており、これらの凹部24、25によ
り、導電部材10と、上側のセル1の燃料極4、下側の
セル1のインターコネクタ5との接触抵抗を小さくでき
る。
As shown in FIG. 2, the conductive member 10 is formed by folding the conductive sheet 21 six times.
6 are formed in six places. A recess 24 is formed in the upper end surface of the conductive member 10 in contact with the fuel electrode 4 so as to conform to the outer shape of the fuel electrode 4 of the upper cell 1, and the conductive member is in contact with the interconnector 5 of the lower cell 1. The lower end face 10 has a recess 25 which matches the outer shape of the interconnector 5. These recesses 24, 25 allow the conductive member 10, the fuel electrode 4 of the upper cell 1, Of the cell 1 with the interconnector 5 can be reduced.

【0024】また、導電部材10の厚みtは1〜8mm
であることが望ましい。導電部材10の厚みtが1mm
以下になるとセルの反り及び熱応力を吸収できず、機械
的、熱的応力に対するクッション性が不足し、発電性能
が劣化する。強いてはセルの破壊を招く可能性もある。
また8mmより厚くなると、導電部材自信の抵抗が大き
くなり、スタックとしての性能が悪くなる。特に導電部
材の厚みtは2〜5mmが望ましい。尚、導電部材10
の厚みtは、図1の場合には、要するに上側のセル1の
燃料極4と下側のセル1のインターコネクタ5との間隔
を意味する。
The thickness t of the conductive member 10 is 1 to 8 mm
It is desirable that The thickness t of the conductive member 10 is 1 mm
If the temperature is less than the above, the cell cannot absorb the warpage and the thermal stress, the cushioning property against the mechanical and thermal stress is insufficient, and the power generation performance is deteriorated. If it does, cell destruction may be caused.
On the other hand, when the thickness is more than 8 mm, the resistance of the conductive member itself increases, and the performance as a stack deteriorates. In particular, the thickness t of the conductive member is desirably 2 to 5 mm. The conductive member 10
In the case of FIG. 1, the thickness t of the fuel cell 4 means the distance between the fuel electrode 4 of the upper cell 1 and the interconnector 5 of the lower cell 1.

【0025】さらに、導電シートの厚みが3mm以下で
あることが望ましい。これは、導電シートの厚みが3m
mよりも厚くなると折り畳んだ面の接触が悪くなる。特
に1〜3mmが望ましい。
Further, the thickness of the conductive sheet is desirably 3 mm or less. This is because the thickness of the conductive sheet is 3m
When the thickness is larger than m, the contact of the folded surface becomes poor. In particular, 1 to 3 mm is desirable.

【0026】導電部材10は、折り返し部23を2〜8
か所形成するように二つ折りから八つ折りすることが望
ましい。折り返さない場合には効果が現れず、八つ折り
以上になると、一つの導電部材10の寸法精度を保つこ
とが困難になり、そのため、電気的なショートを引き起
こす原因にもなる。特に3つ折りから6つ折りが望まし
い。尚、図2は6つ折りの導電部材10である。
The conductive member 10 has a folded portion 23 of 2 to 8
It is desirable to fold it from two to eight so that it is formed in several places. If the fold is not made, no effect is exhibited, and if the fold is eight or more, it is difficult to maintain the dimensional accuracy of one conductive member 10, and therefore, it may cause an electrical short. In particular, three to six folds are desirable. FIG. 2 shows the conductive member 10 folded in six.

【0027】本発明の固体電解質型燃料電池では、導電
部材10を、Niを主成分とする金属繊維の集合体から
なる導電シート21を6回折り畳んで形成したので、折
り畳まない従来の導電部材よりもクッション性が高く、
さらに一枚の導電シート21から形成されるので電圧の
ロスが少なく、1000℃という高温でも、燃料電池セ
ル1間の接合が良好である。また、セル1間の機械的、
熱的応力を吸収することもできる。また一枚の導電シー
ト21から形成されているので、界面の接触抵抗を少な
くするためにセル1やインターコネクタの外面形状に合
わせて凹部24、25を形成することができ、しかもそ
れ自身の損失が増えることなく良好な接合が行える。
In the solid oxide fuel cell of the present invention, the conductive member 10 is formed by folding the conductive sheet 21 made of an aggregate of metal fibers containing Ni as the main component six times, so that the conductive member 10 is not folded. Also has high cushioning properties,
Furthermore, since it is formed from one conductive sheet 21, the loss of voltage is small, and the bonding between the fuel cells 1 is good even at a high temperature of 1000 ° C. Also, mechanical between the cells 1,
Thermal stress can also be absorbed. Also, since it is formed from one conductive sheet 21, the recesses 24 and 25 can be formed in accordance with the outer shape of the cell 1 and the interconnector in order to reduce the contact resistance at the interface. And good joining can be performed without increasing the number of layers.

【0028】[0028]

【実施例】先ず、La0.9 Sr0.1 MnO3 からなる空
気極の外面に、純度が99.9%以上で平均粒径が0.
5μmのZrO2 (10モル%Y2 3 含有)を有する
ペーストを塗布し、1500℃で3時間焼成して固体電
解質を形成した。この固体電解質表面を研磨し、内部の
空気極を露出させ、この露出部分に0.5μmのLa
0.9 Sr0.1 CrO3 からなる溶液を塗布した後、乾燥
し、大気中1800℃で10時間熱処理してインターコ
ネクタを作製した。そして、固体電解質の表面に、イン
ターコネクタと電気的に導通しないように、Ni80重
量%とZrO220重量%とからなる溶液をスクリーン
印刷法より塗布した後、乾燥し大気中1200℃で2時
間熱処理して燃料極を作製し、図4に示したような燃料
電池セルを作製した。
EXAMPLE First, on the outer surface of an air electrode made of La 0.9 Sr 0.1 MnO 3 , the purity was 99.9% or more and the average particle diameter was 0.4 mm.
A paste having 5 μm of ZrO 2 (containing 10 mol% of Y 2 O 3 ) was applied and fired at 1500 ° C. for 3 hours to form a solid electrolyte. The surface of the solid electrolyte was polished to expose the internal air electrode, and the exposed portion was exposed to 0.5 μm La.
After applying a solution composed of 0.9 Sr 0.1 CrO 3 , the solution was dried and heat-treated at 1800 ° C. in the air for 10 hours to produce an interconnector. Then, a solution composed of 80% by weight of Ni and 20% by weight of ZrO 2 is applied to the surface of the solid electrolyte by a screen printing method so as not to be electrically connected to the interconnector, and then dried and at 1200 ° C. in the atmosphere for 2 hours. Heat treatment was performed to produce a fuel electrode, and a fuel cell as shown in FIG. 4 was produced.

【0029】このようにして作製された燃料電池セルの
空気極側に空気を、燃料極側に燃料利用率60%になる
ように水素を流しながら1000℃で発電を行い、24
時間後の出力を測定したところ、50Wであり、実質的
に発電する部分の面積、即ち、空気極と燃料極で挟んだ
部分の単位面積当たりの出力は、0.3W/cm2 であ
った。
Power was generated at 1000 ° C. while flowing air to the air electrode side and hydrogen to the fuel electrode side so as to have a fuel utilization of 60% in the fuel cell thus manufactured.
When the output after time was measured, it was 50 W, and the area per unit area of the portion that substantially generates power, that is, the output per unit area of the portion sandwiched between the air electrode and the fuel electrode was 0.3 W / cm 2 . .

【0030】また、複数の上記した燃料電池セルを、そ
のインターコネクタと隣接する燃料電池セルの燃料極と
の間の距離、および燃料極同士の距離を5mmとし、こ
の間に、平均径20μmのNiからなる金属繊維からな
り、表1に示すようなシート厚を有し、嵩密度が0.8
8g/cm3 の導電シートを用い、この導電シートを表
1に示した数の折り返し部を形成するように折り畳んで
形成した、幅10mm、長さ50cm、厚み5mmの導
電部材を配置し、図3(a)に示すような2個の燃料電
池セルを直列に接続したスタック(表中では2直と記
す)、図3(b)に示すように4個の燃料電池セルを直
列と並列に接続したスタック(表中では2直2平と記
す)を作製した。尚、導電部材の燃料極と当接する側の
端面は、図1および図2に示すように、燃料極の外面形
状に合致する凹部が形成されており、インターコネクタ
と当接する側の端面は、インターコネクタの外面形状と
合致す凹部が形成されている。
The distance between the interconnector and the fuel electrode of an adjacent fuel cell and the distance between the fuel electrodes are set to 5 mm, and the distance between the fuel electrodes is 5 mm. Having a sheet thickness as shown in Table 1 and a bulk density of 0.8
Using a conductive sheet of 8 g / cm 3, a conductive member having a width of 10 mm, a length of 50 cm, and a thickness of 5 mm, which is formed by folding the conductive sheet so as to form the number of folded portions shown in Table 1, is arranged. As shown in FIG. 3 (a), a stack in which two fuel cells are connected in series (in the table, indicated by 2), and as shown in FIG. 3 (b), four fuel cells are connected in series and in parallel. A connected stack (in the table, described as 2 straight 2 flat) was produced. In addition, as shown in FIGS. 1 and 2, the end surface of the conductive member that contacts the fuel electrode is formed with a concave portion that matches the outer surface shape of the fuel electrode, and the end surface that contacts the interconnector is A recess is formed which conforms to the outer shape of the interconnector.

【0031】次に、電流取り出し用のNi金属板と電圧
端子をスタックに取り付け、炉内に投入し、1000℃
まで昇温し、セル内部に空気を、セル外部に燃料利用率
60%となるように水素を流しながら発電を行いスタッ
クの発電出力を測定した。
Next, a Ni metal plate for taking out current and a voltage terminal are attached to the stack, and the stack is put into a furnace at 1000 ° C.
The power generation was performed while flowing air to the inside of the cell and hydrogen to the outside of the cell so as to have a fuel utilization of 60%, and the power generation output of the stack was measured.

【0032】その後、スタックの単位面積当たりの出力
を、上記燃料電池セル一本の場合の単位面積当たりの出
力と比較し、性能の評価を行った。スタックの単位面積
当たりの出力が、燃料電池セル一本の場合の単位面積当
たりの出力の80%以上である場合が、導電部材での性
能劣化がないものと判断した。これらの結果を表1に示
す。
Thereafter, the output per unit area of the stack was compared with the output per unit area in the case of one fuel cell, and the performance was evaluated. When the output per unit area of the stack was 80% or more of the output per unit area in the case of one fuel cell, it was judged that there was no performance deterioration in the conductive member. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】この表1から、導電部材が一枚の導電シー
トである従来の場合の出力比が60%である(試料No.
1)のに対して、導電部材を、Niを主成分とする金属
繊維の集合体からなる導電シートを複数回折り畳んで形
成した本発明の試料では、出力比が80%以上であり、
導電部材による性能劣化が小さいことが判る。
From Table 1, the output ratio in the conventional case where the conductive member is a single conductive sheet is 60% (sample No.
In contrast to 1), in the sample of the present invention in which the conductive member is formed by folding a plurality of conductive sheets made of an aggregate of metal fibers containing Ni as a main component, the output ratio is 80% or more,
It can be seen that the performance deterioration due to the conductive member is small.

【0035】[0035]

【発明の効果】本発明の固体電解質型燃料電池では、導
電部材を、Niを主成分とする金属繊維の集合体からな
る導電シートを複数回折り畳んで形成したので、一枚の
導電シートを折り畳むことによりクッション性を向上さ
せ、セル間に生じる応力を緩和することができ、かつ一
枚の導電シートから形成されているために、電気的な損
失を押さえることができ、さらに薄い導電シートの複合
体であるために、セルとの接触面において、セルの形状
に合わせて接合でき、接触抵抗の低減が可能となる。従
って、本発明の固体電解質型燃料電池では、燃料電池セ
ルの性能を十分発揮させることができる。
According to the solid oxide fuel cell of the present invention, since the conductive member is formed by folding a plurality of conductive sheets each made of an aggregate of metal fibers containing Ni as a main component, one conductive sheet is folded. By improving the cushioning property, it is possible to reduce the stress generated between the cells, and since it is formed from a single conductive sheet, it is possible to suppress the electric loss, and to further reduce the thickness of the conductive sheet. Since it is a body, it can be joined to the cell at the contact surface according to the shape of the cell, and the contact resistance can be reduced. Therefore, in the solid oxide fuel cell of the present invention, the performance of the fuel cell can be sufficiently exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質型燃料電池のセルを導電部
材により接続した状態を示す説明図である。
FIG. 1 is an explanatory view showing a state in which cells of a solid oxide fuel cell of the present invention are connected by a conductive member.

【図2】図1の固体電解質型燃料電池の導電部材を示す
説明図である。
FIG. 2 is an explanatory view showing a conductive member of the solid oxide fuel cell of FIG.

【図3】実施例における燃料電池の2直スタック(a)
および2直2平スタック(b)を説明するための模式図
である。
FIG. 3 shows a two-stack fuel cell according to the embodiment (a).
FIG. 4 is a schematic diagram for explaining a two-by-two flat stack (b).

【図4】従来の固体電解質型燃料電池セルを示す斜視図
である。
FIG. 4 is a perspective view showing a conventional solid oxide fuel cell.

【図5】図4の燃料電池セルを9個接続したスタックを
示す説明図である。
5 is an explanatory diagram showing a stack in which nine fuel cells of FIG. 4 are connected.

【符号の説明】[Explanation of symbols]

1・・・燃料電池セル 2・・・空気極 3・・・固体電解質 4・・・燃料極 5・・・インイターコネクタ 10・・・導電部材 DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Air electrode 3 ... Solid electrolyte 4 ... Fuel electrode 5 ... In-ita connector 10 ... Conductive member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】円筒状の固体電解質の片面に空気極を、他
面に燃料極を形成してなり、前記空気極または前記燃料
極に電気的に接続されるインターコネクタを有する複数
の燃料電池セルと、該燃料電池セルのインターコネクタ
と他の燃料電池セルの前記空気極または前記燃料極とを
電気的に接続する導電部材とを具備してなる固体電解質
型燃料電池において、前記導電部材がNiを主成分とす
る金属繊維の集合体からなる導電シートを複数回折り畳
んで形成してなることを特徴とする固体電解質型燃料電
池。
1. A plurality of fuel cells comprising a cylindrical solid electrolyte having an air electrode formed on one surface and a fuel electrode formed on the other surface, and having an interconnector electrically connected to the air electrode or the fuel electrode. A solid oxide fuel cell comprising: a cell; and a conductive member that electrically connects the interconnector of the fuel cell and the air electrode or the fuel electrode of another fuel cell. A solid oxide fuel cell comprising a plurality of conductive sheets each formed of an aggregate of metal fibers containing Ni as a main component.
【請求項2】空気極または燃料極に当接する導電部材の
一方の端面に、前記空気極または前記燃料極の外面形状
に合致する凹部を形成するとともに、インターコネクタ
に当接する導電部材の他方の端面に、前記インターコネ
クタの外面形状に合致する凹部を形成してなることを特
徴とする請求項1記載の固体電解質型燃料電池。
2. A conductive member abutting on an air electrode or a fuel electrode has a concave portion formed on one end surface of the conductive member in contact with the outer surface of the air electrode or the fuel electrode, and the other of the conductive members abutting on the interconnector. 2. The solid oxide fuel cell according to claim 1, wherein a concave portion is formed on an end surface of the concave portion, the concave portion corresponding to an outer shape of the interconnector.
【請求項3】導電部材の厚みが1〜8mmであることを
特徴とする請求項1または2記載の固体電解質型燃料電
池。
3. The solid oxide fuel cell according to claim 1, wherein the thickness of the conductive member is 1 to 8 mm.
【請求項4】導電シートの厚みが3mm以下であること
を特徴とする請求項1乃至3のいずれかに記載の固体電
解質型燃料電池。
4. The solid oxide fuel cell according to claim 1, wherein the thickness of the conductive sheet is 3 mm or less.
JP9173844A 1997-06-30 1997-06-30 Solid electrolyte fuel cell Pending JPH1125999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173844A JPH1125999A (en) 1997-06-30 1997-06-30 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173844A JPH1125999A (en) 1997-06-30 1997-06-30 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH1125999A true JPH1125999A (en) 1999-01-29

Family

ID=15968216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173844A Pending JPH1125999A (en) 1997-06-30 1997-06-30 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH1125999A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017777A2 (en) * 2004-08-06 2006-02-16 Evogy, Inc. Tubular solid oxide fuel cells
WO2006046287A1 (en) * 2004-10-27 2006-05-04 Toto Ltd. Conductive member for solid oxide fuel cell stack
JP2008047461A (en) * 2006-08-18 2008-02-28 Toto Ltd Current collector member pasting device and fuel battery cell manufactured using it
JP2009187887A (en) * 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd Fuel electrode collector, and solid electrolyte fuel cell
JP2011151000A (en) * 2010-01-21 2011-08-04 Samsung Sdi Co Ltd Fuel cell module
JP2017033631A (en) * 2015-07-28 2017-02-09 アイシン精機株式会社 Solid oxide type fuel battery stack, solid oxide type fuel battery module and solid oxide type fuel battery system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017777A2 (en) * 2004-08-06 2006-02-16 Evogy, Inc. Tubular solid oxide fuel cells
WO2006017777A3 (en) * 2004-08-06 2006-04-06 Evogy Inc Tubular solid oxide fuel cells
WO2006046287A1 (en) * 2004-10-27 2006-05-04 Toto Ltd. Conductive member for solid oxide fuel cell stack
US7811717B2 (en) 2004-10-27 2010-10-12 Toto Ltd. Electrically conductive member for solid oxide fuel-stack
JP2008047461A (en) * 2006-08-18 2008-02-28 Toto Ltd Current collector member pasting device and fuel battery cell manufactured using it
JP2009187887A (en) * 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd Fuel electrode collector, and solid electrolyte fuel cell
JP2011151000A (en) * 2010-01-21 2011-08-04 Samsung Sdi Co Ltd Fuel cell module
US9147887B2 (en) 2010-01-21 2015-09-29 Samsung Sdi Co., Ltd. Fuel cell module
JP2017033631A (en) * 2015-07-28 2017-02-09 アイシン精機株式会社 Solid oxide type fuel battery stack, solid oxide type fuel battery module and solid oxide type fuel battery system

Similar Documents

Publication Publication Date Title
JP2004500685A (en) Planar fuel cell using nail current collector to increase effective surface area
JP2002343376A (en) Lamination structure of plate-shaped solid oxide fuel cell
JP4683742B2 (en) Fuel cell
KR102247129B1 (en) Electrochemical reaction unit and stack of electrochemical reaction cells
JPH1125999A (en) Solid electrolyte fuel cell
KR20120037175A (en) A fuel cell and a manufacturing metheod thereof
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JP5711927B2 (en) Solid oxide fuel cell
JP3297609B2 (en) Method for manufacturing fuel cell stack
JPH0479163A (en) Solid electrolyte type fuel cell
JP2000058101A (en) Cylindrical cell type solid electrolyte fuel cell
JP4663137B2 (en) Fuel cell
JP2799877B2 (en) Cylindrical solid electrolyte fuel cell
JP7112443B2 (en) Electrochemical reaction cell stack
JPH0722058A (en) Flat solid electrolyte fuel cell
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JPH0845516A (en) Plate type solid electrolyte fuel cell using mesh with different wire diameters
JP7237043B2 (en) Electrochemical reaction cell stack
JP7210509B2 (en) Electrochemical reaction cell stack
JP3301558B2 (en) Flat solid electrolyte fuel cell
JP6573719B2 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and method for producing electrochemical reaction unit
JP6902511B2 (en) Electrochemical reaction cell stack
JP2933227B2 (en) Solid oxide fuel cell module
JP2927816B2 (en) Solid oxide fuel cell stack
JPH09147884A (en) Flat solid electrolyte fuel cell