JPH0793146B2 - Molten carbonate fuel cell stack - Google Patents

Molten carbonate fuel cell stack

Info

Publication number
JPH0793146B2
JPH0793146B2 JP60142111A JP14211185A JPH0793146B2 JP H0793146 B2 JPH0793146 B2 JP H0793146B2 JP 60142111 A JP60142111 A JP 60142111A JP 14211185 A JP14211185 A JP 14211185A JP H0793146 B2 JPH0793146 B2 JP H0793146B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
gas
side wall
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60142111A
Other languages
Japanese (ja)
Other versions
JPS625569A (en
Inventor
曜一 瀬田
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60142111A priority Critical patent/JPH0793146B2/en
Publication of JPS625569A publication Critical patent/JPS625569A/en
Publication of JPH0793146B2 publication Critical patent/JPH0793146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、溶融炭酸塩型燃料電池積層体に係わり、特に
反応ガスのシール性能の向上化を図れるようにした燃料
電池積層体に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a molten carbonate fuel cell stack, and more particularly to a fuel cell stack capable of improving reaction gas sealing performance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、高能率のエネルギー変換装置として溶融炭酸塩型
燃料電池の開発が進められている。溶融炭酸塩型燃料電
池は、アルカリ炭酸塩からなる電解質を高温下で溶融状
態にし、電極反応を起こさせるものでリン酸型、固体電
解質型等の他の燃料電池に比べ電極反応が起り易く、高
価な貴金属触媒を必要とせず、また、発電熱効率が高い
などの大きな特徴を有している。
In recent years, a molten carbonate fuel cell has been developed as a highly efficient energy conversion device. A molten carbonate fuel cell is one in which an electrolyte composed of an alkali carbonate is brought into a molten state at a high temperature to cause an electrode reaction, and an electrode reaction easily occurs as compared with other fuel cells such as phosphoric acid type and solid electrolyte type. It has major features such as no need for expensive noble metal catalysts and high heat generation efficiency.

ところで、溶融炭酸塩型燃料電池で高出力の発電プラン
トを構成するには、単位電池の出力が微弱であることか
ら、複数の単位電池を直列に積層して積層体を構成し、
各単位電池の加算出力を得る必要がある。このため、従
来、溶融炭酸塩型燃料電池は第7図に示すような積層構
造に構成されていた。
By the way, in order to construct a high-output power plant with a molten carbonate fuel cell, since the output of the unit cell is weak, a plurality of unit cells are laminated in series to form a laminated body,
It is necessary to obtain the added output of each unit battery. For this reason, conventionally, the molten carbonate fuel cell has a laminated structure as shown in FIG.

すなわち、各単位電池は、一対の多孔質電極2a,2bと
これらの間に介在させた炭酸塩からなる電解質層3とで
構成される。これら単位電池は、単位電池間の電気
的な接続機能と各電極板への反応ガスの通路を形成する
機能とを兼ね備えた導電性のセパレータ4を介して積層
される。すなわち、セパレータ4は、導電性のセパレー
タ板本体5と、このセパレータ板本体5の一方の面の対
向する2辺部に例えばろう付け固定されたステンレス鋼
製の側壁部材6aと、前記セパレータ板本体5の他方の面
で上記側壁部材6aと直交する方向の対向する2辺部に例
えばろう付け固定されたステンレス鋼製の側壁部材6b
と、これら側壁部材6a,6bで形成された反応ガスの通路
A,Bに嵌合されて反応ガスを分流させる波板7a,7bとで構
成されている。
That is, each unit battery 1 is composed of a pair of porous electrodes 2a and 2b and an electrolyte layer 3 made of carbonate interposed therebetween. These unit batteries 1 are stacked via a conductive separator 4 having both an electrical connection function between the unit batteries 1 and a function of forming a passage of a reaction gas to each electrode plate. That is, the separator 4 includes a conductive separator plate body 5, a side wall member 6a made of stainless steel brazed and fixed to two opposite sides of one surface of the separator plate body 5, and the separator plate body. On the other surface of 5, the side wall member 6b made of stainless steel, for example, is brazed and fixed to two opposite side portions in the direction orthogonal to the side wall member 6a.
And the passage of the reaction gas formed by these side wall members 6a, 6b
It is composed of corrugated plates 7a and 7b which are fitted to A and B to divide the reaction gas.

このように構成された燃料電池積層体Xの4つの側面に
は、反応ガスの分配、回収機能を有する図示しないマニ
ホールドが当てがわれる。そして、これらマニホールド
のうちの一つに酸化剤ガスPを供給するとともに隣接す
るマニホールドに燃料ガスQを供給し、燃料電池積層体
Xの内部で両ガスを電極反応に寄与させ直流出力を得た
後、それぞれの対向するマニホールドからガスを排出し
得る構成となっている。
A manifold (not shown) having a function of distributing and recovering the reaction gas is applied to the four side surfaces of the fuel cell stack X thus configured. Then, the oxidant gas P was supplied to one of these manifolds, and the fuel gas Q was supplied to the adjacent manifold, and both gases contributed to the electrode reaction inside the fuel cell stack X to obtain a DC output. After that, the gas can be discharged from each of the facing manifolds.

このように構成された燃料電池では、各側壁部材6a,6b
と電解質層3との間でウェットシール部が形成され、両
反応ガスP,Qが燃料電池の内部の意図しない側へ漏洩、
混入するのを防止している。また、燃料電池積層体Xの
各側面と各マニホールドとの間にも、例えばセラミック
フェルトなどに溶融炭酸塩を含浸させてウェットシール
が形成される。
In the fuel cell configured in this way, the side wall members 6a, 6b
A wet seal portion is formed between the electrolyte layer 3 and the electrolyte layer 3, and both reaction gases P and Q leak to an unintended side inside the fuel cell,
Prevents mixture. A wet seal is also formed between each side face of the fuel cell stack X and each manifold by impregnating a molten felt with, for example, a ceramic felt.

しかしながら、燃料電池積層体Xとマニホールドとの間
にセラミックフェルトなどを介在させてウェットシール
部を構成するようにしたものにあっては、ステンレス鋼
製の側壁部材6a,6bとフェルトとの間のなじみが悪いこ
とに加え、側壁部材6a,6bに溶融炭酸塩による腐蝕減量
によって積層体Xとマニホールドとの間のシール性能が
経時的に低下するという問題があった。
However, in the case where the wet seal portion is formed by interposing a ceramic felt or the like between the fuel cell stack X and the manifold, between the side wall members 6a and 6b made of stainless steel and the felt. In addition to the poor familiarity, there is a problem that the sealing performance between the laminate X and the manifold is deteriorated with time due to the corrosion loss of the side wall members 6a and 6b due to the molten carbonate.

また、側壁部材6a,6bとセパレータ板本体5との溶接若
しくはろう付け部が、側壁部材6a,6bの表面を移動して
くる炭酸塩等によって冒され、側壁部材6a,6bとセパレ
ータ板本体5との間に隙間を生じてしまう。このような
隙間は、反応ガスの漏洩や混合を生じさせ、発電効率の
低下を招くという問題があった。
Further, the welded or brazed portion of the side wall members 6a, 6b and the separator plate body 5 is affected by the carbonate or the like moving on the surface of the side wall members 6a, 6b, so that the side wall members 6a, 6b and the separator plate body 5 are There will be a gap between and. There is a problem that such a gap causes the reaction gas to leak or mix, resulting in a decrease in power generation efficiency.

また、セパレータ4を製作するに際し、セパレータ板本
体5の端部に側壁部材6a,6bをろう付け若しくは溶接す
るという工程を含み、さらには側壁部材6a,6bのマニホ
ールドフランジ部に当たる面の加工精度をガスの気密の
面から十分に仕上げる必要があり、製作の繁雑化および
歩留りの低下を招くという問題があった。
In addition, when manufacturing the separator 4, it includes a step of brazing or welding the side wall members 6a and 6b to the end of the separator plate body 5, and further, the processing accuracy of the surface of the side wall members 6a and 6b that is in contact with the manifold flange is improved. There is a problem in that it is necessary to sufficiently finish the gas in terms of airtightness, resulting in complicated production and a reduction in yield.

〔発明の目的〕[Object of the Invention]

本発明は、このような事情に基づきなされたもので、単
位電池周縁部のシール、積層体とマニホールドとの間の
シールを確実に行なうことができ、しかも製作性の容易
な溶融炭酸塩型燃料電池積層体を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and is capable of reliably sealing the periphery of the unit cell and the stack and the manifold, and is a manufacturable and easy molten carbonate fuel. An object is to provide a battery stack.

〔発明の概要〕[Outline of Invention]

本発明は、炭酸塩電解質層の両面に一対の多孔質電極板
を配してなる単位電池を導電性のセパレータ板を介して
複数積層するとともに、前記電解質層の周辺部と前記セ
パレータ板の周辺部との間に介装されて前記単位電池の
積層方向とは直交する方向に反応ガスを導くガス通路を
形成する側壁部材に備えた溶融炭酸塩型燃料電池積層体
において、前記側壁部材が、アルミナ繊維と燃料電池の
運転温度で可塑性を示すガラスとの混合材料で形成され
ていることを特徴とする。
The present invention, while a plurality of unit batteries formed by arranging a pair of porous electrode plates on both sides of the carbonate electrolyte layer are laminated via a conductive separator plate, the peripheral portion of the electrolyte layer and the periphery of the separator plate. In the molten carbonate fuel cell stack provided in a sidewall member forming a gas passage for guiding a reaction gas in a direction orthogonal to the stacking direction of the unit cells, the sidewall member, It is characterized by being formed of a mixed material of alumina fibers and glass exhibiting plasticity at the operating temperature of the fuel cell.

〔発明の効果〕〔The invention's effect〕

本発明によれば、電解質層の周縁部とセパレータ板の周
縁との間に配置された反応ガスの漏洩、混合を防止する
側壁鵜材を、燃料電池の運転温度で可塑性を示すガラス
と、このガラスを保持する保持材としてのアルミナ繊維
とからなる混合材料で形成しているので、この側壁部材
におけるガラスの可塑性が有効に作用して、マニホール
ドとの間のなじみを良好に保持できる。しかも、上記組
成の側壁部材は炭酸塩に対して十分な耐食性を備えてい
るので、結局、ガスシールを確実に行うことができる。
さらに、燃料電池積層体を昇温させる時に、燃料電池積
層体に生じる熱歪みを側壁部材中のガラスの可塑性によ
って吸収することができるので、燃料電池積層体の健全
性を維持することができ、また上記側壁部材には炭酸塩
が含まれていないので、セパレータの上記側壁部材に接
触する部分に耐食処理を施す必要もない。
According to the present invention, the leakage of the reaction gas disposed between the peripheral edge of the electrolyte layer and the peripheral edge of the separator plate, a sidewall corrugated material for preventing mixing, a glass exhibiting plasticity at the operating temperature of the fuel cell, Since it is made of a mixed material composed of alumina fibers as a holding material for holding the glass, the plasticity of the glass in this side wall member effectively acts, and the familiarity with the manifold can be held well. Moreover, since the side wall member having the above composition has sufficient corrosion resistance against carbonates, the gas seal can be surely performed after all.
Furthermore, when the temperature of the fuel cell stack is raised, the thermal strain generated in the fuel cell stack can be absorbed by the plasticity of the glass in the side wall member, so the soundness of the fuel cell stack can be maintained, Further, since the side wall member does not contain carbonate, it is not necessary to perform corrosion resistance treatment on the portion of the separator that comes into contact with the side wall member.

また、この発明によれば、セパレータ板が単なる板状体
で良く、従来のように側壁部材をろう付けや溶接する必
要もないうえ、側壁部材に高い面精度を要求されない。
このため、製作性が良好になるとともに、溶接部やろう
付け部がなくなることにより、その部分での腐蝕による
隙間の発生という問題も解決される。
Further, according to the present invention, the separator plate may be a simple plate-like member, there is no need to braze or weld the side wall member as in the conventional case, and the side wall member is not required to have high surface accuracy.
For this reason, the manufacturability is improved, and the problem that a gap is generated due to corrosion at the portion due to the elimination of the welded portion and the brazed portion is solved.

〔発明の実施例〕Example of Invention

以下、図面を参照しながら本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

<実施例> 第1図に示すような燃料電池積層体Yを構成した。<Example> A fuel cell stack Y as shown in FIG. 1 was constructed.

複数の単位電池11はセパレータ板12を介して積層されて
いる。単位電池11は、第2図に示すように、後述する工
程で形成された電解質層13の一方の面の対向する2辺部
に側壁部材21a,21aを平行に配置し、これら側壁部材21
a,21a間にアノード14aと波板15aとを上記順に配し、ま
た電解質層13の他方の面で側壁部材21a,21aが配置され
ている辺部とは直交する2辺部に側壁部材21b,21bを平
行に配置し、これら側壁部材21b,21b間にカソード14bと
波板15bとを上記順に配して構成される。電解質層13
は、リチウムアルミネート/炭酸リチウム/炭酸カリウ
ム=40:28:32(w%)の混合粉末を金型に充填し、プレ
スにより約300Kg/cm2の圧力、460℃の温度でホットプレ
スして得た。電解室層13の厚みは2mmである。
A plurality of unit batteries 11 are stacked with a separator plate 12 in between. As shown in FIG. 2, the unit battery 11 has side wall members 21a, 21a arranged in parallel on two opposite side portions of one surface of an electrolyte layer 13 formed in a step described later.
The anode 14a and the corrugated plate 15a are arranged between the a and 21a in the above order, and the side wall member 21b is provided on the other surface of the electrolyte layer 13 at two sides orthogonal to the side where the side wall members 21a and 21a are disposed. , 21b are arranged in parallel, and the cathode 14b and the corrugated plate 15b are arranged between the side wall members 21b, 21b in the above order. Electrolyte layer 13
Is filled with mixed powder of lithium aluminate / lithium carbonate / potassium carbonate = 40: 28: 32 (w%) in a mold and hot-pressed by a press at a pressure of about 300 Kg / cm 2 and a temperature of 460 ° C. Obtained. The thickness of the electrolysis chamber layer 13 is 2 mm.

一方、側壁部材21a,21bは、それぞれホウ酸系ガラスや
リン酸系ガラスなどの燃料電池の運転温度で可塑性を示
すガラスと、このガラスを保持する保持材としてのアル
ミナ繊維とからなる混合材料で厚さ6mmに形成されてお
り、組立時には燃料電池の昇温時に揮散させ得る少量の
有機接着剤で電解室層13に固定される。
On the other hand, the side wall members 21a and 21b are made of a mixed material composed of glass showing plasticity at the operating temperature of the fuel cell such as boric acid glass or phosphoric acid glass, and alumina fiber as a holding material for holding the glass. It has a thickness of 6 mm, and is fixed to the electrolysis chamber layer 13 during assembly by a small amount of an organic adhesive that can be vaporized when the temperature of the fuel cell is raised.

アノード14aは、ニッケル合金多孔質体で形成され、側
壁部材21a,21aで形成された溝Cに装着されている。カ
ソード14bもニッケル合金多孔質体で形成され、側壁部
材21b,21bで形成された溝Dに装着されている。また、
これらアノード14aおよびカソード14bにそれぞれ添設さ
れる2つのガス分流用の波板15a,15bは、ステンレス鋼
で形成した。また、単位電池11間に介装されるセパレー
タ板12は、厚み0.2mmで縦横寸法を上記電解質層13と同
じにしたステンレス鋼(SUS316)板で形成されている。
The anode 14a is formed of a nickel alloy porous body and is mounted in the groove C formed by the side wall members 21a, 21a. The cathode 14b is also formed of a nickel alloy porous body and is mounted in the groove D formed by the side wall members 21b and 21b. Also,
Two corrugated plates 15a and 15b for gas distribution, which are respectively provided on the anode 14a and the cathode 14b, are made of stainless steel. Further, the separator plate 12 interposed between the unit batteries 11 is formed of a stainless steel (SUS316) plate having a thickness of 0.2 mm and having the same vertical and horizontal dimensions as the electrolyte layer 13.

このように構成された燃料電池積層体Yを、上下から図
示しない導電性のエンドプレートを当てがって通常の方
法で締付けた後、各側面に反応ガス案内用の図示しない
マニホールドを圧接した。なお、各マニホールドの周辺
フランジ部には従来と同様、電解質組成と同じ組成の溶
融炭酸塩を含浸したジルコニアフェルトを介装し、これ
をシール材とした。
The fuel cell stack Y having the above-mentioned structure was applied with a conductive end plate (not shown) from above and below and tightened by a usual method, and then a manifold (not shown) for guiding a reaction gas was pressed against each side surface. In addition, as in the conventional case, a zirconia felt impregnated with a molten carbonate having the same composition as the electrolyte composition was interposed in the peripheral flange portion of each manifold, and this was used as a sealing material.

このように構成された燃料電池を通常の方法により650
℃まで昇温し、酸化剤ガスQとして炭酸ガスを、また燃
料ガスPとして水素ガスを通流させ、供給ガス量F0と排
出ガス量F1との差ΔF(=F1−F0)の供給ガス量F0に対
する比(減少量ΔF/F0)を測定した。なお、同時に酸化
剤ガス側および燃料側相互のガスの混合による寄与をみ
るため、排出ガスのガス組成を調べたところ、いずれの
極側からも他方の極のガスが検出されなかった。したが
って、減少量はマニホールドシールからの漏洩量とみな
すことにした。
A fuel cell constructed in this way is
The temperature is raised to 0 ° C., carbon dioxide gas is made to flow as the oxidant gas Q, and hydrogen gas is made to flow as the fuel gas P, and the difference ΔF (= F 1 −F 0 ) between the supply gas amount F 0 and the exhaust gas amount F 1 The ratio (reduction amount ΔF / F 0 ) to the supply gas amount F 0 was measured. At the same time, in order to see the contribution of the mixing of the gases on the oxidant gas side and the fuel side, the gas composition of the exhaust gas was examined, and the gas of the other electrode was not detected from any of the electrode sides. Therefore, it was decided to consider the amount of decrease as the amount of leakage from the manifold seal.

なお、比較例として、第7図に示した従来の燃料電池積
層体Xを用いて同様にマニホールドシールからの漏洩量
を測定した。その結果を次表に示す。
As a comparative example, the leakage amount from the manifold seal was similarly measured using the conventional fuel cell stack X shown in FIG. The results are shown in the table below.

以上の結果から明らかなように、本実施例のものはマニ
ホールドからの反応ガスの漏洩量が減少しており、本実
施例での電池構造が有効であることが確認された。
As is clear from the above results, the leak amount of the reaction gas from the manifold was reduced in the example, and it was confirmed that the battery structure in the example was effective.

また、上記実施例と比較例の両燃料電池を200時間運転
させたのち、降温して分解したところ、比較例では側壁
部材6a,6bとセパレータ板本体5との間の溶接部の腐蝕
による隙間が10セル当り3か所みられ、降温直前ではこ
れら隙間を生じた3つの単位電池の電流電圧特性が他の
単位電池よりも0.2〜0.3V低かった。これに対し、本実
施例による燃料電池積層体Yには、このような腐蝕によ
るガスの漏洩路の形成が見られず、単位電池11間の電流
−電圧特性のばらつきも±5%以内に収まっていた。
Further, after both fuel cells of the above-mentioned example and the comparative example were operated for 200 hours, the temperature was lowered and disassembled. In the comparative example, a gap due to corrosion of the welded portion between the side wall members 6a, 6b and the separator plate body 5 was obtained. There were 3 cells per 10 cells, and the current-voltage characteristics of the three unit cells having these gaps were 0.2 to 0.3 V lower than those of the other unit cells immediately before cooling. On the other hand, in the fuel cell stack Y according to this example, no gas leakage path due to such corrosion was observed, and the variation in the current-voltage characteristics among the unit cells 11 was within ± 5%. Was there.

また、本実施例においてセパレータ板12は金属平板のみ
で形成されており、従来のようなシール用側壁部材6a,6
bの溶接が不要となるため、製造性が極めて良好であっ
た。
Further, in the present embodiment, the separator plate 12 is formed of only a metal flat plate, and the conventional side wall members for sealing 6a, 6
Since the welding of b was not necessary, the productivity was extremely good.

以上のように、本実施例の溶融炭酸塩型燃料電池積層体
Yによれば、シール性および製造性が良好でかつ経時的
性能の劣化を十分に抑制することができる。
As described above, according to the molten carbonate fuel cell stack Y of this example, the sealing property and the manufacturability are good, and the deterioration of the performance over time can be sufficiently suppressed.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、上記の実施例では電解質層の組成としてリ
チウムアルミネート/炭酸リチウム/炭酸カリウム=40
/28/32(w%)としたが、電解質層に補強/割れ低減の
ため、リチウム化アルミナ繊維やジルコン酸リチウムの
繊維を混入させても良い。また、少量の有機バインダー
や可塑剤を混入し、電解質層に柔軟性を付与して製作性
を高め、有機バインダーや可塑剤は燃料電池積層体の昇
温途上に揮散させてるようにしても良い。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the composition of the electrolyte layer is lithium aluminate / lithium carbonate / potassium carbonate = 40.
Although it was set to / 28/32 (w%), lithiated alumina fiber or lithium zirconate fiber may be mixed in the electrolyte layer for reinforcement / reduction of cracks. Further, a small amount of an organic binder or a plasticizer may be mixed to impart flexibility to the electrolyte layer to enhance manufacturability, and the organic binder or the plasticizer may be volatilized while the fuel cell stack is being heated. .

さらに前述の実施例ではセパレータ板12の平面寸法と電
解質層13の平面寸法とを同じにしたが、第3図に示すよ
うに、セパレータ板12が電解質層13よりも少々小さくて
良い。また、第4図に示すように、波板の代りに気孔率
の高い多孔質金属板26を用いてもよい。
Further, in the above-described embodiment, the plane size of the separator plate 12 and the plane size of the electrolyte layer 13 are the same, but as shown in FIG. 3, the separator plate 12 may be slightly smaller than the electrolyte layer 13. Further, as shown in FIG. 4, a porous metal plate 26 having a high porosity may be used instead of the corrugated plate.

なお本発明は、第5図および第6図に示すように、燃料
ガスPと酸化剤ガスQを燃料電池積層体Zの内部を積層
方向と直交する方向でかつ対角方向に互いに交差するよ
うに流通させるようにしたものにも適用可能である。
Note that, in the present invention, as shown in FIGS. 5 and 6, the fuel gas P and the oxidant gas Q are arranged to intersect each other inside the fuel cell stack Z in a direction orthogonal to the stacking direction and in a diagonal direction. It can also be applied to products that are distributed in the market.

すなわち、電解質層31の両面周縁部に、前記実施例と同
様にガラスとアルミナ繊維とからなる混合材料でL字状
に形成された側壁部材32a,32bを添設して燃料ガスPと
酸化剤ガスQとが電解質層31とを挟んで交差するように
クランク状の溝をそれぞれ形成し、これら溝に嵌合する
ようにアノード33a、カソード33bを配し、さらにこれら
電極上にガス通路と集電機能とを兼ね備えた多孔質金属
板34a,34bを配置する。このように構成された単位電池3
5を導電性のセパレータ板36を介して複数積層し、燃料
電池積層体Zを構成する。
That is, the sidewalls 32a and 32b, which are L-shaped and made of a mixed material composed of glass and alumina fibers, are added to the peripheral portions of both sides of the electrolyte layer 31 in the same manner as in the above-mentioned embodiment, and the fuel gas P and the oxidizer are added. Crank-shaped grooves are formed so that the gas Q intersects with the electrolyte layer 31, and the anode 33a and the cathode 33b are arranged so as to fit into these grooves. Porous metal plates 34a, 34b having an electric function are arranged. Unit battery 3 configured in this way
The fuel cell stack Z is formed by stacking a plurality of layers 5 through the conductive separator plate 36.

このようにして構成された燃料電池積層体Zの、対向す
る2つの側面の一方の側に燃料ガス供給・排出用のマニ
ホールド37a,37bを配し、他方の側に酸化剤ガス供給・
排出用のマニホールド38a,38bを配することにより燃料
電池を構成する。
In the thus constructed fuel cell stack Z, the fuel gas supply / discharge manifolds 37a, 37b are arranged on one side of two opposing side surfaces, and the oxidant gas supply / discharge is provided on the other side.
A fuel cell is constructed by arranging the exhaust manifolds 38a, 38b.

このような構成の燃料電池であっても本発明の効果を得
ることができることは言うまでもない。
It goes without saying that the effects of the present invention can be obtained even with a fuel cell having such a configuration.

【図面の簡単な説明】 第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
積層体の分解斜視図、第2図は同燃料電池積層体におけ
る電解質層を示す分解斜視図、第3図および第4図はそ
れぞれ異なる実施例に係る燃料電池積層体における単位
電池の構成例を示す分解側面図、第5図は本発明の他の
実施例における燃料電池積層体の構成を示す分解斜視
図、第6図は同燃料電池積層体を用いた燃料電池の斜視
図、第7図は従来の溶融炭酸塩型燃料電池積層体の分解
斜視図である。1135……単位電池、2a,2b……多孔質電極板、3,1
3,31……電解質層、4……セパレータ、5……セパレー
タ板本体、6a,6b,21a,21b,32a,32b……側壁部材、7a,7
b,15a,15b……波板、12,36……セパレータ板、14a,33a
……アノード、14b,33b……カソード、26,34a,34b……
多孔質金属板、37a,37b,38a,38b……マニホールド、A
〜D……溝、P……燃料ガス、Q……酸化剤ガス。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of a molten carbonate fuel cell stack according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing an electrolyte layer in the same fuel cell stack, FIG. 3 and FIG. 4 are exploded side views showing a constitutional example of a unit cell in a fuel cell stack according to different embodiments, and FIG. 5 shows a constitution of a fuel cell stack in another embodiment of the present invention. FIG. 6 is an exploded perspective view of a fuel cell using the fuel cell stack, and FIG. 7 is an exploded perspective view of a conventional molten carbonate fuel cell stack. 1 , 11 , 35 …… Unit battery, 2a, 2b …… Porous electrode plate, 3,1
3, 31 ... Electrolyte layer, 4 ... Separator, 5 ... Separator plate body, 6a, 6b, 21a, 21b, 32a, 32b ... Side wall member, 7a, 7
b, 15a, 15b …… Corrugated plate, 12,36 …… Separator plate, 14a, 33a
…… Anode, 14b, 33b …… Cathode, 26, 34a, 34b ……
Porous metal plate, 37a, 37b, 38a, 38b ... Manifold, A
~ D ... Groove, P ... Fuel gas, Q ... Oxidizer gas.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭酸塩電解質層の両面に一対の多孔質電極
板を配してなる単位電池を導電性のセパレータ板を介し
て複数積層するとともに、前記電解質層の周辺部と前記
セパレータ板の周辺部との間に介挿されて前記単位電池
の積層方向とは直交する方向に反応ガスを導くガス通路
を形成する側壁部材を備えた溶融炭酸塩型燃料電池積層
体において、前記側壁部材は、アルミナ繊維と燃料電池
の運転温度で可塑性を示すガラスとの混合材料で形成さ
れていることを特徴とする溶融炭酸塩型燃料電池積層
体。
1. A unit battery comprising a pair of porous electrode plates arranged on both sides of a carbonate electrolyte layer is laminated with a conductive separator plate in between, and a peripheral portion of the electrolyte layer and the separator plate are formed. In the molten carbonate fuel cell stack including a sidewall member that is interposed between the sidewall and a gas passage that guides a reaction gas in a direction orthogonal to the stacking direction of the unit cells, the sidewall member is A molten carbonate fuel cell laminate, which is formed of a mixed material of alumina fiber and glass that exhibits plasticity at the operating temperature of the fuel cell.
JP60142111A 1985-06-28 1985-06-28 Molten carbonate fuel cell stack Expired - Fee Related JPH0793146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142111A JPH0793146B2 (en) 1985-06-28 1985-06-28 Molten carbonate fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142111A JPH0793146B2 (en) 1985-06-28 1985-06-28 Molten carbonate fuel cell stack

Publications (2)

Publication Number Publication Date
JPS625569A JPS625569A (en) 1987-01-12
JPH0793146B2 true JPH0793146B2 (en) 1995-10-09

Family

ID=15307672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142111A Expired - Fee Related JPH0793146B2 (en) 1985-06-28 1985-06-28 Molten carbonate fuel cell stack

Country Status (1)

Country Link
JP (1) JPH0793146B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056161B2 (en) 2001-02-20 2006-06-06 Newfrey Llc Grounding stud
WO2007032442A1 (en) * 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. Membrane-membrane stiffening member union, membrane-catalyst layer union, membrane-electrode union, and polymer electrolyte type fuel cell
JP5101185B2 (en) * 2005-09-15 2012-12-19 パナソニック株式会社 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
CN101507030B (en) * 2006-11-07 2011-08-31 松下电器产业株式会社 Film-film reinforcing film assembly, film-catalyst layer assembly, film-electrode assembly, and polymer electrolyte fuel cell
DE102006056065B4 (en) 2006-11-20 2018-08-09 Newfrey Llc Pre-assembled contacting unit and mounting arrangement
EP2112705A4 (en) * 2007-01-22 2013-10-09 Panasonic Corp Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
US8182958B2 (en) 2007-01-29 2012-05-22 Panasonic Corporation Membrane membrane-reinforcement-member assembly, membrane catalyst-layer assembly, membrane electrode assembly and polymer electrolyte fuel cell
WO2008126350A1 (en) * 2007-03-14 2008-10-23 Panasonic Corporation Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and process for producing membrane-electrode assembly
US9680239B2 (en) 2014-04-23 2017-06-13 Ramco Specialties, Inc. Grounding stud and electrical connections
JP6122202B1 (en) * 2015-12-24 2017-04-26 日本碍子株式会社 Manifold and fuel cell stack structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933763A (en) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd Molten salt fuel cell

Also Published As

Publication number Publication date
JPS625569A (en) 1987-01-12

Similar Documents

Publication Publication Date Title
KR100949423B1 (en) Fuel Cell
US20050221158A1 (en) Separator and fuel cell using thereof
JP3064746B2 (en) Flat solid electrolyte fuel cell
JPH0793146B2 (en) Molten carbonate fuel cell stack
JPS61216257A (en) Separator for fuel cell
JP4366726B2 (en) Polymer electrolyte fuel cell
JP3113347B2 (en) Solid oxide fuel cell
JPH0775166B2 (en) Molten carbonate fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JPH03116659A (en) Solid electrolyte type fuel battery
JPH07201347A (en) Fused carbonate fuel cell
JPH06196198A (en) Solid electrolyte type fuel cell
JPH0850911A (en) Platelike solid electrolytic fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JP7210509B2 (en) Electrochemical reaction cell stack
JPH036624B2 (en)
JPH0624124B2 (en) Fuel cell
JPS62122070A (en) Molten carbonate fuel cell stack
JPH039589B2 (en)
JPS6276262A (en) Fused carbonate type fuel cell
JPH0777133B2 (en) Molten carbonate fuel cell
JPH07153471A (en) Internal manifold type solid electrolyte fuel cell
JP3110902B2 (en) Fuel cell
JPH0418433B2 (en)
JPH03147267A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees