JP5101185B2 - Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell - Google Patents

Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5101185B2
JP5101185B2 JP2007166281A JP2007166281A JP5101185B2 JP 5101185 B2 JP5101185 B2 JP 5101185B2 JP 2007166281 A JP2007166281 A JP 2007166281A JP 2007166281 A JP2007166281 A JP 2007166281A JP 5101185 B2 JP5101185 B2 JP 5101185B2
Authority
JP
Japan
Prior art keywords
membrane
reinforcing member
polymer electrolyte
main surface
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007166281A
Other languages
Japanese (ja)
Other versions
JP2007242637A (en
Inventor
岳太 岡西
堀  喜博
一仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007166281A priority Critical patent/JP5101185B2/en
Publication of JP2007242637A publication Critical patent/JP2007242637A/en
Application granted granted Critical
Publication of JP5101185B2 publication Critical patent/JP5101185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、膜−膜補強部材接合体、膜−触媒層接合体、膜−電極接合体、及び高分子形燃料電池に関する。 The present invention, membrane - membrane reinforcing member assembly, the membrane - catalyst layer assembly, a membrane - electrode assembly, and relates to a polymer electrolyte fuel cells.

高分子電解質形燃料電池は、水素などの燃料ガスと空気などの酸化ガスを白金などの触媒層を有するガス拡散層電極によって電気化学的に反応させるもので、電気と熱とを同時に発生させるものである。その構造は、まず水素イオンを選択的に輸送する高分子電解質膜の両面に、白金系の金属触媒を担持したカーボン粉末を触媒体とし、これに水素イオン伝導性高分子電解質を混合したもので触媒層を形成する。次に、この触媒層の外面に、燃料ガスの通気性を、電子伝導性を併せ持つ、例えば撥水処理を施したカーボンペーパーでガス拡散層を形成する。この触媒層とガス拡散層とを合わせてガス拡散電極と呼ぶ。   A polymer electrolyte fuel cell is one in which a fuel gas such as hydrogen and an oxidizing gas such as air are electrochemically reacted by a gas diffusion layer electrode having a catalyst layer such as platinum, and generates electricity and heat simultaneously. It is. The structure is a mixture of a carbon powder carrying a platinum-based metal catalyst on both sides of a polymer electrolyte membrane that selectively transports hydrogen ions, and a mixture of a hydrogen ion conductive polymer electrolyte. A catalyst layer is formed. Next, a gas diffusion layer is formed on the outer surface of the catalyst layer by using, for example, carbon paper that has both air permeability and electronic conductivity, such as water repellent treatment. The catalyst layer and the gas diffusion layer are collectively referred to as a gas diffusion electrode.

次に、燃料を供給する燃料ガスが外部に漏れたり、燃料ガスと酸化剤ガスとが互いに混合したりしないように、電極の周囲には高分子電解質膜を挟んでガスシール剤やガスケットを配置する。このシール剤やガスケットは、電極及び高分子電解質膜と一体化し、これをMEA(膜−電極接合体)と呼ぶ。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性セパレーターを配置する。セパレーターのMEAと接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。ガス流路はセパレーターと別に設けることもできるが、セパレーターの表面に溝を設けてガス流路とする方式が一般的である。   Next, a gas sealant or gasket is placed around the electrode with a polymer electrolyte membrane in order to prevent the fuel gas supplying the fuel from leaking outside or mixing the fuel gas and oxidant gas with each other. To do. This sealant or gasket is integrated with the electrode and the polymer electrolyte membrane, and this is called MEA (membrane-electrode assembly). On the outside of the MEA, a conductive separator for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is disposed. In the portion of the separator that comes into contact with the MEA, a reaction gas is supplied to the electrode surface, and a gas flow path for carrying away the generated gas and surplus gas is formed. The gas flow path can be provided separately from the separator, but a system in which a groove is provided on the surface of the separator to form a gas flow path is common.

多くの燃料電池は、上記のような構造の単電池を数多く重ねた積層構造をとっている。燃料電池の運転時には、電力発生と共に発熱が起こる。積層電池では単電池1〜3セル毎に冷却水路等を設けることにより、電池温度を一定に保つと同時に発生した熱エネルギーを温水などの形で利用することができる。   Many fuel cells have a stacked structure in which a large number of unit cells having the above-described structure are stacked. During operation of the fuel cell, heat is generated with the generation of electric power. In a laminated battery, by providing a cooling water channel or the like for every 1 to 3 cells of a single cell, the generated thermal energy can be used in the form of hot water or the like while keeping the battery temperature constant.

スタックを製造する際、高分子電解質膜は電極やセパレーターに挟持され、端板とボルトにより締め付けられる。締め付けの圧力に耐えられるように、また、長期間の使用において磨耗等による物理的な破損が生じないように、高分子電解質膜には十分な強度を持たせる必要がある。一方、プロトン伝導性を向上させる等の理由からは、高分子電解質膜をできるだけ薄くする必要がある。これらの理由から、厚さを増すことなく高分子電解質の強度を上げるための様々な検討がなされている。   When the stack is manufactured, the polymer electrolyte membrane is sandwiched between electrodes and a separator, and is tightened with end plates and bolts. The polymer electrolyte membrane needs to have sufficient strength so that it can withstand the tightening pressure and so that physical damage due to wear or the like does not occur during long-term use. On the other hand, for reasons such as improving proton conductivity, it is necessary to make the polymer electrolyte membrane as thin as possible. For these reasons, various studies have been made to increase the strength of the polymer electrolyte without increasing the thickness.

例えば、特許文献1において、高分子電解質膜の周縁部に額縁状の保護膜を取り付けることで、高分子電解質膜の破損の防止を意図した高分子電解質形燃料電池が提案されている(例えば、特許文献1の図1参照)。以下、この高分子電解質形燃料電池の構造について、図面を用いて説明する。図13は、特許文献1に記載の高分子電解質形燃料電池のうちの、固体高分子電解質膜と、ふっ素樹脂シート(保護膜)との位置関係を説明するための要部分解斜視図である。図13に示すように、特許文献1の高分子電解質形燃料電池では、固体高分子電解質膜1000の略矩形状を呈する主面の周縁部分のすべてを覆うようにして、ふっ素樹脂シート(保護膜)220及びふっ素樹脂シート(保護膜)240が固体高分子電解質膜1000の表の主面と裏の主面のそれぞれに配置されている。
特開平5−21077号公報
For example, Patent Document 1 proposes a polymer electrolyte fuel cell intended to prevent damage to the polymer electrolyte membrane by attaching a frame-shaped protective membrane to the peripheral portion of the polymer electrolyte membrane (for example, FIG. 1 of Patent Document 1). Hereinafter, the structure of the polymer electrolyte fuel cell will be described with reference to the drawings. FIG. 13 is an exploded perspective view of a main part for explaining the positional relationship between a solid polymer electrolyte membrane and a fluororesin sheet (protective membrane) in the polymer electrolyte fuel cell described in Patent Document 1. . As shown in FIG. 13, in the polymer electrolyte fuel cell of Patent Document 1, a fluororesin sheet (protective membrane) is formed so as to cover all of the peripheral portion of the main surface of the solid polymer electrolyte membrane 1000 having a substantially rectangular shape. ) 220 and a fluororesin sheet (protective film) 240 are disposed on each of the front main surface and the back main surface of the solid polymer electrolyte membrane 1000.
Japanese Patent Laid-Open No. 5-21077

しかしながら、上述の従来技術における高分子電解質形燃料電池は、特に高分子電解質膜と保護膜の接合体の部分において、低コストで容易に大量生産ができる構成(構造)を有していないため、高分子電解質形燃料電池の更なる低コスト化、及び更なる生産性の向上を意図(効率的な大量生産を意図)した場合に、未だ改善の余地があった。   However, since the polymer electrolyte fuel cell in the above-described prior art does not have a configuration (structure) that can be easily mass-produced at low cost, particularly in the joined part of the polymer electrolyte membrane and the protective membrane, There was still room for improvement when it was intended to further reduce the cost of the polymer electrolyte fuel cell and to further improve productivity (intended for efficient mass production).

本発明は、以上の観点に鑑みてなされたものであり、十分な耐久性を確保でき、かつ高分子電解質形燃料電池の低コスト化、及び大量生産に適した構成を有する、膜−膜補強部材接合体及びその製造方法を提供することを目的とする。また、本発明は、上記の本発明の膜−膜補強部材接合体を備えており、さらに触媒層が配置された、膜−触媒層接合体及びその製造方法を提供することを目的とする。さらに、本発明は、上記の本発明の膜−触媒層接合体を備えており、さらにガス拡散層が配置された、膜−電極接合体及びその製造方法を提供することを目的とする。また、本発明は、上記の本発明の膜−電極接合体を備えている、高分子電解質形燃料電池を提供することを目的とする。   The present invention has been made in view of the above viewpoints, and has a configuration capable of ensuring sufficient durability and having a configuration suitable for cost reduction and mass production of a polymer electrolyte fuel cell. An object is to provide a member assembly and a method for manufacturing the same. Another object of the present invention is to provide a membrane-catalyst layer assembly comprising the membrane-membrane reinforcing member assembly of the present invention, and further having a catalyst layer disposed thereon, and a method for producing the same. Furthermore, an object of the present invention is to provide a membrane-electrode assembly having the membrane-catalyst layer assembly of the present invention described above, and further having a gas diffusion layer disposed thereon, and a method for producing the same. Another object of the present invention is to provide a polymer electrolyte fuel cell comprising the membrane-electrode assembly of the present invention.

上述の従来技術における高分子電解質形燃料電池が、特に高分子電解質膜と保護膜の接合体の部分において、低コストで容易に大量生産ができる構成を有していないという理由を、以下、図面を用いてより具体的に説明する。   The reason why the polymer electrolyte fuel cell in the above-described prior art does not have a configuration that can be easily mass-produced at low cost, particularly in the joined portion of the polymer electrolyte membrane and the protective membrane, is as follows. It demonstrates more concretely using.

図14は特許文献1に記載の高分子電解質形燃料電池を、公知の薄膜積層体の製造技術を用いて大量生産しようと意図する場合に一般的に想定される製造法の一例を示す説明図である。例えば、特許文献1に記載の高分子電解質形燃料電池を、大量生産する場合、まず、図14に示すように、テープ状の固体高分子電解質膜260を製造してこれを巻回してロール262とし、テープ状の保護膜250(図14に示した保護膜220を連続的に形成したテープ状のもの)を製造してこれを巻回してロール252とする。次に、図14に示すような構成の製造機構を有する装置を用いて、テープ状の固体高分子電解質膜260の主面の少なくとも一方にテープ状の保護膜250を積層した積層体を製造する。例えば、ロール252及びロール262からそれぞれ、テープ状の保護膜250とテープ状の固体高分子電解質膜260とを引っ張り出して、一対のローラ290の間に挟んで一体化して積層体として巻回し、ロール280とする。なお、ローラ290の間に挟んで一体化する際に、熱処理、加圧処理、加圧熱処理を施す場合もあり、一体化する直前に、テープ状の保護膜250とテープ状の固体高分子電解質膜260の少なくとも一方の主面(接着面)に接着剤を塗工する場合もある。   FIG. 14 is an explanatory view showing an example of a manufacturing method generally assumed when the polymer electrolyte fuel cell described in Patent Document 1 is intended to be mass-produced using a known manufacturing technique of a thin film laminate. It is. For example, when mass-producing the polymer electrolyte fuel cell described in Patent Document 1, first, as shown in FIG. 14, a tape-shaped solid polymer electrolyte membrane 260 is manufactured and wound to roll 262. Then, a tape-shaped protective film 250 (a tape-shaped film in which the protective film 220 shown in FIG. 14 is continuously formed) is manufactured, and this is wound to form a roll 252. Next, a laminate having a tape-shaped protective film 250 laminated on at least one of the main surfaces of the tape-shaped solid polymer electrolyte membrane 260 is manufactured using an apparatus having a manufacturing mechanism configured as shown in FIG. . For example, the tape-shaped protective film 250 and the tape-shaped solid polymer electrolyte membrane 260 are pulled out from the roll 252 and the roll 262, respectively, and sandwiched between a pair of rollers 290 and wound as a laminate, The roll is 280. In some cases, the heat treatment, the pressure treatment, and the pressure heat treatment may be performed during the integration between the rollers 290. Immediately before the integration, the tape-shaped protective film 250 and the tape-shaped solid polymer electrolyte are provided. An adhesive may be applied to at least one main surface (adhesion surface) of the film 260.

このロール280を製造するときに、保護膜250には、当該保護膜250が進行する方向(テープ状の保護膜250の長手方向)D10に張力がかかる。このとき、保護膜250は非常に薄い膜(例えば、50μm以下)でありかつ主面の内部に開口部222が形成されているため、張力がかかると、保護膜250において張力のかかる方向と略垂直となる部分R200が浮き上がるようになる。これにより、ローラ290とロール252との間では、ローラ290により保護膜250を押えるときに上記R200の部分にしわがよる可能性が高くなる。また、ローラ290とロール280との間では張力により固体高分子電解質膜260から保護膜250のR200の部分が剥がれる可能性が高くなる。   When the roll 280 is manufactured, tension is applied to the protective film 250 in a direction D10 in which the protective film 250 travels (longitudinal direction of the tape-shaped protective film 250). At this time, the protective film 250 is a very thin film (for example, 50 μm or less), and the opening 222 is formed inside the main surface. The vertical portion R200 comes to be lifted. Accordingly, there is a high possibility that the portion of R200 is wrinkled between the roller 290 and the roll 252 when the protective film 250 is pressed by the roller 290. Further, there is a high possibility that the R200 portion of the protective film 250 is peeled off from the solid polymer electrolyte membrane 260 due to the tension between the roller 290 and the roll 280.

以上の理由により、図13に示した従来の構成を有する高分子電解質形燃料電池では、不良品を出さずに確実に製造する観点から、MEAを1つ1つ製造する手間のかかる複雑な製造方法を採用することしかできなかった。すなわち、バッチ式の方法で、固体電解質膜1000に保護膜220及び240を1つひとつ位置決めして貼り付けるという手間のかかる複雑で高コストな製造方法を採用することしかできなかった。   For the above reasons, in the polymer electrolyte fuel cell having the conventional configuration shown in FIG. 13, from the viewpoint of reliably manufacturing without producing defective products, it takes time and complexity to manufacture MEAs one by one. It was only possible to adopt the method. That is, it is only possible to employ a complicated and expensive manufacturing method in which the protective films 220 and 240 are positioned and attached to the solid electrolyte membrane 1000 one by one by a batch method.

このような課題を解決するために、本発明は、互いに対向しておりかつ略矩形状を呈する1対の第1主面及び第2主面を有する高分子電解質膜と、
前記第1主面の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、前記第1主面よりも小さな主面を有しかつ巻回できる膜状の形状を呈する、前記高分子電解質膜を補強するための1対の第1膜補強部材と、
前記第2主面の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、前記第2主面よりも小さな主面を有しかつ巻回できる膜状の形状を呈する、前記高分子電解質膜を補強するための1対の第2膜補強部材と、
を有しており、
前記1対の第1膜補強部材が配置された前記第1主面の前記1組の辺と、前記1対の第2膜補強部材が配置された前記第2主面の前記1組の辺とが略直交しており、
前記1対の第1膜補強部材と前記1対の第2膜補強部材とは、全体として前記高分子電解質膜の4辺に沿って前記第1主面と前記第2主面とに交互に存在するように延在しかつ前記高分子電解質膜の4隅の部分を挟むように配置されており、
前記第1膜補強部材及び前記第2膜補強部材は、ポリエチレンナフタレート、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、フルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフィド、ポリイミド、及び、ポリイミドアミドからなる群より選択される少なくとも1種の合成樹脂を含んで構成されている、膜−膜補強部材接合体を提供する。
In order to solve such a problem, the present invention provides a polymer electrolyte membrane having a pair of first main surface and second main surface facing each other and having a substantially rectangular shape,
It is arranged in a portion along a pair of opposite sides of the four sides of the first main surface, has a main surface smaller than the first main surface, and exhibits a film-like shape that can be wound. A pair of first membrane reinforcing members for reinforcing the polymer electrolyte membrane;
It is arranged in a portion along a pair of opposite sides of the four sides of the second main surface, has a main surface smaller than the second main surface, and exhibits a film-like shape that can be wound. A pair of second membrane reinforcing members for reinforcing the polymer electrolyte membrane;
Have
The one set of sides of the first main surface where the pair of first membrane reinforcing members are arranged, and the one set of sides of the second main surface where the pair of second membrane reinforcing members are arranged And are almost orthogonal,
The pair of first membrane reinforcing members and the pair of second membrane reinforcing members are alternately arranged on the first main surface and the second main surface along the four sides of the polymer electrolyte membrane as a whole. Extending so as to exist and arranged so as to sandwich the four corner portions of the polymer electrolyte membrane ,
The first membrane reinforcing member and the second membrane reinforcing member are polyethylene naphthalate, polytetrafluoroethylene, polyethylene terephthalate, fluoroethylene-propylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, polyethylene, polypropylene. And at least one synthetic resin selected from the group consisting of polyetheramide, polyetherimide, polyetheretherketone, polyethersulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, and polyimideamide. The membrane-membrane reinforcing member assembly is provided.

本発明の膜−膜補強部材接合体は、上述のように、主面(第1主面又は第2主面)の4辺のうちの互いに対向する1組の辺のみに1対の補強部材(第1膜補強部材又は第2膜補強部材)が配置された構成を有している。そのため、図14を用いて先に説明した燃料電池の保護膜250におけるR200の部分が存在しない。従って、本発明の膜−膜補強部材接合体は、テープ状の高分子電解質膜にテープ状の補強部材(第1膜補強部材又は第2膜補強部材)を積層して、高分子電解質膜及び補強部材の積層体からなるロールを製造するといった、公知の薄膜積層体の大量生産技術を容易に適用することが可能となる。従って、本発明の膜−膜補強部材接合体は、先に述べたバッチ式の方法で、固体電解質膜に保護膜を1つひとつ位置決めして貼り付けるという手間のかかる複雑で高コストな製造方法を採用する必要がなく、低コストで容易に大量生産することが可能となる。また、本発明の膜−膜補強部材接合体は、上述のように、1対の第1膜補強部材と1対の第2膜補強部材とは、全体として前記高分子電解質膜の4辺に沿って延在しかつ前記高分子電解質膜の4隅の部分を挟むように配置された構成を有している。これにより、本発明の膜−膜補強部材接合体は高分子電解質膜の破損を十分に防止できる十分な機械的強度を有する。すなわち、本発明の膜−膜補強部材接合体は、1対の第1膜補強部材と、1対の第2膜補強部材とにより十分な耐久性が確保される。   As described above, the membrane-membrane reinforcing member assembly of the present invention has a pair of reinforcing members only on one set of sides facing each other among the four sides of the main surface (first main surface or second main surface). (The 1st film | membrane reinforcement member or the 2nd film | membrane reinforcement member) has the structure arrange | positioned. Therefore, there is no R200 portion in the protective film 250 of the fuel cell described above with reference to FIG. Therefore, the membrane-membrane reinforcing member assembly of the present invention is obtained by laminating a tape-like reinforcing member (first membrane reinforcing member or second membrane reinforcing member) on a tape-like polymer electrolyte membrane, and the polymer electrolyte membrane and It is possible to easily apply a known mass production technique for a thin film laminate, such as manufacturing a roll made of a laminate of reinforcing members. Therefore, the membrane-membrane reinforcing member assembly of the present invention is a complicated and expensive manufacturing method in which the protective film is positioned and attached to the solid electrolyte membrane one by one by the batch method described above. Therefore, mass production can be easily performed at low cost. In the membrane-membrane reinforcing member assembly of the present invention, as described above, the pair of first membrane reinforcing members and the pair of second membrane reinforcing members are arranged on the four sides of the polymer electrolyte membrane as a whole. The polymer electrolyte membrane is arranged so as to extend along the four corners of the polymer electrolyte membrane. Thereby, the membrane-membrane reinforcing member assembly of the present invention has sufficient mechanical strength that can sufficiently prevent damage to the polymer electrolyte membrane. That is, in the membrane-membrane reinforcing member assembly of the present invention, sufficient durability is ensured by the pair of first membrane reinforcing members and the pair of second membrane reinforcing members.

したがって、本発明の膜−膜補強部材接合体は、上述したように1対の第1膜補強部材と、1対の第2膜補強部材とを高分子電解質膜を介して配置させた大量生産に適した構造を有するため、本発明の膜−膜補強部材接合体を用いて高分子電解質形燃料電池を構成すれば、十分な耐久性を確保しつつ、高分子電解質形燃料電池の更なる低コスト化、及び更なる生産性の向上を容易に図ることができる。   Therefore, the membrane-membrane reinforcing member assembly of the present invention is mass-produced in which a pair of first membrane reinforcing members and a pair of second membrane reinforcing members are arranged via a polymer electrolyte membrane as described above. Therefore, if a polymer electrolyte fuel cell is configured using the membrane-membrane reinforcing member assembly of the present invention, sufficient durability can be ensured while the polymer electrolyte fuel cell is further improved. Cost reduction and further improvement in productivity can be easily achieved.

更に、本発明の膜−膜補強部材接合体は、第1主面(又は第2主面)の4辺のうちの互いに対向する1組の辺のみに第1膜補強部材(又は第2膜補強部材)を配置する構成を有するため、図14に示した保護膜220及び240を主面の周縁部分のすべてに配置する構成を有する特許文献1に記載の高分子電解質形燃料電池よりも材料コストを低減できる。   Furthermore, the membrane-membrane reinforcing member assembly of the present invention has the first membrane reinforcing member (or the second membrane) only on one set of sides facing each other among the four sides of the first main surface (or the second main surface). 14 is a material more than the polymer electrolyte fuel cell described in Patent Document 1 having a configuration in which the protective films 220 and 240 shown in FIG. 14 are arranged on all the peripheral portions of the main surface. Cost can be reduced.

また、本発明は、先に述べた本発明の膜−膜補強部材接合体と、
膜−膜補強部材接合体の高分子電解質の第1主面のうちの第1膜補強部材が配置されてない領域の少なくとも一部に配置される第1触媒層と、
膜−膜補強部材接合体の高分子電解質の第2主面のうちの第2膜補強部材が配置されていない領域の少なくとも一部に配置されている第2触媒層と、
を有する、膜−触媒層接合体を提供する。
The present invention also includes the membrane-membrane reinforcing member assembly of the present invention described above,
A first catalyst layer disposed in at least a part of a region of the first main surface of the polymer electrolyte of the membrane-membrane reinforcing member assembly where the first membrane reinforcing member is not disposed;
A second catalyst layer disposed in at least part of a region where the second membrane reinforcing member is not disposed in the second main surface of the polymer electrolyte of the membrane-membrane reinforcing member assembly;
A membrane-catalyst layer assembly is provided.

以上のように、本発明の膜−触媒層接合体は、本発明の膜−膜補強部材接合体を備える構成を有しているので、本発明の膜−触媒層接合体を用いて高分子電解質形燃料電池を構成すれば、高分子電解質形燃料電池の更なる低コスト化、及び更なる生産性の向上を容易に図ることができる。   As described above, since the membrane-catalyst layer assembly of the present invention has a configuration including the membrane-membrane reinforcing member assembly of the present invention, a polymer using the membrane-catalyst layer assembly of the present invention is used. If the electrolyte fuel cell is configured, it is possible to easily further reduce the cost of the polymer electrolyte fuel cell and further improve the productivity.

更に、本発明は、先に述べた本発明の膜−触媒層接合体と、
膜−触媒層接合体の第1触媒層を被覆するように配置される第1ガス拡散層と、
膜−触媒層接合体の第2触媒層を被覆するように配置される第2ガス拡散層と、
を有する、膜−電極接合体を提供する。
Furthermore, the present invention relates to the membrane-catalyst layer assembly of the present invention described above,
A first gas diffusion layer arranged to cover the first catalyst layer of the membrane-catalyst layer assembly;
A second gas diffusion layer arranged to cover the second catalyst layer of the membrane-catalyst layer assembly;
A membrane-electrode assembly is provided.

以上のように、本発明の膜−電極接合体は、本発明の膜−膜補強部材接合体、および、膜−触媒層接合体を備える構成を有しているので、本発明の膜−電極接合体を用いて高分子電解質形燃料電池を構成すれば、高分子電解質形燃料電池の更なる低コスト化、及び更なる生産性の向上を容易に図ることができる。   As described above, since the membrane-electrode assembly of the present invention has a configuration including the membrane-membrane reinforcing member assembly of the present invention and the membrane-catalyst layer assembly, the membrane-electrode of the present invention. If a polymer electrolyte fuel cell is configured using the joined body, further cost reduction and further improvement in productivity of the polymer electrolyte fuel cell can be easily achieved.

また、本発明は、先に述べた本発明の膜−電極接合体と、前記膜−電極接合体の前記第1ガス拡散層が形成された主面の周縁部に該第1ガス拡散層を囲むように配置された額縁状の第1ガスケットと、一方の主面に一方の反応ガスの溝状の流路が形成され該一方の主面が前記膜−電極接合体の前記第1ガス拡散層と前記第1ガスケットとに接触するように配置された板状の第1セパレータと、前記膜−電極接合体の前記第2ガス拡散層が形成された主面の周縁部に該第2ガス拡散層を囲むように配置された額縁状の第2ガスケットと、一方の主面に他方の反応ガスの溝状の流路が形成され該一方の主面が前記膜−電極接合体の前記第2ガス拡散層と前記第2ガスケットとに接触するように配置された板状の第2セパレータと、を具備している、高分子電解質形燃料電池を提供する。 The present invention also provides the membrane-electrode assembly of the present invention described above and the first gas diffusion layer on the peripheral portion of the main surface of the membrane-electrode assembly where the first gas diffusion layer is formed. A frame-shaped first gasket arranged so as to surround, and a groove-like flow path of one reaction gas is formed on one main surface, and the one main surface is the first gas diffusion of the membrane-electrode assembly A plate-like first separator disposed so as to contact the layer and the first gasket, and the second gas at a peripheral portion of the main surface on which the second gas diffusion layer of the membrane-electrode assembly is formed. A frame-shaped second gasket arranged so as to surround the diffusion layer, and a groove-like flow path for the other reaction gas is formed on one main surface, and the one main surface is the first of the membrane-electrode assembly. and comprises 2 and the second separator arranged plate-shaped so as to contact with the gas diffusion layer and the second gasket, the Providing a polymer electrolyte fuel cell.

以上のように、本発明の高分子電解質形燃料電池は、本発明の膜−膜補強部材接合体、膜−触媒層接合体、および、本発明の膜−電極接合体を備える構成を有しているので、本発明の高分子電解質形燃料電池によれば、更なる低コスト化、及び、更なる生産性の向上を容易に図ることができる。   As described above, the polymer electrolyte fuel cell of the present invention has a configuration comprising the membrane-membrane reinforcing member assembly of the present invention, the membrane-catalyst layer assembly, and the membrane-electrode assembly of the present invention. Therefore, according to the polymer electrolyte fuel cell of the present invention, further cost reduction and further productivity improvement can be easily achieved.

本発明によれば、十分な耐久性を確保でき、かつ高分子電解質形燃料電池の低コスト化、及び大量生産に適した構成を有する、膜−膜補強部材接合体を提供することができる。 According to the present invention, it can ensure sufficient durability, and cost reduction of the polymer electrolyte fuel cell, and has a configuration suitable for mass production, film - can provide a membrane reinforcing member assembly.

また、本発明によれば、上記の本発明の膜−膜補強部材接合体を備えており、さらに触媒層が配置された、高分子電解質形燃料電池の低コスト化、及び大量生産に適した膜−触媒層接合体を提供することができる。 Further, according to the present invention, the membrane-membrane reinforcing member assembly of the present invention described above is provided, and a catalyst layer is further disposed, which is suitable for cost reduction and mass production of a polymer electrolyte fuel cell. film - it is possible to provide a catalyst layer assembly.

さらに、本発明によれば、上記の本発明の膜−触媒層接合体を備えており、さらにガス拡散層が配置された、高分子電解質形燃料電池の低コスト化、及び大量生産に適した膜−電極接合体を提供することができる。 Furthermore, according to the present invention, the membrane-catalyst layer assembly of the present invention described above is provided, and a gas diffusion layer is further disposed, which is suitable for cost reduction and mass production of a polymer electrolyte fuel cell. it is possible to provide an electrode assembly - film.

また、本発明によれば、上記の本発明の膜−電極接合体を備えている、低コスト化、及び大量生産に適した高分子電解質形燃料電池を提供することができる。 Further, according to the present invention, films of the present invention described above - can provide includes a electrode assembly, cost reduction, and polymer electrolyte fuel cells suitable for mass production.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。なお、同一または相当部分には同一符号を付し、重複する説明は省略することもある。
[第1実施形態]
図1は、本発明の膜−膜補強部材接合体の第1実施形態の基本構成の一例を示す斜視図である。図2は、図1に示す膜−膜補強部材接合体1にさらに触媒層が配置された膜−触媒層接合体(本発明の膜−触媒層接合体の第1実施形態)の基本構成の一例を示す斜視図である。また、図3は、図2に示す膜−触媒層接合体2にさらにガス拡散層が配置された膜−電極接合体(本発明の膜−電極接合体の第1実施形態)の基本構成の一例を示す斜視図である。さらに、図4は、図3に示す膜−電極接合体3を具備する高分子電解質形燃料電池(本発明の高分子電解質形燃料電池の第1実施形態)の基本構成の一例(単電池の部分)を示す断面図である。
The best mode for carrying out the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description may be abbreviate | omitted.
[First Embodiment]
FIG. 1 is a perspective view showing an example of the basic configuration of the first embodiment of the membrane-membrane reinforcing member assembly of the present invention. FIG. 2 shows a basic configuration of a membrane-catalyst layer assembly (first embodiment of the membrane-catalyst layer assembly of the present invention) in which a catalyst layer is further arranged on the membrane-membrane reinforcing member assembly 1 shown in FIG. It is a perspective view which shows an example. 3 shows the basic configuration of the membrane-electrode assembly (the first embodiment of the membrane-electrode assembly of the present invention) in which a gas diffusion layer is further arranged on the membrane-catalyst layer assembly 2 shown in FIG. It is a perspective view which shows an example. FIG. 4 shows an example of the basic configuration of a polymer electrolyte fuel cell (the first embodiment of the polymer electrolyte fuel cell of the present invention) provided with the membrane-electrode assembly 3 shown in FIG. It is sectional drawing which shows a part.

まず図1に示す第1実施形態の膜−膜補強部材接合体1について説明する。   First, the membrane-membrane reinforcing member assembly 1 according to the first embodiment shown in FIG. 1 will be described.

図1に示すように、膜−膜補強部材接合体1は、第1膜補強部材22及び24と、第2膜補強部材26及び28とが、全体として高分子電解質膜10の4辺に沿って延在しかつ高分子電解質膜10の4隅の部分を挟むように(以下、「井桁組状に」という)配置された構成を有している。   As shown in FIG. 1, the membrane-membrane reinforcing member assembly 1 includes a first membrane reinforcing member 22 and 24 and a second membrane reinforcing member 26 and 28 as a whole along four sides of the polymer electrolyte membrane 10. And is arranged so as to sandwich the four corners of the polymer electrolyte membrane 10 (hereinafter, referred to as “in a cross-beam pattern”).

即ち、図1に示すように、膜−膜補強部材接合体1は、互いに対向しておりかつ略矩形状を呈する1対の第1主面F1及び第2主面F2を有する高分子電解質膜10と、第1主面F1の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、第1主面F1よりも小さな主面を有しかつ膜状の形状を呈する1対の第1膜補強部材22及び24と、第2主面F2の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、第2主面F2よりも小さな主面を有しかつ膜状の形状を呈する1対の第2膜補強部材26及び28とを、主として具備する構成を有している。   That is, as shown in FIG. 1, the membrane-membrane reinforcing member assembly 1 includes a polymer electrolyte membrane having a pair of first main surface F1 and second main surface F2 that face each other and have a substantially rectangular shape. 10 and four sides of the first main surface F1 are disposed along a pair of opposing sides, and have a main surface smaller than the first main surface F1 and have a film-like shape. A pair of first membrane reinforcing members 22 and 24 and a main surface that is disposed along a pair of opposing sides of the four sides of the second main surface F2 and that is smaller than the second main surface F2. And a pair of second membrane reinforcing members 26 and 28 having a film-like shape.

そして、第1実施形態の膜−膜補強部材接合体1は、第1主面F1の4辺のうちの互いに対向する1組の辺のみに1対の補強部材(第1膜補強部材22及び24)が配置された構成を有している。更に、膜−膜補強部材接合体1は、第2主面F2の4辺のうちの互いに対向する1組の辺(第2主面F2の4辺のうち、第1膜補強部材22及び24が配置されている第1主面F1の1組の辺と略直交する一組の辺)のみに1対の補強部材(第2膜補強部材26及び28)が配置された構成を有している。   The membrane-membrane reinforcing member assembly 1 according to the first embodiment includes a pair of reinforcing members (the first membrane reinforcing member 22 and the first membrane reinforcing member 22) on only one set of opposing sides of the four sides of the first main surface F1. 24) is arranged. Further, the membrane-membrane reinforcing member assembly 1 includes a pair of opposing sides among the four sides of the second main surface F2 (the first membrane reinforcing members 22 and 24 among the four sides of the second main surface F2). A pair of reinforcing members (second membrane reinforcing members 26 and 28) is disposed only on a pair of sides that are substantially orthogonal to a pair of sides of the first main surface F1 on which is disposed. Yes.

そのため、図14を用いて先に説明した燃料電池の保護膜250におけるR200の部分が存在しない。従って、膜−膜補強部材接合体1は、図5〜図10を用いて後述するように、テープ状の高分子電解質膜140にテープ状の補強部材(第1膜補強部材142A及び142B等)を積層して、高分子電解質膜及び補強部材の積層体143を製造するといった、公知の薄膜積層体の大量生産技術を容易に適用することが可能となる。   Therefore, there is no R200 portion in the protective film 250 of the fuel cell described above with reference to FIG. Therefore, the membrane-membrane reinforcing member assembly 1 includes a tape-like polymer electrolyte membrane 140 and a tape-like reinforcing member (first membrane reinforcing members 142A and 142B, etc.) as will be described later with reference to FIGS. Thus, it is possible to easily apply a known mass production technique for a thin film laminate, such as producing a laminate 143 of a polymer electrolyte membrane and a reinforcing member.

従って、膜−膜補強部材接合体1は、バッチ式の方法で、固体電解質膜10に補強部材(第1膜補強部材22及び24、又は、第2膜補強部材26及び28)を1つひとつ位置決めして貼り付けるという手間のかかる複雑で高コストな製造方法を採用する必要がなく、低コストで容易に大量生産することが可能となる。   Therefore, the membrane-membrane reinforcing member assembly 1 is a batch type method in which the solid electrolyte membrane 10 is provided with reinforcing members (first membrane reinforcing members 22 and 24 or second membrane reinforcing members 26 and 28) one by one. It is not necessary to employ a complicated and expensive manufacturing method that requires time and positioning and can be easily mass-produced at low cost.

また、膜−膜補強部材接合体1は、上述のように、第1膜補強部材22及び24と、第2膜補強部材26及び28とが、全体として高分子電解質膜10の4辺に沿って延在しかつ高分子電解質膜10の4隅の部分を挟むように(井桁組状に)配置された構成を有している。これにより、膜−膜補強部材接合体1は高分子電解質膜10の破損を十分に防止できる十分な機械的強度を有する。   In addition, as described above, the membrane-membrane reinforcing member assembly 1 includes the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 as a whole along the four sides of the polymer electrolyte membrane 10. And is arranged so as to sandwich the four corners of the polymer electrolyte membrane 10 (in a cross-beam pattern). Thereby, the membrane-membrane reinforcing member assembly 1 has a sufficient mechanical strength that can sufficiently prevent the polymer electrolyte membrane 10 from being damaged.

以上により、膜−膜補強部材接合体1は、第1膜補強部材22及び24と、第2膜補強部材26及び28とを高分子電解質膜10を介して配置させた大量生産に適した構造を有するため、この膜−膜補強部材接合体1を用いて高分子電解質形燃料電池を構成すれば、十分な耐久性を確保しつつ、高分子電解質形燃料電池の更なる低コスト化、及び更なる生産性の向上を容易に図ることができる。   As described above, the membrane-membrane reinforcing member assembly 1 has a structure suitable for mass production in which the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 are arranged via the polymer electrolyte membrane 10. Therefore, if a polymer electrolyte fuel cell is configured using the membrane-membrane reinforcing member assembly 1, further cost reduction of the polymer electrolyte fuel cell can be achieved while ensuring sufficient durability, and Further improvement in productivity can be easily achieved.

なお、図1に示した膜−膜補強部材接合体1においては、第1膜補強部材22及び24の外縁と高分子電解質膜10の外縁とが一致しており、かつ、第2膜補強部材26及び28と高分子電解質膜10の外縁とが一致している態様について説明したが、第1膜補強部材22及び24と、第2膜補強部材26及び28とは、全体として高分子電解質膜10の4辺に沿って延在していればよく、第1膜補強部材22及び24、並びに、第2膜補強部材26及び28の高分子電解質膜10上の配置位置は、この態様に限定されるものではない。   In the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the outer edges of the first membrane reinforcing members 22 and 24 coincide with the outer edge of the polymer electrolyte membrane 10, and the second membrane reinforcing member. Although the embodiment in which the outer edges of the polymer electrolyte membrane 10 coincide with each other has been described, the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 as a whole are polymer electrolyte membranes. 10, and the arrangement positions of the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 on the polymer electrolyte membrane 10 are limited to this mode. Is not to be done.

例えば、高分子電解質膜10の外縁が第1膜補強部材22の外縁よりも外に突出するように第1膜補強部材22が高分子電解質膜10上に配置されていてもよい。また、例えば、第1膜補強部材22の外縁が高分子電解質膜10の外縁よりも外に突出するように第1膜補強部材22が高分子電解質膜10上に配置されていてもよい。更に、高分子電解質膜10上での第1膜補強部材24の配置位置、高分子電解質膜10上での第2膜補強部材26の配置位置、及び、高分子電解質膜10上での第2膜補強部材28の配置位置も、上記の高分子電解質膜10上での第1膜補強部材22の配置位置と同様にしてもよい。   For example, the first membrane reinforcing member 22 may be disposed on the polymer electrolyte membrane 10 such that the outer edge of the polymer electrolyte membrane 10 protrudes outside the outer edge of the first membrane reinforcing member 22. Further, for example, the first membrane reinforcing member 22 may be disposed on the polymer electrolyte membrane 10 such that the outer edge of the first membrane reinforcing member 22 protrudes outside the outer edge of the polymer electrolyte membrane 10. Furthermore, the arrangement position of the first membrane reinforcing member 24 on the polymer electrolyte membrane 10, the arrangement position of the second membrane reinforcing member 26 on the polymer electrolyte membrane 10, and the second position on the polymer electrolyte membrane 10. The arrangement position of the membrane reinforcing member 28 may be the same as the arrangement position of the first membrane reinforcing member 22 on the polymer electrolyte membrane 10.

次に、膜−膜補強部材接合体1の各構成要素について説明する。   Next, each component of the membrane-membrane reinforcing member assembly 1 will be described.

本発明の膜−膜補強部材接合体は、第1主面(又は第2主面)の4辺のうちの互いに対向する1組の辺のみに第1膜補強部材(又は第2膜補強部材)を配置する構成を有するため、図14に示した保護膜220及び240を主面の周縁部分のすべてに配置する構成を有する特許文献1に記載の高分子電解質形燃料電池よりも材料コストを低減できる。   The membrane-membrane reinforcing member assembly of the present invention has the first membrane reinforcing member (or the second membrane reinforcing member) only on one set of sides facing each other among the four sides of the first main surface (or the second main surface). 14), the material cost is lower than that of the polymer electrolyte fuel cell described in Patent Document 1 having the configuration in which the protective films 220 and 240 shown in FIG. 14 are arranged on all the peripheral portions of the main surface. Can be reduced.

高分子電解質膜10は、プロトン伝導性を有している。高分子電解質膜10としては、陽イオン交換基として、スルホン酸基、カルボン酸基、ホスホン酸基、及びスルホンイミド基を有するものが好ましくあげられる。プロトン伝導性の観点から、高分子電解質膜10はスルホン酸基を有するものが特に好ましい。   The polymer electrolyte membrane 10 has proton conductivity. Preferred examples of the polymer electrolyte membrane 10 include those having sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, and sulfonimide groups as cation exchange groups. From the viewpoint of proton conductivity, the polymer electrolyte membrane 10 preferably has a sulfonic acid group.

スルホン酸基を有する高分子電解質膜を構成する樹脂としては、イオン交換容量が0.5〜1.5meq/g乾燥樹脂であることが好ましい。高分子電解質膜のイオン交換容量が0.5meq/g乾燥樹脂以上であると、発電時における高分子電解質膜の抵抗値の上昇をより十分に低減できるので好ましく、イオン交換容量が1.5meq/g乾燥樹脂以下であると、高分子電解質膜の含水率が増大せず、膨潤しにくくなり、触媒層中の細孔が閉塞するおそれがないため好ましい。以上と同様の観点から、イオン交換容量は0.8〜1.2meq/g乾燥樹脂が特に好ましい。   The resin constituting the polymer electrolyte membrane having a sulfonic acid group is preferably a dry resin having an ion exchange capacity of 0.5 to 1.5 meq / g. It is preferable that the ion exchange capacity of the polymer electrolyte membrane is 0.5 meq / g dry resin or more because an increase in the resistance value of the polymer electrolyte membrane during power generation can be more sufficiently reduced, and the ion exchange capacity is 1.5 meq / g. It is preferable that it is less than g dry resin since the water content of the polymer electrolyte membrane does not increase, it becomes difficult to swell, and the pores in the catalyst layer are not likely to be clogged. From the same viewpoint as described above, the ion exchange capacity is particularly preferably 0.8 to 1.2 meq / g dry resin.

高分子電解質としては、CF2=CF−(OCF2CFX)m−Op−(CF2)n−SO3Hで表されるパーフルオロビニル化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0または1を示し、Xはフッ素原子またはトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体であることが好ましい。 As the polymer electrolyte, CF 2 = CF- (OCF 2 CFX) m-Op- (CF 2) a perfluorovinyl compound represented by the n-SO 3 H (m is an integer of 0 to 3, n is 1 represents an integer of 1 to 12, p represents 0 or 1, and X represents a fluorine atom or a trifluoromethyl group.) And a copolymer comprising a polymer unit based on tetrafluoroethylene It is preferable.

上記フルオロビニル化合物の好ましい例としては、下記式(4)〜(6)で表される化
合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜
3の整数を示す。
Preferable examples of the fluorovinyl compound include compounds represented by the following formulas (4) to (6). However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is 1 to 8.
An integer of 3 is shown.

CF2=CFO(CF2)q−SO3H ・・・(4)
CF2=CFOCF2CF(CF3)O(CF2)r−SO3H ・・・(5)
CF2=CF(OCF2CF(CF3))tO(CF22−SO3H ・・・(6)
第1膜補強部材22及び第1膜補強部材24は、高分子電解質膜10の第1主面F1の4辺のうちの互いに対向する1組の辺に沿う部分に配置されている。また、第1膜補強部材22及び第1膜補強部材24は、第1主面F1よりも小さい略長方形の主面F22及びF24を有している。これらの第1膜補強部材22及び第1膜補強部材24が高分子電解質膜10に配置されることにより、高分子電解質形燃料電池4(後述の図4参照)を構成した際に、締結圧力がかかることなどによる高分子電解質膜10の破損が十分に防止される。
CF 2 = CFO (CF 2) q-SO 3 H ··· (4)
CF 2 = CFOCF 2 CF (CF 3) O (CF 2) r-SO 3 H ··· (5)
CF 2 = CF (OCF 2 CF (CF 3)) tO (CF 2) 2 -SO 3 H ··· (6)
The 1st membrane reinforcement member 22 and the 1st membrane reinforcement member 24 are arrange | positioned in the part along a pair of edge | sides which mutually oppose among 4 sides of the 1st main surface F1 of the polymer electrolyte membrane 10. FIG. Moreover, the 1st membrane reinforcement member 22 and the 1st membrane reinforcement member 24 have the substantially rectangular main surfaces F22 and F24 smaller than the 1st main surface F1. When the first membrane reinforcing member 22 and the first membrane reinforcing member 24 are arranged on the polymer electrolyte membrane 10, the fastening pressure when the polymer electrolyte fuel cell 4 (see FIG. 4 described later) is configured. The polymer electrolyte membrane 10 is sufficiently prevented from being damaged due to such as.

第2膜補強部材26及び第2膜補強部材28は、高分子電解質膜10の第2主面F2の4辺のうちの互いに対向する1組の辺に沿う部分に配置されている。また、第2膜補強部材26及び第1膜補強部材28は、第2主面F2よりも小さい略長方形の主面F26及びF28を有している。これらの第2膜補強部材26及び第2膜補強部材28が高分子電解質膜10に配置されることにより、高分子電解質形燃料電池4を構成した際に、締結圧力がかかることなどによる高分子電解質膜10の破損が十分に防止される。   The 2nd membrane reinforcement member 26 and the 2nd membrane reinforcement member 28 are arrange | positioned in the part along a pair of mutually opposing edge | side of 4 sides of the 2nd main surface F2 of the polymer electrolyte membrane 10. FIG. Moreover, the 2nd film | membrane reinforcement member 26 and the 1st film | membrane reinforcement member 28 have the substantially rectangular main surfaces F26 and F28 smaller than the 2nd main surface F2. The second membrane reinforcing member 26 and the second membrane reinforcing member 28 are disposed on the polymer electrolyte membrane 10, so that when the polymer electrolyte fuel cell 4 is configured, a polymer is applied due to a fastening pressure. Damage to the electrolyte membrane 10 is sufficiently prevented.

そして、図1に膜−膜補強部材接合体1においては、1対の第1膜補強部材22及び24と、1対の第2膜補強部材26及び28とが、高分子電解質膜10を介して井桁組み状となるように互いに配置されている。第1膜補強部材22及び24と、第2膜補強部材26及び28との位置関係をより具体的に説明すると、膜−膜補強部材接合体1を第1主面の法線方向から見た場合、第1膜補強部材22及び24と、第2膜補強部材26及び28とは、第1膜補強部材22の主面F22の長手方向(長辺方向)及び第1膜補強部材24の主面F24の長手方向(長辺方向)と、第2膜補強部材26の主面のF26の長手方向(長辺方向)及び第2膜補強部材28の主面F28の長手方向(長辺方向)とが、互いに略垂直となるように配置(高分子電解質膜10が互いの間に配置された状態で互いに略垂直となるように配置)されている。   In the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, a pair of first membrane reinforcing members 22 and 24 and a pair of second membrane reinforcing members 26 and 28 are interposed via the polymer electrolyte membrane 10. They are arranged so as to form a cross girder. The positional relationship between the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 will be described more specifically. The membrane-membrane reinforcing member assembly 1 is viewed from the normal direction of the first main surface. In this case, the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 are the longitudinal direction (long side direction) of the main surface F22 of the first membrane reinforcing member 22 and the main membrane of the first membrane reinforcing member 24. The longitudinal direction (long side direction) of the surface F24, the longitudinal direction (long side direction) of F26 of the main surface of the second membrane reinforcing member 26, and the longitudinal direction (long side direction) of the main surface F28 of the second membrane reinforcing member 28. Are disposed so as to be substantially perpendicular to each other (arranged so that the polymer electrolyte membranes 10 are substantially perpendicular to each other with the polymer electrolyte membranes 10 disposed therebetween).

また、第1膜補強部材22及び第1膜補強部材24、又は、第2膜補強部材26及び第2膜補強部材28を構成する材料としては、耐久性の観点から、ポリエチレンナフタレート、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、フルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフィド、ポリイミド、及び、ポリイミドアミドからなる群より選択される少なくとも1種の合成樹脂であることが好ましい。   In addition, as a material constituting the first membrane reinforcing member 22 and the first membrane reinforcing member 24, or the second membrane reinforcing member 26 and the second membrane reinforcing member 28, polyethylene naphthalate, polytetra Fluoroethylene, polyethylene terephthalate, fluoroethylene-propylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, polyethylene, polypropylene, polyether amide, polyether imide, polyether ether ketone, polyether sulfone, polyphenylene sulfide, It is preferably at least one synthetic resin selected from the group consisting of polyarylate, polysulfide, polyimide, and polyimideamide.

さらに、第1膜補強部材22の厚さ、第1膜補強部材24の厚さ、第2膜補強部材26の厚さ、及び第2膜補強部材28の厚さは、本発明の効果を得られる範囲であれば特に限定されないが、本発明の効果をより確実に得る観点からは、第1膜補強部材22の厚さと第1膜補強部材24の厚さとは等しいことが好ましい。同様の観点から、第2膜補強部材26の厚さと第2膜補強部材28の厚さとは等しいことが好ましい。   Furthermore, the thickness of the first membrane reinforcing member 22, the thickness of the first membrane reinforcing member 24, the thickness of the second membrane reinforcing member 26, and the thickness of the second membrane reinforcing member 28 obtain the effects of the present invention. The thickness of the first membrane reinforcing member 22 is preferably equal to the thickness of the first membrane reinforcing member 24 from the viewpoint of more reliably obtaining the effects of the present invention. From the same viewpoint, the thickness of the second membrane reinforcing member 26 and the thickness of the second membrane reinforcing member 28 are preferably equal.

次に、図2に示す第1実施形態の膜−触媒層接合体2について説明する。   Next, the membrane-catalyst layer assembly 2 of the first embodiment shown in FIG. 2 will be described.

膜−触媒層接合体2は、第1主面F1の略中央に第1触媒層31が配置され、さらに第2主面F2の略中央に第2触媒層32(図4参照)が配置されていること以外は、図1に示した膜−膜補強部材接合体1と同様の構成を有している。   In the membrane-catalyst layer assembly 2, the first catalyst layer 31 is disposed substantially at the center of the first main surface F1, and the second catalyst layer 32 (see FIG. 4) is disposed substantially at the center of the second main surface F2. Except for this, it has the same configuration as the membrane-membrane reinforcing member assembly 1 shown in FIG.

製造の容易さの観点から、第1触媒層31の厚さは、第1膜補強部材22の厚さ及び第1膜補強部材24の厚さ以下であることが好ましく、等しいことがより好ましい。また、同様の観点から、第2触媒層32の厚さは、第2膜補強部材26及び第2膜補強部材28の厚さ以下であることが好ましく、等しいことがより好ましい。   From the viewpoint of ease of manufacture, the thickness of the first catalyst layer 31 is preferably equal to or less than the thickness of the first membrane reinforcing member 22 and the thickness of the first membrane reinforcing member 24, and more preferably equal. From the same viewpoint, the thickness of the second catalyst layer 32 is preferably equal to or less than the thicknesses of the second membrane reinforcing member 26 and the second membrane reinforcing member 28, and more preferably equal.

第1触媒層31の構成及び第2触媒層32の構成は、本発明の効果を得られるものであれば特に限定されず、公知の燃料電池に搭載されているガス拡散電極の触媒層と同様の構成を有していてもよい。また、第1触媒層31の構成及び第2触媒層32の構成は、同一であってもよく、異なっていてもよい。   The structure of the 1st catalyst layer 31 and the structure of the 2nd catalyst layer 32 will not be specifically limited if the effect of this invention is acquired, It is the same as that of the catalyst layer of the gas diffusion electrode mounted in the well-known fuel cell. You may have the structure of. Moreover, the structure of the 1st catalyst layer 31 and the structure of the 2nd catalyst layer 32 may be the same, and may differ.

例えば、第1触媒層31の構成及び第2触媒層32の構成としては、電極触媒が担持された導電性炭素粒子と、陽イオン(水素イオン)伝導性を有する高分子電解質とを含む構成を有していてもよく、更に、ポリテトラフルオロエチレンなどの撥水材料を更に含む構成を有していてもよい。尚、高分子電解質としては、上述した高分子電解質膜10の構成材料と同種のものを使用してもよく異なる種類のものを使用してもよい。高分子電解質としては、高分子電解質膜10の構成材料として記載したものを使用することができる。   For example, the configuration of the first catalyst layer 31 and the configuration of the second catalyst layer 32 include a configuration including conductive carbon particles carrying an electrode catalyst and a polymer electrolyte having cation (hydrogen ion) conductivity. You may have, and you may have the structure which further contains water-repellent materials, such as polytetrafluoroethylene. In addition, as a polymer electrolyte, the same kind as the constituent material of the polymer electrolyte membrane 10 mentioned above may be used, and a different kind may be used. As a polymer electrolyte, what was described as a constituent material of the polymer electrolyte membrane 10 can be used.

上記の電極触媒は、金属粒子(例えば貴金属からなる金属粒子)からなり、導電性炭素粒子(粉末)に担持されて用いられる。当該金属粒子は、特に限定されず種々の金属を使用することができるが、電極反応活性の観点ら、白金、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、クロム、鉄、チタン、マンガン、コバルト、ニッケル、モリブデン、タングステン、アルミニウム、ケイ素、亜鉛およびスズからなる群より選択される少なくとも1種であることが好ましい。なかでも、白金および白金との合金が好ましく、白金とルテニウムの合金が、アノードにおいては触媒の活性が安定することから特に好ましい。   The electrode catalyst is made of metal particles (for example, metal particles made of a noble metal) and is used by being supported on conductive carbon particles (powder). The metal particles are not particularly limited and various metals can be used, but from the viewpoint of electrode reaction activity, platinum, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, chromium, iron, titanium, manganese It is preferably at least one selected from the group consisting of cobalt, nickel, molybdenum, tungsten, aluminum, silicon, zinc and tin. Among these, platinum and an alloy of platinum are preferable, and an alloy of platinum and ruthenium is particularly preferable in the anode because the activity of the catalyst is stabilized.

また、電極触媒の粒子は平均粒径1〜5nmであることがより好ましい。平均粒径1nm以上の電極触媒は工業的に調製が容易であるため好ましく、また、5nm以下であると、電極触媒質量あたりの活性をより十分に確保しやすくなるため、燃料電池のコストダウンにつながり好ましい。   The electrode catalyst particles more preferably have an average particle size of 1 to 5 nm. An electrode catalyst having an average particle diameter of 1 nm or more is preferable because it is easy to prepare industrially, and if it is 5 nm or less, the activity per mass of the electrode catalyst is more easily secured, thereby reducing the cost of the fuel cell. Connection is preferable.

上記の導電性炭素粒子は比表面積が50〜1500m/gであることが好ましい。比表面積が50m/g以上であると、電極触媒の担持率を上げることが容易であり、得られた第1触媒層31及び第2触媒層32の出力特性をより十分に確保できることから好ましく、比表面積が1500m/g以下であると、十分な大きさの細孔をより容易に確保できるようになりかつ高分子電解質による被覆がより容易となり、第1触媒層31及び第2触媒層32の出力特性をより十分に確保できることから好ましい。上記と同様の観点から、比表面積は200〜900m/gが特に好ましい。 The conductive carbon particles preferably have a specific surface area of 50 to 1500 m 2 / g. A specific surface area of 50 m 2 / g or more is preferable because it is easy to increase the loading ratio of the electrode catalyst and the output characteristics of the obtained first catalyst layer 31 and second catalyst layer 32 can be more sufficiently secured. When the specific surface area is 1500 m 2 / g or less, sufficiently large pores can be secured more easily and coating with a polymer electrolyte becomes easier, and the first catalyst layer 31 and the second catalyst layer This is preferable because the output characteristics of 32 can be more sufficiently secured. From the same viewpoint as described above, the specific surface area is particularly preferably 200 to 900 m 2 / g.

また、導電性炭素粒子は、その平均粒径が0.1〜1.0μmであることが好ましい。0.1μm以上であると、第1触媒層31及び第2触媒層32中のガス拡散性をより十分に確保し易くなり、フラッディングをより確実に防止できるようになるため好ましい。また、導電性炭素粒子の平均粒径が1.0μm以下であると、高分子電解質による電極触媒の被覆状態をより容易に良好な状態とし易くなり、高分子電解質による電極触媒の被覆面積をより十分に確保し易くなるため、十分な電極性能をより確保し易くなり好ましい。   The conductive carbon particles preferably have an average particle size of 0.1 to 1.0 μm. When the thickness is 0.1 μm or more, gas diffusibility in the first catalyst layer 31 and the second catalyst layer 32 is more easily secured, and flooding can be prevented more reliably. In addition, when the average particle diameter of the conductive carbon particles is 1.0 μm or less, it becomes easy to easily make the electrode catalyst covered with the polymer electrolyte in a good state, and the electrode catalyst covered area with the polymer electrolyte is more increased. Since it becomes easy to ensure enough, it becomes easy to ensure sufficient electrode performance more and is preferable.

第1触媒層31及び第2触媒層32は、例えば、公知の燃料電池のガス拡散電極の触媒層の製造方法を用いて形成することができる。例えば、第1触媒層31及び第2触媒層32の構成材料(例えば、電極触媒が担持された導電性炭素粒子と、高分子電解質)と、分散媒と、を少なくとも含む液(触媒層形成用インク)を調製し、これを用いて作製することができる。   The 1st catalyst layer 31 and the 2nd catalyst layer 32 can be formed using the manufacturing method of the catalyst layer of the gas diffusion electrode of a well-known fuel cell, for example. For example, a liquid (for forming a catalyst layer) containing at least a constituent material of the first catalyst layer 31 and the second catalyst layer 32 (for example, conductive carbon particles carrying an electrode catalyst and a polymer electrolyte) and a dispersion medium. Ink) can be prepared and used.

次に、図3に示す第1実施形態の膜−電極接合体3について説明する。   Next, the membrane-electrode assembly 3 according to the first embodiment shown in FIG. 3 will be described.

膜−電極接合体3は、第1触媒層31を覆うようにして略矩形状の主面F5を有する第1ガス拡散層41が配置され、さらに第2触媒層32を覆うようにして略矩形状の主面F6を有する第2ガス拡散層42が配置されていること以外は、図2に示した膜−触媒層接合体2と同様の構成を有している。   In the membrane-electrode assembly 3, a first gas diffusion layer 41 having a substantially rectangular main surface F5 is disposed so as to cover the first catalyst layer 31, and further, a substantially rectangular shape is formed so as to cover the second catalyst layer 32. The membrane-catalyst layer assembly 2 has the same configuration as the membrane-catalyst layer assembly 2 shown in FIG. 2 except that the second gas diffusion layer 42 having the main surface F6 having the shape is arranged.

第1ガス拡散層の主面F5の面積は、第1触媒層の主面F3の面積以上であることが好ましく、第1触媒層の主面F3の面積よりも大きいことがより好ましい。さらに、第2ガス拡散層の主面F6の面積は、第2触媒層の主面F4の面積以上であることが好ましく、第2触媒層の主面F4の面積よりも大きいことがより好ましい。   The area of the main surface F5 of the first gas diffusion layer is preferably equal to or larger than the area of the main surface F3 of the first catalyst layer, and more preferably larger than the area of the main surface F3 of the first catalyst layer. Furthermore, the area of the main surface F6 of the second gas diffusion layer is preferably equal to or larger than the area of the main surface F4 of the second catalyst layer, and more preferably larger than the area of the main surface F4 of the second catalyst layer.

さらに、第1ガス拡散層の主面F5の面積が第1触媒層の主面F3の面積よりも大きく、かつ、第2ガス拡散層の主面F6の面積が第2触媒層の主面F4の面積よりも大きい場合、略矩形の主面F5の4辺のうちの互いに対向する1組の辺であって、第1膜補強部材22及び第1膜補強部材24に最も近い位置に配置される1組の辺を含む第1ガス拡散層の端部は、第1膜補強部材22の主面F22及び第1膜補強部材24の主面F24上に載置された状態となっていることが好ましい。また、略矩形の主面F6の4辺のうちの互いに対向する1組の辺であって、第2膜補強部材26及び第2膜補強部材28に最も近い位置に配置される1組の辺を含む第2ガス拡散層の端部は、第2膜補強部材26の主面F26及び第2膜補強部材28の主面F28上に載置された状態となっていることが好ましい。第1ガス拡散層41及び第2ガス拡散層42を上記の様に配置することにより、膜−電極接合体3の締結時において、ガス拡散層41の端部及びガス拡散層42の端部が、高分子電解質膜10に直接接触することがなく、高い耐久性をより確実に得ることができる。   Furthermore, the area of the main surface F5 of the first gas diffusion layer is larger than the area of the main surface F3 of the first catalyst layer, and the area of the main surface F6 of the second gas diffusion layer is the main surface F4 of the second catalyst layer. Of the four sides of the substantially rectangular main surface F5, which is a pair of sides facing each other, and is disposed at a position closest to the first membrane reinforcing member 22 and the first membrane reinforcing member 24. End portions of the first gas diffusion layer including a set of sides are placed on the main surface F22 of the first membrane reinforcing member 22 and the main surface F24 of the first membrane reinforcing member 24. Is preferred. In addition, one set of sides of the four sides of the substantially rectangular main surface F6 facing each other, the set of sides arranged closest to the second membrane reinforcing member 26 and the second membrane reinforcing member 28 It is preferable that the edge part of the 2nd gas diffusion layer containing is in the state mounted on the main surface F26 of the 2nd film | membrane reinforcement member 26, and the main surface F28 of the 2nd film | membrane reinforcement member 28. FIG. By arranging the first gas diffusion layer 41 and the second gas diffusion layer 42 as described above, when the membrane-electrode assembly 3 is fastened, the end of the gas diffusion layer 41 and the end of the gas diffusion layer 42 are In addition, high durability can be obtained more reliably without directly contacting the polymer electrolyte membrane 10.

第1ガス拡散層41の構成及び第2ガス拡散層42の構成は、本発明の効果を得られるものであれば特に限定されず、公知の燃料電池に搭載されているガス拡散電極のガス拡散層と同様の構成を有していてもよい。また、第1ガス拡散層41の構成及び第2ガス拡散層42の構成は、同一であってもよく、異なっていてもよい。   The configuration of the first gas diffusion layer 41 and the configuration of the second gas diffusion layer 42 are not particularly limited as long as the effects of the present invention can be obtained, and the gas diffusion of a gas diffusion electrode mounted on a known fuel cell is performed. You may have the structure similar to a layer. Further, the configuration of the first gas diffusion layer 41 and the configuration of the second gas diffusion layer 42 may be the same or different.

例えば、第1ガス拡散層41及び第2ガス拡散層42としては、ガス透過性を持たせるために、高表面積のカーボン微粉末、造孔材、カーボンペーパーまたはカーボンクロスなどを用いて作製された、多孔質構造を有する導電性基材を用いてもよい。また、十分な排水性を得る観点から、フッ素樹脂を代表とする撥水性高分子などを第1ガス拡散層及び第2ガス拡散層42の中に分散させてもよい。さらに、十分な電子伝導性を得る観点から、カーボン繊維、金属繊維またはカーボン微粉末などの電子伝導性材料で第1ガス拡散層41及び第2ガス拡散層42を構成してもよい。   For example, the first gas diffusion layer 41 and the second gas diffusion layer 42 are produced using high surface area carbon fine powder, pore former, carbon paper, carbon cloth, or the like in order to provide gas permeability. Alternatively, a conductive substrate having a porous structure may be used. Further, from the viewpoint of obtaining sufficient drainage, a water repellent polymer typified by a fluororesin may be dispersed in the first gas diffusion layer and the second gas diffusion layer 42. Furthermore, from the viewpoint of obtaining sufficient electron conductivity, the first gas diffusion layer 41 and the second gas diffusion layer 42 may be made of an electron conductive material such as carbon fiber, metal fiber, or carbon fine powder.

また、第1ガス拡散層41と第1触媒層31との間、及び、第2ガス拡散層42と第2触媒層32との間には、撥水性高分子とカーボン粉末とで構成される撥水カーボン層を設けてもよい。これにより、膜−電極接合体における水管理(膜−電極接合体の良好な特性維持に必要な水の保持、及び、不必要な水の迅速な排水)をより容易かつより確実に行うことができる。   Further, between the first gas diffusion layer 41 and the first catalyst layer 31 and between the second gas diffusion layer 42 and the second catalyst layer 32, a water repellent polymer and carbon powder are used. A water repellent carbon layer may be provided. Thereby, water management in the membrane-electrode assembly (retention of water necessary for maintaining good characteristics of the membrane-electrode assembly and quick drainage of unnecessary water) can be performed more easily and reliably. it can.

次に、図4に示す第1実施形態の燃料電池4について説明する。   Next, the fuel cell 4 of the first embodiment shown in FIG. 4 will be described.

高分子電解質形燃料電池4は、主として、図3に示した膜−電極接合体3と、ガスケット60及びガスケット62と、セパレーター50及びセパレーター52とから構成されている。   The polymer electrolyte fuel cell 4 mainly includes the membrane-electrode assembly 3 shown in FIG. 3, a gasket 60 and a gasket 62, and a separator 50 and a separator 52.

ガスケット60及びガスケット62は、膜−電極接合体3に供給される燃料ガスおよび酸化剤ガスの外部へのリーク防止や混合を防止するため、膜−電極接合体3の周囲に配置される。   The gasket 60 and the gasket 62 are disposed around the membrane-electrode assembly 3 in order to prevent leakage and mixing of the fuel gas and the oxidant gas supplied to the membrane-electrode assembly 3 to the outside.

膜−電極接合体3の外側には、膜−電極接合体3を機械的に固定するための一対のセパレーター50及びセパレーター52が配置されている。セパレーター50の、膜−電極接合体3の第1ガス拡散層41(第1ガス拡散層41の外側の主面F5)に接触する内面には、酸化剤ガス又は燃料ガスを膜−電極接合体3に供給し、かつ、電極反応生成物、未反応の反応ガスを含むガスを反応場から膜−電極接合体3の外部に運び去るためのガス流路78が形成されている。また、セパレーター52の、膜−電極接合体3の第2ガス拡散層42(第2ガス拡散層42の外側の主面F6)に接触する内面には、膜−電極接合体3に供給し、かつ、電極反応生成物、未反応の反応ガスを含むガスを反応場から膜−電極接合体3の外部に運び去るためのガス流路78が形成されている。   A pair of separator 50 and separator 52 for mechanically fixing the membrane-electrode assembly 3 are disposed outside the membrane-electrode assembly 3. On the inner surface of the separator 50 that contacts the first gas diffusion layer 41 of the membrane-electrode assembly 3 (the main surface F5 on the outer side of the first gas diffusion layer 41), oxidant gas or fuel gas is applied to the membrane-electrode assembly. 3 and a gas flow path 78 is formed for carrying a gas containing the electrode reaction product and unreacted reaction gas from the reaction field to the outside of the membrane-electrode assembly 3. Further, the inner surface of the separator 52 that is in contact with the second gas diffusion layer 42 of the membrane-electrode assembly 3 (the main surface F6 outside the second gas diffusion layer 42) is supplied to the membrane-electrode assembly 3, In addition, a gas flow path 78 is formed for carrying the electrode reaction product and a gas containing unreacted reaction gas from the reaction field to the outside of the membrane-electrode assembly 3.

ガス流路78はセパレーター50及びセパレーター52とは別に設けることもできるが、図4の燃料電池4においては、セパレーター50の内面(第1ガス拡散層41の外側の主面F5に接する面)及びセパレーター52の内面(第2ガス拡散層42の外側の主面F6に接する面)に設けられた溝からなるガス流路78を有する構成が採用されている。   Although the gas flow path 78 can be provided separately from the separator 50 and the separator 52, in the fuel cell 4 of FIG. 4, the inner surface of the separator 50 (the surface in contact with the outer main surface F <b> 5 of the first gas diffusion layer 41) and A configuration having a gas flow path 78 formed of a groove provided on the inner surface of the separator 52 (the surface in contact with the outer main surface F6 of the second gas diffusion layer 42) is employed.

また、セパレーター50は、膜−電極接合体3と反対の側の外面に、切削加工などにより設けられた溝からなる冷却水流路(図示せず)が形成された構成を有していてもよい。更に、セパレーター52も、膜−電極接合体3と反対の側の外面に、切削加工などにより設けられた溝からなる冷却水流路(図示せず)が形成された構成を有していてもよい。   Further, the separator 50 may have a configuration in which a cooling water flow path (not shown) including a groove provided by cutting or the like is formed on the outer surface opposite to the membrane-electrode assembly 3. . Further, the separator 52 may also have a configuration in which a cooling water flow path (not shown) including a groove provided by cutting or the like is formed on the outer surface on the side opposite to the membrane-electrode assembly 3. .

このように、1対のセパレーター50及びセパレーター52の間に膜−電極接合体3を固定し、例えば、セパレーター50のガス流路78に燃料ガスを供給し、セパレーター52のガス流路78に酸化剤ガスを供給することで、数十から数百mA/cmの実用電流密度通電時において一つの燃料電池4で0.7〜0.8V程度の起電力を発生させることができる。ただし、通常、高分子電解質形燃料電池を電源として使うときは、数ボルトから数百ボルトの電圧が必要とされるため、実際には、燃料電池4を必要とする個数だけ直列に連結し、いわゆるスタック(図示せず)として使用する。例えば、複数の燃料電池4を積層した積層体を、対向配置された2枚のエンドプレートの間に配置し、締結した状態をしたスタックとして使用する。 In this way, the membrane-electrode assembly 3 is fixed between the pair of separators 50 and 52, and for example, fuel gas is supplied to the gas flow path 78 of the separator 50 and oxidized to the gas flow path 78 of the separator 52. By supplying the agent gas, an electromotive force of about 0.7 to 0.8 V can be generated in one fuel cell 4 when a practical current density of several tens to several hundred mA / cm 2 is applied. However, normally, when a polymer electrolyte fuel cell is used as a power source, a voltage of several volts to several hundred volts is required, so in practice, the required number of fuel cells 4 are connected in series, It is used as a so-called stack (not shown). For example, a stacked body in which a plurality of fuel cells 4 are stacked is disposed between two end plates that are opposed to each other, and used as a stack that is fastened.

次に、図1に示した膜−膜補強部材接合体1、図2に示した膜−触媒層接合体2及び図3に示した膜−電極接合体3の製造方法の一例(本発明の膜−膜補強部材接合体の製造方法の好適な実施形態、本発明の膜−触媒層接合体の製造方法の好適な実施形態、本発明の膜−電極接合体の製造方法の好適な実施形態)について図面を用いて説明する。   Next, an example of a manufacturing method of the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and the membrane-electrode assembly 3 shown in FIG. Preferred embodiments of the method for producing the membrane-membrane reinforcing member assembly, preferred embodiments of the method for producing the membrane-catalyst layer assembly of the present invention, and preferred embodiments of the method for producing the membrane-electrode assembly of the present invention ) Will be described with reference to the drawings.

図5は、図1に示した膜−膜補強部材接合体1、図2に示した膜−触媒層接合体2及び図3に示した膜−電極接合体3を製造するための一連の工程の一部を概略的に示す説明図である。   5 shows a series of steps for manufacturing the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and the membrane-electrode assembly 3 shown in FIG. It is explanatory drawing which shows a part of FIG.

図1に示した膜−膜補強部材接合体1、図2に示した膜−触媒層接合体2及び図3に示した膜−電極接合体3は、図5に示す一連の第1工程P1、第2工程P2、第3工程P3、第4工程P4及び第5工程P5を経て低コストで容易に大量生産することができる。   The membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and the membrane-electrode assembly 3 shown in FIG. 3 are a series of first steps P1 shown in FIG. Through the second process P2, the third process P3, the fourth process P4, and the fifth process P5, mass production can be easily performed at low cost.

まず、公知の薄膜製造技術を用いて、テープ状の高分子電解質膜140(切断後、図1の高分子電解質膜10となる部材)を巻回した高分子電解質ロール122と、テープ状の膜補強部材142A(切断後、図1の第1膜補強部材22となる部材)を巻回した膜補強部材ロール120Aと、テープ状の膜補強部材142B(切断後、図1の第1膜補強部材24となる部材)を巻回した膜補強部材ロール120Bとを製造する。   First, using a known thin film manufacturing technique, a polymer electrolyte roll 122 around which a tape-shaped polymer electrolyte membrane 140 (a member that becomes the polymer electrolyte membrane 10 of FIG. 1 after cutting) is wound, and a tape-shaped membrane A membrane reinforcing member roll 120A wound with a reinforcing member 142A (member that becomes the first membrane reinforcing member 22 in FIG. 1 after cutting) and a tape-like membrane reinforcing member 142B (after cutting, the first membrane reinforcing member in FIG. 1) 24) and a membrane reinforcing member roll 120B wound with a member.

次に、高分子電解質膜140の側端部に膜補強部材142Aと膜補強部材142Bとを接合する(第1工程P1)。この第1工程P1について図面を用いて説明する。図6は、図5における第1工程P1の作業を説明するための説明図である。   Next, the membrane reinforcing member 142A and the membrane reinforcing member 142B are joined to the side end portion of the polymer electrolyte membrane 140 (first process P1). The first process P1 will be described with reference to the drawings. FIG. 6 is an explanatory diagram for explaining the operation of the first step P1 in FIG.

図5及び図6に示すように、ロール120Aから膜補強部材142Aを引き出し、ロール120Bから膜補強部材142Bを引き出し、ロール122から高分子電解質膜140を引き出し、これらを一対のローラ124及びローラ126を有する熱圧着機(図示せず)内に高分子電解質膜140の側端部に膜補強部材142A及び膜補強部材142Bが載置されるようにして誘導する。図6に示すように、高分子電解質膜140、膜補強部材142A及び膜補強部材142Bは、熱圧着機内のローラ124とローラ126との間を進行方向D1に進む過程において、高分子電解質膜140の側端部に膜補強部材142A及び膜補強部材142Bが載置された状態で接合され、テープ状の膜−膜補強部材積層体141となる。ここで、ロール120Aとロール120Bとの間の幅は、第1触媒層31の大きさに対応するように調節されている。   As shown in FIGS. 5 and 6, the membrane reinforcing member 142A is pulled out from the roll 120A, the membrane reinforcing member 142B is pulled out from the roll 120B, the polymer electrolyte membrane 140 is pulled out from the roll 122, and these are paired with a pair of rollers 124 and 126. The membrane reinforcing member 142A and the membrane reinforcing member 142B are guided so as to be placed on the side end portions of the polymer electrolyte membrane 140 in a thermocompression bonding machine (not shown). As shown in FIG. 6, the polymer electrolyte membrane 140, the membrane reinforcing member 142A, and the membrane reinforcing member 142B are polymer electrolyte membrane 140 in the process of moving in the traveling direction D1 between the rollers 124 and 126 in the thermocompression bonding machine. The membrane reinforcing member 142A and the membrane reinforcing member 142B are joined to each other at the side end portions thereof to form a tape-like membrane-membrane reinforcing member laminate 141. Here, the width between the roll 120 </ b> A and the roll 120 </ b> B is adjusted to correspond to the size of the first catalyst layer 31.

この第1工程P1においては、図14を用いて先に説明した燃料電池の保護膜250におけるR200の部分(張力がかかると浮き上がりやすい、張力がかかる方向と略垂直となる部分)が存在しないため、高分子電解質膜140、膜補強部材142A及び膜補強部材142Bは、熱圧着機内のローラ124とローラ126との間を進行方向D1に進む過程で、高分子電解質膜140に対する膜補強部材142A及び膜補強部材142Bの位置ずれやはがれの発生を十分に抑制することができる。   In the first step P1, there is no R200 portion (a portion that tends to float when tension is applied, or that is substantially perpendicular to the direction of tension) in the protective film 250 of the fuel cell described above with reference to FIG. The polymer electrolyte membrane 140, the membrane reinforcing member 142A, and the membrane reinforcing member 142B are formed in the process of moving in the traveling direction D1 between the roller 124 and the roller 126 in the thermocompression bonding machine. Generation | occurrence | production of position shift and peeling of the film | membrane reinforcement member 142B can fully be suppressed.

次に、積層体141の裏面に膜補強部材136A(切断後、図1の第2膜補強部材26となる部材)及び膜補強部材136B(切断後、図1の第2膜補強部材28となる部材)を接合する(第2工程P2)。この第2工程P2について図面を用いて説明する。図7は、図5における第2工程P2の作業を説明するための説明図である。   Next, a membrane reinforcing member 136A (a member that becomes the second membrane reinforcing member 26 in FIG. 1 after cutting) and a membrane reinforcing member 136B (after the cutting, the second membrane reinforcing member 28 in FIG. 1) are formed on the back surface of the laminate 141. Members) (second step P2). The second process P2 will be described with reference to the drawings. FIG. 7 is an explanatory diagram for explaining the operation of the second step P2 in FIG.

図5及び図7に示すように、第1工程P1で得られた積層体141はローラ128及びローラ130の駆動によりさらに第2工程P2のエリアまで進行方向D1に進んで、一旦停止する。図7に示すように、第2工程P2の行われるエリアには、積層体141の裏面に、テープ状の基材137A上にテープ状の膜補強部材136Aが積層された基材−補強部材積層体135Aが巻回されたロール134Aと、テープ状の基材137B上にテープ状の膜補強部材136Bが積層された基材−補強部材積層体135Bが巻回されたロール134Bとが配置されている。   As shown in FIGS. 5 and 7, the laminated body 141 obtained in the first step P <b> 1 further advances to the area of the second step P <b> 2 in the traveling direction D <b> 1 by driving the roller 128 and the roller 130 and temporarily stops. As shown in FIG. 7, in the area where the second step P2 is performed, a base material-reinforcing member laminate in which a tape-like membrane reinforcing member 136A is laminated on a tape-like base material 137A on the back surface of the laminate 141. A roll 134A around which a body 135A is wound and a roll 134B around which a base material-reinforcing member laminate 135B in which a tape-like membrane reinforcing member 136B is laminated on a tape-like base material 137B are arranged. Yes.

より具体的に説明すると、ロール134Aは、当該ロール134Aから引き出される積層体135Aの進行方向D2と積層体141の進行方向D1とが略垂直となり、かつテープ状の膜補強部材136Aが積層体141の高分子電解質膜140の裏面(膜補強部材142A及び膜補強部材142Bが配置されていない面)に接触するように配置されている。さらに、ロール134Bは、当該ロール134Bから引き出される積層体135Bの進行方向D3と積層体141の進行方向D1とが略垂直となり、かつテープ状の膜補強部材136Bが積層体141の高分子電解質膜140の裏面(膜補強部材142A及び膜補強部材142Bが配置されていない面)に接触するように配置されている。   More specifically, in the roll 134A, the traveling direction D2 of the laminated body 135A drawn from the roll 134A and the traveling direction D1 of the laminated body 141 are substantially perpendicular, and the tape-shaped membrane reinforcing member 136A is the laminated body 141. It arrange | positions so that the back surface (surface in which the membrane reinforcement member 142A and the membrane reinforcement member 142B are not arrange | positioned) of this polymer electrolyte membrane 140 may be contacted. Further, in the roll 134B, the traveling direction D3 of the laminated body 135B drawn from the roll 134B and the traveling direction D1 of the laminated body 141 are substantially perpendicular, and the tape-shaped membrane reinforcing member 136B is a polymer electrolyte membrane of the laminated body 141. It arrange | positions so that the back surface (surface in which membrane reinforcement member 142A and membrane reinforcement member 142B are not arrange | positioned) 140 may be contacted.

このエリアにおいて、積層体141が停止すると同時に、ロール134Aから引き出された基材膜−膜補強部材積層体135Aとロール134Bから引き出された基材膜−膜補強部材積層体135Bは、膜補強部材136Aと膜補強部材136Bが高分子電解質膜140の裏面に接触するようにして停止する。次に、図示しない押圧手段により、高分子電解質膜140と膜補強部材136Aとの接触部分、及び高分子電解質膜140と膜補強部材136Bとの接触部分が位置ずれを起こさないようにして、基材膜−膜補強部材積層体135Aと基材膜−膜補強部材積層体135Bと積層体141とが固定される。   In this area, at the same time as the laminated body 141 is stopped, the base membrane-membrane reinforcing member laminate 135A drawn from the roll 134A and the base membrane-membrane reinforcing member laminate 135B drawn from the roll 134B are used as the membrane reinforcing member. 136A and the membrane reinforcing member 136B are stopped so as to contact the back surface of the polymer electrolyte membrane 140. Next, the pressing means (not shown) prevents the positional displacement of the contact portion between the polymer electrolyte membrane 140 and the membrane reinforcing member 136A and the contact portion between the polymer electrolyte membrane 140 and the membrane reinforcing member 136B. The material film-membrane reinforcing member laminate 135A, the base film-membrane reinforcing member laminate 135B, and the laminate 141 are fixed.

次に、図示しない二つのカッターにより、積層体141の幅にあわせて(高分子電解質膜140に接触する膜補強部材136Aの部分、及び、高分子電解質膜140に接触する膜補強部材136Bの部分が残るようにして)、基材−膜補強部材積層体135Aのうちの膜補強部材136A及び基材膜−膜補強部材積層体135Bのうちの膜補強部材136Bが切断される。このとき、二つのカッターの切り込み深さは、基材膜−膜補強部材積層体135Aのうちの基材137A及び基材膜−膜補強部材積層体135Bのうちの基材137Bが切断されない深さに調節されている。また、基材137A及び基材137Bも、この2つのカッターにより切断されない十分な機械的強度(硬さ、柔軟性)を有している。このようにして、積層体141の裏面に第2膜補強部材26及び第2膜補強部材28が接合された積層体143が得られる。ここで、ロール134Aとロール134Bとの間の幅は、第2触媒層32の大きさに対応するように調節されている。なお、2つのカッターでなく1つのカッターで切断する構成としてもよい。   Next, by two cutters (not shown), according to the width of the laminated body 141 (the portion of the membrane reinforcing member 136A that contacts the polymer electrolyte membrane 140 and the portion of the membrane reinforcing member 136B that contacts the polymer electrolyte membrane 140) The membrane reinforcing member 136A of the base material-membrane reinforcing member laminate 135A and the membrane reinforcing member 136B of the base membrane-membrane reinforcing member laminate 135B are cut. At this time, the cutting depth of the two cutters is a depth at which the base material 137A in the base material membrane-membrane reinforcing member laminate 135A and the base material 137B in the base material membrane-membrane reinforcing member laminate 135B are not cut. It is adjusted to. Further, the base material 137A and the base material 137B also have sufficient mechanical strength (hardness, flexibility) that is not cut by the two cutters. In this way, a laminate 143 in which the second membrane reinforcing member 26 and the second membrane reinforcing member 28 are joined to the back surface of the laminate 141 is obtained. Here, the width between the rolls 134 </ b> A and 134 </ b> B is adjusted to correspond to the size of the second catalyst layer 32. In addition, it is good also as a structure cut | disconnected by one cutter instead of two cutters.

さらに、第2工程P2では136Aと136Bを高分子電解質膜140に十分に一体化させるための処理が施される。例えば、二つのカッターで切断する際に、押圧手段によりさらに加熱処理し、136Aと136Bを高分子電解質膜140に融着させる処理を行ってもよい。また、例えば高分子電解質膜140に接触させる前の136Aと136Bの表面(接触面となる部分)に、接着剤を塗工する前処理を行ってもよい。この前処理をする場合、上記の融着させる処理を行ってもよく、融着させる処理を行わずに、押圧手段による加圧処理のみ行ってもよい。さらに、接着剤としては、電池特性を低下させないものであることが好ましい。例えば、高分子電解質膜140と同種または異種(但し、高分子電解質膜140と十分に一体化可能な親和性を有するもの)の高分子電解質材料(例えば、先に高分子電解質膜10の構成材料として例示したもの)を分散媒又は溶媒に含有させた液を用いてもよい。   Further, in the second step P2, a process for sufficiently integrating 136A and 136B with the polymer electrolyte membrane 140 is performed. For example, when cutting with two cutters, a heat treatment may be further performed by a pressing means, and a process of fusing 136A and 136B to the polymer electrolyte membrane 140 may be performed. Further, for example, a pretreatment may be performed in which an adhesive is applied to the surfaces (parts to be contact surfaces) of 136A and 136B before being brought into contact with the polymer electrolyte membrane 140. When this pretreatment is performed, the above-described fusion process may be performed, or only the pressurizing process by the pressing unit may be performed without performing the fusion process. Furthermore, it is preferable that the adhesive does not deteriorate the battery characteristics. For example, a polymer electrolyte material of the same type or different type from the polymer electrolyte membrane 140 (however, having an affinity that can be sufficiently integrated with the polymer electrolyte membrane 140) (for example, the constituent material of the polymer electrolyte membrane 10 previously) A liquid in which a dispersion medium or a solvent is contained) may be used.

この第2工程P1においては、図14を用いて先に説明した燃料電池の保護膜250におけるR200の部分(張力がかかると浮き上がりやすい、張力がかかる方向と略垂直となる部分)が存在しない。具体的に説明すると、第2工程P1において積層体141の裏面に接合される第2膜補強部材26及び第2膜補強部材28は、張力がかかる方向と略垂直となる部分ではあるが、隣り合う第2膜補強部材26及び第2膜補強部材28同士は上記R200の部分と異なり互いに直接結合しておらず、張力がかかっても浮き上がりにくい。そのため、第2工程P1においても、進行方向D1に進む過程で、高分子電解質膜140に対する第2膜補強部材26及び第2膜補強部材28の位置ずれやはがれの発生を十分に抑制することができる。図14に示したR200の部分は、隣り合うR200の部分同士が同一の保護膜250の一部として直接結合した構成となっているため浮き上がりやすい。   In the second step P1, there is no portion of R200 (a portion that tends to float when tension is applied and is substantially perpendicular to the direction of tension) in the protective film 250 of the fuel cell described above with reference to FIG. More specifically, the second membrane reinforcing member 26 and the second membrane reinforcing member 28 joined to the back surface of the multilayer body 141 in the second step P1 are portions that are substantially perpendicular to the direction in which the tension is applied, but are adjacent to each other. Unlike the R200 portion, the matching second membrane reinforcing member 26 and second membrane reinforcing member 28 are not directly coupled to each other, and are unlikely to rise even when tension is applied. Therefore, also in the second step P1, in the process of proceeding in the traveling direction D1, it is possible to sufficiently suppress the occurrence of displacement and peeling of the second membrane reinforcing member 26 and the second membrane reinforcing member 28 with respect to the polymer electrolyte membrane 140. it can. The portion of R200 shown in FIG. 14 is easily lifted because adjacent R200 portions are directly coupled as part of the same protective film 250.

次に、積層体143の形成後、積層体143の膜補強部材142A及び膜補強部材142Bの形成されている側の高分子電解質膜140の主面F1A(切断後、図1の第1主面F1となる面)に触媒層190(切断後、図2の第1触媒層31となるもの)を形成する(第3工程P3)。この第3工程P3について図面を用いて説明する。図8は、図5における第3工程P3の作業を説明するための説明図である。   Next, after the formation of the laminated body 143, the main surface F1A of the polymer electrolyte membrane 140 on the side where the membrane reinforcing member 142A and the membrane reinforcing member 142B of the laminated body 143 are formed (after cutting, the first main surface in FIG. The catalyst layer 190 (the one that becomes the first catalyst layer 31 in FIG. 2 after cutting) is formed on the surface that becomes F1 (third step P3). The third step P3 will be described with reference to the drawings. FIG. 8 is an explanatory diagram for explaining the operation of the third step P3 in FIG.

図5及び図8に示すように、第2工程P2で得られた積層体143はローラ128及びローラ130の駆動によりさらに第3工程P3のエリアまで進行方向D1に進んで、一旦停止する。図8に示すように、第3工程P3の行われるエリアには、このエリアで停止した積層体143を、その裏面(上記高分子電解質膜140の主面F1Aの反対側の面)から支える図示しない支持手段(例えば支持台)と、高分子電解質膜140の主面F1Aの膜補強部材142Aと膜補強部材142Bとの間に触媒層190を形成するためのマスク186が配置されている。   As shown in FIGS. 5 and 8, the laminate 143 obtained in the second step P <b> 2 further advances to the area of the third step P <b> 3 by driving the roller 128 and the roller 130, and temporarily stops. As shown in FIG. 8, in the area where the third step P3 is performed, the laminated body 143 stopped in this area is supported from the back surface (the surface opposite to the main surface F1A of the polymer electrolyte membrane 140). A mask 186 for forming the catalyst layer 190 is disposed between the supporting means (for example, a supporting base) that is not used and the membrane reinforcing member 142A and the membrane reinforcing member 142B on the main surface F1A of the polymer electrolyte membrane 140.

このマスク186には、開口部186Aが設けられている。この開口部186Aの形状と面積は、触媒層190の形状と面積に対応するように設定されている。更に、第3工程のエリアの上方には触媒層形成装置130Cが配置されている。この触媒層形成装置130Cには触媒層形成用インクを塗工又はスプレーするなどして、マスク186Aの開口部186Aに対応する高分子電解質膜140の主面F1Aの部分に触媒層190を形成するための機構が備えられている。この機構は、公知の燃料電池のガス拡散層の触媒層を形成するために採用されている機構を採用することができる。例えば、スプレー法、スピンコート法、ドクターブレード法、ダイコート法、スクリーン印刷法に基づいて設計された機構を採用することができる。   The mask 186 is provided with an opening 186A. The shape and area of the opening 186A are set so as to correspond to the shape and area of the catalyst layer 190. Further, a catalyst layer forming device 130C is disposed above the area of the third step. A catalyst layer 190 is formed on the main surface F1A of the polymer electrolyte membrane 140 corresponding to the opening 186A of the mask 186A by coating or spraying the catalyst layer forming ink on the catalyst layer forming apparatus 130C. Mechanism is provided. As this mechanism, a mechanism that is employed for forming a catalyst layer of a gas diffusion layer of a known fuel cell can be employed. For example, a mechanism designed based on a spray method, a spin coating method, a doctor blade method, a die coating method, or a screen printing method can be employed.

次にこの第3工程P3の作業の流れの一例について詳細に説明する。まず、この第3工程P3のエリアで停止した積層体143が、マスク186Aと支持台(図示せず)との間に挟持されるようにして固定される。次に、触媒層形成装置130Cが作動し、マスク186の開口部186Aの上方から触媒層形成用インクを塗工又はスプレーするなどして、マスク186Aの開口部186Aに対応する高分子電解質膜140の主面F1Aの部分に触媒層190が形成され、触媒層190が形成された積層体144が得られる。次に、触媒層190の形成後、マスク186Aと支持台(図示せず)とが積層体144からはなれる。次に、ローラ128及びローラ130の駆動により、積層体144は進行方向D1に沿って移動する。   Next, an example of the work flow of the third step P3 will be described in detail. First, the laminate 143 stopped in the area of the third step P3 is fixed so as to be sandwiched between the mask 186A and a support base (not shown). Next, the catalyst layer forming apparatus 130C is operated, and the polymer electrolyte membrane 140 corresponding to the opening 186A of the mask 186A is coated or sprayed from above the opening 186A of the mask 186, for example. A catalyst layer 190 is formed on the main surface F1A of the substrate, and a laminate 144 on which the catalyst layer 190 is formed is obtained. Next, after the formation of the catalyst layer 190, the mask 186A and the support base (not shown) are separated from the stacked body 144. Next, by driving the roller 128 and the roller 130, the stacked body 144 moves along the traveling direction D1.

次に、積層体144の形成後、積層体144の高分子電解質膜140の触媒層190が形成されていない側の主面(切断後、図1の第2主面F2となる面,図示せず)に触媒層(切断後、図4の第2触媒層32となるもの,説明の便宜上以下、第2触媒層32という)を形成する(第4工程P4)。この第4工程P4について図5を用いて説明する。   Next, after the formation of the laminated body 144, the main surface of the laminated body 144 on the side where the catalyst layer 190 of the polymer electrolyte membrane 140 is not formed (the surface that becomes the second main surface F2 in FIG. 2), a catalyst layer (which becomes the second catalyst layer 32 in FIG. 4 after cutting, hereinafter referred to as the second catalyst layer 32 for convenience of description) is formed (fourth step P4). The fourth step P4 will be described with reference to FIG.

図5に示すように、第3工程P3で得られた積層体144はローラ128及びローラ130の駆動によりさらに第4工程P4のエリアまで進行方向D1に進んで、一旦停止する。ここで、図5に示すように、積層体144はローラ128のところで折り返えされ、高分子電解質膜140の触媒層190が形成されていない側の主面F1B(図示せず)が上方を向き、高分子電解質膜140の触媒層190が形成されている側の主面F1Aとが下方を向くように反転される。
第4工程P4の行われるエリアには、このエリアで停止した積層体144を、その裏面(上記高分子電解質膜140の主面F1A)から支える図示しない支持手段(例えば支持台)と、高分子電解質膜140の主面F1Bの第2膜補強部材26と第2膜補強部材28との間に第2触媒層32を形成するためのマスク(図示せず)が配置されている。
As shown in FIG. 5, the laminated body 144 obtained in the third step P3 is further advanced to the area of the fourth step P4 in the traveling direction D1 by driving the roller 128 and the roller 130, and is temporarily stopped. Here, as shown in FIG. 5, the laminated body 144 is folded back at the roller 128, and the main surface F1B (not shown) on the side where the catalyst layer 190 of the polymer electrolyte membrane 140 is not formed faces upward. The main surface F1A on the side where the catalyst layer 190 of the polymer electrolyte membrane 140 is formed is inverted so as to face downward.
In the area where the fourth step P4 is performed, a support 144 (not shown) that supports the laminated body 144 stopped in this area from its back surface (main surface F1A of the polymer electrolyte membrane 140), and a polymer A mask (not shown) for forming the second catalyst layer 32 is disposed between the second membrane reinforcing member 26 and the second membrane reinforcing member 28 on the main surface F1B of the electrolyte membrane 140.

このマスクには、先に述べたマスク186の開口部186Aと同様の開口部(図示せず)が設けられている。この開口部の形状と面積は、第2触媒層32の形状と面積に対応するように設定されている。更に、図5に示すように、第4工程のエリアの上方には先に述べた触媒層形成装置130Cと同様の機構を有する触媒層形成装置130Bが配置されている。   This mask is provided with an opening (not shown) similar to the opening 186A of the mask 186 described above. The shape and area of the opening are set so as to correspond to the shape and area of the second catalyst layer 32. Furthermore, as shown in FIG. 5, a catalyst layer forming apparatus 130B having the same mechanism as the catalyst layer forming apparatus 130C described above is disposed above the area of the fourth step.

次にこの第4工程P4の作業の流れも先に述べた第3工程P3と同様である。第4工程P4により、積層体144上に第2触媒層32が更に形成された積層体145が得られる。次に、ローラ128及びローラ130の駆動により、積層体145は進行方向D1に沿って移動する。   Next, the work flow of the fourth step P4 is the same as that of the third step P3 described above. By the fourth step P4, a laminate 145 in which the second catalyst layer 32 is further formed on the laminate 144 is obtained. Next, by driving the roller 128 and the roller 130, the stacked body 145 moves along the traveling direction D1.

次に、図5に示すように、積層体145を裁断機構132を有する裁断装置内に導入し、予め設定されたサイズで切断し、図2に示す膜−触媒層接合体2を得る(第5工程P5)。   Next, as shown in FIG. 5, the laminate 145 is introduced into a cutting apparatus having a cutting mechanism 132, and is cut at a preset size to obtain the membrane-catalyst layer assembly 2 shown in FIG. 5 process P5).

なお、触媒層190及び第2触媒層32は適度な柔軟性を有するようにその成分組成、乾燥の度合いなどを調節し、ローラ128及びローラ130のところで折り返される際にも、高分子電解質膜140から剥がれ落ちないための処置が施されている。また、触媒層190及び第2触媒層32をそれぞれ高分子電解質膜140上に形成するごとに、乾燥処理(例えば加熱処理、送風処理及び脱気処理のうちの少なくとも1つの処理)を適宜行ってもよい。   It should be noted that the catalyst layer 190 and the second catalyst layer 32 are adjusted in their component composition and degree of drying so as to have appropriate flexibility, and the polymer electrolyte membrane 140 is also folded when the roller 128 and the roller 130 are folded. Measures are taken to prevent it from peeling off. Further, each time the catalyst layer 190 and the second catalyst layer 32 are formed on the polymer electrolyte membrane 140, a drying process (for example, at least one of a heating process, a blowing process, and a deaeration process) is appropriately performed. Also good.

次に、膜−触媒層接合体2に第1ガス拡散層41と第2ガス拡散層42とを接合させ、図3に示した膜−電極接合体3を得る。より具体的には、積層体145を裁断した後に得られる膜−触媒層接合体2の大きさに対応する適度な大きさの第1ガス拡散層41及び第2ガス拡散層42を用意しておき、膜−触媒層接合体2に第1ガス拡散層41及び第2ガス拡散層42を接合してもよい。   Next, the first gas diffusion layer 41 and the second gas diffusion layer 42 are bonded to the membrane-catalyst layer assembly 2 to obtain the membrane-electrode assembly 3 shown in FIG. More specifically, a first gas diffusion layer 41 and a second gas diffusion layer 42 having appropriate sizes corresponding to the size of the membrane-catalyst layer assembly 2 obtained after cutting the laminate 145 are prepared. Alternatively, the first gas diffusion layer 41 and the second gas diffusion layer 42 may be bonded to the membrane-catalyst layer assembly 2.

また、テープ状のガス拡散層(例えばカーボンクロスなど)を巻回したガス拡散層巻回ロール(図示せず)を準備しておき、図6に示した第1工程と同様のはり合わせ機構を有する装置を用いて第4工程P4後に得られる帯状の積層体145に対してガス拡散層巻回ロールから引き出したテープ状のガス拡散層を一体化させ、その後、第5工程P5と同様の裁断作業を行い、膜電極接合体3を連続的に形成してもよい。この場合、更に、撥水カーボン層を形成する場合には、撥水カーボン層形成用インクを用いること以外は第3工程P3に用いた触媒層形成装置130Cと同様の機構を有する撥水カーボン層形成装置(図示せず)を用いてもよい。この場合、撥水カーボン層形成装置を、はり合わせる前の帯状の積層体145又はテープ状のガス拡散層に撥水カーボン層形成用インクを塗工又はスプレーできるような位置に配置すればよい。また、撥水カーボン層を形成する場合には、撥水カーボン層を設定された位置に連続的に予め形成したテープ状のガス拡散層のロールを用いてもよい。   In addition, a gas diffusion layer winding roll (not shown) in which a tape-like gas diffusion layer (for example, carbon cloth) is wound is prepared, and a bonding mechanism similar to the first step shown in FIG. The tape-like gas diffusion layer drawn out from the gas diffusion layer winding roll is integrated with the belt-like laminate 145 obtained after the fourth step P4 using the apparatus having the same, and then the same cutting as in the fifth step P5 Work may be performed to form the membrane electrode assembly 3 continuously. In this case, when the water repellent carbon layer is further formed, the water repellent carbon layer having the same mechanism as the catalyst layer forming apparatus 130C used in the third step P3 except that the water repellent carbon layer forming ink is used. A forming apparatus (not shown) may be used. In this case, the water-repellent carbon layer forming device may be disposed at a position where the water-repellent carbon layer forming ink can be applied or sprayed on the band-shaped laminate 145 or the tape-like gas diffusion layer before bonding. In the case of forming the water-repellent carbon layer, a tape-shaped gas diffusion layer roll which is continuously formed in advance at the position where the water-repellent carbon layer is set may be used.

なお、先に述べた第2工程P2の作業を、第3工程P3の作業の後に行うように製造プロセスを設計してもよい。また、第2工程P2のエリア内で、第2工程P2の作業を終了後、連続的に第3工程P3の作業を行ってもよい。   Note that the manufacturing process may be designed so that the operation of the second step P2 described above is performed after the operation of the third step P3. Further, the work of the third process P3 may be continuously performed after the work of the second process P2 is completed in the area of the second process P2.

次に、図1に示した膜−膜補強部材接合体1、図2に示した膜−触媒層接合体2及び図3に示した膜−電極接合体3の製造方法の他の一例について図面を用いて説明する。   Next, the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and another example of the manufacturing method of the membrane-electrode assembly 3 shown in FIG. Will be described.

図9は、膜−膜補強部材接合体1の構成部材となる膜−膜補強部材積層体の製造方法を説明するための説明図である。図10は、2つの膜−膜補強部材積層体を接合する作業を説明するための説明図である。   FIG. 9 is an explanatory diagram for explaining a method of manufacturing a membrane-membrane reinforcing member laminate that is a constituent member of the membrane-membrane reinforcing member assembly 1. FIG. 10 is an explanatory diagram for explaining an operation of joining two membrane-membrane reinforcing member laminates.

まず、図9に示すように、3本以上のテープ状の膜補強部材(切断後、図1の第2膜補強部材26及び28となる部材)100,102,104,106…が高分子電解質膜110の一方の主面状に、互いが略平行となるように一定の間隔で配置された構成を有する膜−膜補強部材積層体100Aを作成する。膜−膜補強部材積層体100Aは、例えば、図6を用いて先に説明した第1工程と同様の方法により作成することができる。なお、3本以上のテープ状の膜補強部材100,102,104,106…のうちの隣り合う2本の間隔は、後に形成する触媒層(第2触媒層32)の大きさに対応するように調節されている。   First, as shown in FIG. 9, three or more tape-like membrane reinforcing members (members that become the second membrane reinforcing members 26 and 28 in FIG. 1 after cutting) 100, 102, 104, 106. A membrane-membrane reinforcing member laminate 100A having a configuration in which one main surface of the membrane 110 is arranged at regular intervals so as to be substantially parallel to each other is created. The membrane-membrane reinforcing member laminate 100A can be produced, for example, by the same method as the first step described above with reference to FIG. The interval between two adjacent ones of the three or more tape-like membrane reinforcing members 100, 102, 104, 106... Corresponds to the size of the catalyst layer (second catalyst layer 32) to be formed later. It is adjusted to.

次に、膜−膜補強部材積層体100Aをテープ状の膜補強部材100の長手方向に略垂直な方向から切断する(例えば、図9では、このような方向から切断する切断線を点線110A、110B、110Cとして例示する)。これにより、複数のテープ状の膜−膜補強部材積層体108Bが得られる。図9に示すように、このテープ状の膜−膜補強部材積層体108Bにある複数の膜補強部材(切断後、図1の第2膜補強部材26及び28となる部材)はそれぞれの長手方向が、本体のテープ状の膜−膜補強部材積層体108Bの長手方向と略垂直となるように配置されている。次にこのようにして得られたテープ状の膜−膜補強部材積層体108Bを巻回しロール(図示せず)にする。   Next, the membrane-membrane reinforcing member laminate 100A is cut from a direction substantially perpendicular to the longitudinal direction of the tape-like membrane reinforcing member 100 (for example, in FIG. 9, a cutting line cut from such a direction is indicated by a dotted line 110A, 110B, 110C). As a result, a plurality of tape-like membrane-membrane reinforcing member laminates 108B are obtained. As shown in FIG. 9, a plurality of membrane reinforcing members (members that become the second membrane reinforcing members 26 and 28 in FIG. 1 after cutting) in the tape-like membrane-membrane reinforcing member laminate 108B are in the longitudinal direction. Are arranged so as to be substantially perpendicular to the longitudinal direction of the tape-shaped membrane-membrane reinforcing member laminate 108B of the main body. Next, the tape-like membrane-membrane reinforcing member laminate 108B thus obtained is wound into a roll (not shown).

一方、図6に示した第1工程と同様の方法により、テープ状の高分子電解質膜140Aの側端部に膜補強部材142A及び膜補強部材142Bが載置された状態で接合された膜−膜補強部材積層体108A(図10参照)を作製する。そして、得られた、膜−膜補強部材積層体108Aを巻回しロール(図示せず)にする。なお、膜−膜補強部材積層体108Aの幅(短手方向の幅)と膜−膜補強部材積層体108Bの幅(短手方向の幅)は一致するように調節しておく。   On the other hand, in the same manner as in the first step shown in FIG. 6, the membrane-bonded membrane-bonding member 142A and membrane-reinforcing member 142B are placed on the side ends of the tape-shaped polymer electrolyte membrane 140A. A membrane reinforcing member laminate 108A (see FIG. 10) is produced. Then, the obtained membrane-membrane reinforcing member laminate 108A is wound into a roll (not shown). The width of the membrane-membrane reinforcing member laminate 108A (width in the short direction) and the width of the membrane-membrane reinforcing member laminate 108B (width in the short direction) are adjusted so as to coincide with each other.

次に、図10に示すように、膜−膜補強部材積層体108Aと、膜−膜補強部材積層体108Bとを接合する。より具体的説明すると、それぞれのロールから膜−膜補強部材積層体108Aと膜−膜補強部材積層体108Bとを引き出し、これらを一対のローラ170及びローラ172を有する熱圧着機(図示せず)内に、重ね合わせるようにして誘導する。このとき、膜−膜補強部材積層体108Aの高分子電解質膜140Aの裏面(膜補強部材の配置されていない側の面)と、膜−膜補強部材積層体108Bの高分子電解質膜140Aの裏面(膜補強部材の配置されていない側の面)とが接合されるようにする。更にこのとき、膜−膜補強部材積層体108Aの主面の法線方向から膜−膜補強部材積層体108A及び膜−膜補強部材積層体108Bをみたときに、膜−膜補強部材積層体108Aから膜−膜補強部材積層体108Bの一部がはみ出して見えないように、両者を重ね合わせる。   Next, as shown in FIG. 10, the membrane-membrane reinforcing member laminate 108A and the membrane-membrane reinforcing member laminate 108B are joined. More specifically, the membrane-membrane reinforcing member laminate 108A and the membrane-membrane reinforcing member laminate 108B are pulled out from the respective rolls, and these are thermocompression bonding machines (not shown) having a pair of rollers 170 and rollers 172. It is guided so as to overlap. At this time, the back surface of the polymer electrolyte membrane 140A of the membrane-membrane reinforcing member laminate 108A (the surface on the side where the membrane reinforcing member is not disposed) and the back surface of the polymer electrolyte membrane 140A of the membrane-membrane reinforcing member laminate 108B (The surface on the side where the membrane reinforcing member is not disposed) is joined. Further, at this time, when the membrane-membrane reinforcing member laminate 108A and the membrane-membrane reinforcing member laminate 108B are viewed from the normal direction of the main surface of the membrane-membrane reinforcing member laminate 108A, the membrane-membrane reinforcing member laminate 108A. The membrane-membrane reinforcing member laminate 108B is overlapped so that a part of the membrane-membrane reinforcing member laminate 108B protrudes and cannot be seen.

図10に示すように、膜−膜補強部材積層体108A及び膜−膜補強部材積層体108は、熱圧着機内のローラ170とローラ172との間を進行方向D1に進む過程において、上述した状態で接合され、テープ状の膜−膜補強部材積層体141となる。   As shown in FIG. 10, the membrane-membrane reinforcing member laminate 108 </ b> A and the membrane-membrane reinforcing member laminate 108 are in the state described above in the process of moving in the traveling direction D <b> 1 between the roller 170 and the roller 172 in the thermocompression bonding machine. To form a tape-like membrane-membrane reinforcing member laminate 141.

テープ状の膜−膜補強部材積層体141を製造した後は、例えば、先に述べた方法と同様の方法により、図2に示した膜−触媒層接合体2及び図3に示した膜−電極接合体3を製造することができる。   After the tape-shaped membrane-membrane reinforcing member laminate 141 is manufactured, for example, the membrane-catalyst layer assembly 2 shown in FIG. 2 and the membrane shown in FIG. The electrode assembly 3 can be manufactured.

更に、膜−電極接合体3を用いて図4に示した高分子電解質形燃料電池4を作製する方法は特に限定されず、公知の高分子電解質形燃料電池の製造技術を採用することができる。
[第2実施形態]
次に、本発明の膜−膜補強部材接合体の第2実施形態について図面を参照しながら説明する。図11は、本発明の膜−膜補強部材接合体の第2実施形態の基本構成の一例を示す斜視図である。
Furthermore, the method for producing the polymer electrolyte fuel cell 4 shown in FIG. 4 using the membrane-electrode assembly 3 is not particularly limited, and a known polymer electrolyte fuel cell manufacturing technique can be employed. .
[Second Embodiment]
Next, a second embodiment of the membrane-membrane reinforcing member assembly of the present invention will be described with reference to the drawings. FIG. 11 is a perspective view showing an example of the basic configuration of the second embodiment of the membrane-membrane reinforcing member assembly of the present invention.

図11に示す第2実施形態の膜−膜補強部材接合体1Aは、後述する高分子電解質膜10Aを搭載していること以外は、第1実施形態に示す図1の膜−膜補強部材接合体1と同様の構成を有している。   The membrane-membrane reinforcing member assembly 1A of the second embodiment shown in FIG. 11 has the membrane-membrane reinforcing member assembly of FIG. 1 shown in the first embodiment except that a polymer electrolyte membrane 10A described later is mounted. It has the same configuration as the body 1.

次に、高分子電解質膜10Aについて説明する。図11に示すように、高分子電解質膜−内部補強膜複合体10Aは、互いに対向配置される第1高分子電解質膜11と第2高分子電解質膜12の間に内部補強膜80が配置された3層構造を有する膜である。第1高分子電解質膜11と第2高分子電解質膜12は図1に示した高分子電解質膜10と同じ構成を有する膜である。次に、図11に示す内部補強膜80について図12を用いて詳しく説明する。図12は、図11に示した膜−膜補強部材接合体1Aに備えられる内部補強膜80の基本構成の一例を示す要部拡大正面図である。   Next, the polymer electrolyte membrane 10A will be described. As shown in FIG. 11, in the polymer electrolyte membrane-inner reinforcing membrane complex 10A, an inner reinforcing membrane 80 is disposed between the first polymer electrolyte membrane 11 and the second polymer electrolyte membrane 12 that are arranged to face each other. The film has a three-layer structure. The first polymer electrolyte membrane 11 and the second polymer electrolyte membrane 12 are membranes having the same configuration as the polymer electrolyte membrane 10 shown in FIG. Next, the internal reinforcing film 80 shown in FIG. 11 will be described in detail with reference to FIG. FIG. 12 is an enlarged front view of an essential part showing an example of a basic configuration of the internal reinforcing membrane 80 provided in the membrane-membrane reinforcing member assembly 1A shown in FIG.

内部補強膜80は樹脂製のフィルムで構成され、図12に示すように、厚み方向に貫通する複数の開口部(貫通孔)82を有する。開口部82の中には高分子電解質膜11及び高分子電解質膜12と同成分又は異成分の高分子電解質が充填されている。内部補強膜80の主面に対する開口部82の面積の割合(開口度)は、50%〜90%であることが好ましい。開口度を50%以上とすると、十分なイオン導電性を容易に得ることができるようになる。一方、開口度を90%以下とすると、内部補強膜80の十分な機械的強度を容易に得ることができる。   The internal reinforcing film 80 is made of a resin film and has a plurality of openings (through holes) 82 penetrating in the thickness direction as shown in FIG. The opening 82 is filled with a polymer electrolyte having the same or different component as the polymer electrolyte membrane 11 and the polymer electrolyte membrane 12. The ratio (opening degree) of the area of the opening 82 to the main surface of the internal reinforcing film 80 is preferably 50% to 90%. When the opening degree is 50% or more, sufficient ionic conductivity can be easily obtained. On the other hand, when the opening degree is 90% or less, sufficient mechanical strength of the internal reinforcing film 80 can be easily obtained.

さらに、内部補強膜80としては、延伸加工された多孔質フィルム(図示せず:例えば、ジャパンゴアテックステップ社製・商品名「ゴアセレクト(II)」)であってもよい。このように、内部補強膜80の開口部82としては、非常に微細な細孔(例えば細孔径が数十μm)であってもよい。この場合であっても、上述と同様の理由により、開口度(多孔度)は50%〜90%であることが好ましい。   Further, the inner reinforcing membrane 80 may be a stretched porous film (not shown: for example, “Gore Select (II)” manufactured by Japan Gore Tech Step Co., Ltd.). Thus, the opening 82 of the inner reinforcing membrane 80 may be very fine pores (for example, the pore diameter is several tens of μm). Even in this case, the openness (porosity) is preferably 50% to 90% for the same reason as described above.

上述の内部補強膜80を構成する樹脂としては、化学的安定性および機械的安定性の観点から、ポリテトラフルオロエチレン、フルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフィド、ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタレート、及び、ポリイミドアミドからなる群より選択される少なくとも1種の合成樹脂であることが好ましい。   As the resin constituting the internal reinforcing film 80, polytetrafluoroethylene, fluoroethylene-propylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer are used from the viewpoint of chemical stability and mechanical stability. Selected from the group consisting of polyethylene, polypropylene, polyether amide, polyether imide, polyether ether ketone, polyether sulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, polyethylene naphthalate, polyethylene terephthalate, and polyimide amide It is preferably at least one synthetic resin.

また、内部補強膜80の構成としては、先に述べた高分子電解質膜10の内部に、繊維状の補強体粒子及び球状の補強体粒子のうちの少なくとも一方を含有させることにより、上述の開口部を設けた構成としてもよい。上記の補強体粒子の構成材料としては、内部補強膜80を構成する樹脂が挙げられる。   The internal reinforcing membrane 80 is configured such that the above-described opening is obtained by containing at least one of fibrous reinforcing particles and spherical reinforcing particles in the polymer electrolyte membrane 10 described above. It is good also as a structure which provided the part. Examples of the constituent material of the reinforcing body particles include a resin constituting the internal reinforcing film 80.

高分子電解質膜10Aの製造方法は特に限定されるものではなく、公知の薄膜製造技術を用いて製造することができる。膜−膜補強部材接合体1Aは、この高分子電解質膜10Aを用いること以外は先に述べた膜−膜補強部材接合体1と同様の方法により製造することができる。
[第3実施形態]
本発明の第3実施形態は、第1実施形態の膜−膜補強部材接合体1の製造方法において、図7に示す第2工程P2を手作業で行うものである。つまり、本実施形態では、図7において、高分子電解質膜140の一方の主面の側端部に膜補強部材142A及び膜補強部材142Bをはり付けてなる積層体141の他方の主面に、テープ状の膜補強部材136A及びテープ状の膜補強部材136Bが人手により所定長に切断してはり付けられる。その他は実施形態1と同様である。また、第1実施形態の高分子電解質膜10に代えて、第2実施形態の高分子電解質膜−内部補強膜複合体10Aを用いることもできる。
The manufacturing method of the polymer electrolyte membrane 10A is not particularly limited, and can be manufactured using a known thin film manufacturing technique. The membrane-membrane reinforcing member assembly 1A can be manufactured by the same method as the membrane-membrane reinforcing member assembly 1 described above except that the polymer electrolyte membrane 10A is used.
[Third Embodiment]
The third embodiment of the present invention is to manually perform the second step P2 shown in FIG. 7 in the method for manufacturing the membrane-membrane reinforcing member assembly 1 of the first embodiment. That is, in the present embodiment, in FIG. 7, the other main surface of the laminate 141 formed by attaching the membrane reinforcing member 142 </ b> A and the membrane reinforcing member 142 </ b> B to the side end portion of one main surface of the polymer electrolyte membrane 140, The tape-like membrane reinforcing member 136A and the tape-like membrane reinforcing member 136B are manually cut and pasted to a predetermined length. Others are the same as in the first embodiment. Moreover, it can replace with the polymer electrolyte membrane 10 of 1st Embodiment, and can also use 10 A of polymer electrolyte membrane-internal reinforcement membrane composites of 2nd Embodiment.

このような、本実施形態によれば、少なくとも、積層体141、膜−触媒層接合体2、及び膜−電極接合体3を大量生産することができ、従来に比べて製造コストを低減することができる。   According to this embodiment, at least the laminate 141, the membrane-catalyst layer assembly 2, and the membrane-electrode assembly 3 can be mass-produced, and the manufacturing cost can be reduced as compared with the conventional case. Can do.

以下、実施例および比較例を挙げて本発明についてさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。
《実施例1》
本実施例では、まず、図1に示した構造を有する本発明の膜−膜補強部材接合体を作製した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to a following example at all.
Example 1
In this example, first, a membrane-membrane reinforcing member assembly of the present invention having the structure shown in FIG. 1 was produced.

高分子電解質膜10(市販のパーフルオロカーボンスルホン酸からなる高分子電解質膜、150mm×150mm、厚さ:40μm)の両面に、第1膜補強部材22及び24並びに第2膜補強部材26及び28を、それぞれ図1に示した位置と同様の位置に配置した。   The first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 are provided on both sides of the polymer electrolyte membrane 10 (a commercially available polymer electrolyte membrane made of perfluorocarbon sulfonic acid, 150 mm × 150 mm, thickness: 40 μm). These are arranged at the same positions as shown in FIG.

なお、第1膜補強部材22及び24並びに第2膜補強部材26及び28は、PEN(ポリエチレンナフタレート)からなるテープ状の薄膜(厚さ:20μm)を使用した。   The first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28 were tape-shaped thin films (thickness: 20 μm) made of PEN (polyethylene naphthalate).

次に、上記のようにして得た膜−膜補強部材接合体を用い、図2に示した構造を有する本発明の膜−触媒層接合体を作製した。   Next, the membrane-catalyst layer assembly of the present invention having the structure shown in FIG. 2 was produced using the membrane-membrane reinforcing member assembly obtained as described above.

電極触媒である白金粒子をカーボン粉末上に担持させてなる触媒担持カーボン(田中貴金属工業(株)製のTEC10E50E、50質量%がPt)と、水素イオン伝導性を有する高分子電解質溶液(旭硝子(株)製のFlemion)とを、エタノールと水との混合分散媒(質量比1:1)に分散させてカソード形成用インクを調製した。   A catalyst-supporting carbon (TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., 50% by mass of Pt) obtained by supporting platinum particles as an electrode catalyst on carbon powder, and a polymer electrolyte solution having hydrogen ion conductivity (Asahi Glass ( Flemion) was dispersed in a mixed dispersion medium (mass ratio 1: 1) of ethanol and water to prepare a cathode forming ink.

また、電極触媒である白金ルテニウム合金(白金:ルテニウム=1:1.5モル比(物質量比))粒子をカーボン粉末上に担持させてなる触媒担持カーボン(田中貴金属工業(株)製のTEC61E54、50質量%がPt−Ru合金)と、水素イオン伝導性を有する高分子電解質溶液(旭硝子(株)製のFlemion)とを、エタノールと水との混合分散媒(質量比1:1)に分散させてアノード触媒層形成用インクを調製した。   Further, a catalyst-supporting carbon (TEC61E54 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) in which platinum ruthenium alloy (platinum: ruthenium = 1: 1.5 molar ratio (substance ratio)) particles as an electrode catalyst are supported on carbon powder. 50% by mass of Pt—Ru alloy) and a polymer electrolyte solution having hydrogen ion conductivity (Flemion manufactured by Asahi Glass Co., Ltd.) in a mixed dispersion medium (mass ratio 1: 1) of ethanol and water. An ink for forming an anode catalyst layer was prepared by dispersing.

得られたカソード触媒層形成用インクを、上述の高分子電解質膜の片面にスプレー法によって塗布し、白金担持量が0.6mg/cm2で寸法が140mm×140mmのカソード触媒層を、図2に示した位置と同様の位置に配置されるように形成した。 The obtained cathode catalyst layer forming ink was applied to one side of the above-mentioned polymer electrolyte membrane by a spray method to form a cathode catalyst layer having a platinum loading of 0.6 mg / cm 2 and dimensions of 140 mm × 140 mm. It was formed so as to be arranged at a position similar to the position shown in FIG.

さらに、得られたアノード触媒層形成用インクを、上述の高分子電解質膜のカソード触媒層が形成された面とは反対の面にスプレー法によって塗布し、白金担持量が0.35mg/cm2で寸法が140mm×140mmのアノード触媒層を、図2に示した位置と同様の位置に配置されるように形成した。 Furthermore, the obtained ink for forming an anode catalyst layer was applied to the surface of the polymer electrolyte membrane opposite to the surface on which the cathode catalyst layer was formed by a spray method, so that the platinum loading was 0.35 mg / cm 2. The anode catalyst layer having a size of 140 mm × 140 mm was formed so as to be arranged at the same position as that shown in FIG.

このようにしてアノード触媒層及びカソード触媒層を形成することにより、膜−触媒層接合体を形成した。   By forming the anode catalyst layer and the cathode catalyst layer in this way, a membrane-catalyst layer assembly was formed.

つぎに、上記のようにして得た膜−触媒層接合体を用い、図3に示した構造を有する膜−電極接合体を作製した。   Next, using the membrane-catalyst layer assembly obtained as described above, a membrane-electrode assembly having the structure shown in FIG. 3 was produced.

ガス拡散層を形成するために、寸法が200mm×200mmで厚みが100μmのカーボンペーパーを、フッ素樹脂含有の水性ディスパージョンに含浸した後、乾燥することで上記カーボンクロスに撥水性を付与した(撥水処理)。   In order to form a gas diffusion layer, carbon paper having a size of 200 mm × 200 mm and a thickness of 100 μm was impregnated with an aqueous dispersion containing a fluororesin, and then dried to impart water repellency to the carbon cloth (repellency). Water treatment).

続いて、撥水処理後のカーボンペーパーの一方の面(全面)に撥水カーボン層を形成した。導電性カーボン粉末(電気化学工業(株)製のデンカブラック(商品名))と、ポリテトラフルオロエチレン(PTFE)微粉末を分散させた水溶液(ダイキン工業(株)製のD−1)とを混合し、撥水カーボン層形成用インクを調製した。この撥水カーボン層形成用インクを、ドクターブレード法によって、上記撥水処理後のカーボンペーパーの一方の面に塗布し、撥水カーボン層を形成した。このとき、撥水カーボン層の一部は、上記カーボンペーパーの中に埋めこまれていた。   Subsequently, a water repellent carbon layer was formed on one surface (entire surface) of the carbon paper after the water repellent treatment. Conductive carbon powder (Denka Black (trade name) manufactured by Denki Kagaku Kogyo Co., Ltd.) and an aqueous solution (D-1 manufactured by Daikin Industries, Ltd.) in which fine powder of polytetrafluoroethylene (PTFE) is dispersed. By mixing, an ink for forming a water-repellent carbon layer was prepared. This water repellent carbon layer forming ink was applied to one surface of the carbon paper after the water repellent treatment by a doctor blade method to form a water repellent carbon layer. At this time, a part of the water-repellent carbon layer was embedded in the carbon paper.

その後、撥水処理および撥水カーボン層形成後のカーボンペーパーを、PTFEの融点以上の温度である350℃で30分間焼成した。最後に上記カーボンペーパーの中央部分を抜き型にて切断し、寸法が142.5mm×142.5mmのガス拡散層を得た。   Thereafter, the carbon paper after the water repellent treatment and the formation of the water repellent carbon layer was fired at 350 ° C., which is a temperature equal to or higher than the melting point of PTFE, for 30 minutes. Finally, the central portion of the carbon paper was cut with a punching die to obtain a gas diffusion layer with dimensions of 142.5 mm × 142.5 mm.

つぎに、上記のようにして得たガス拡散層の撥水カーボン層の中央部分がカソード触媒層およびアノード触媒層に接するように、2枚のガス拡散層で上述の膜−触媒層接合体を挟み、全体をホットプレス機で熱圧着(120℃、30分、10kgf/cm2)することにより、2枚のガス拡散層のそれぞれが図3に示した位置と同様の位置に配置されるようにして本発明の膜−電極接合体を得た。 Next, the membrane-catalyst layer assembly is composed of two gas diffusion layers so that the central portion of the water-repellent carbon layer of the gas diffusion layer obtained as described above is in contact with the cathode catalyst layer and the anode catalyst layer. Each of the two gas diffusion layers is arranged at the same position as shown in FIG. 3 by sandwiching and thermocompressing the whole with a hot press machine (120 ° C., 30 minutes, 10 kgf / cm 2 ). Thus, the membrane-electrode assembly of the present invention was obtained.

最後に、上記のようにして得た本発明の膜−電極接合体を用い、図4に示す構造を有する本発明の高分子電解質型燃料電池(単電池1)を作製した。   Finally, using the membrane-electrode assembly of the present invention obtained as described above, a polymer electrolyte fuel cell of the present invention (unit cell 1) having the structure shown in FIG. 4 was produced.

上記膜電極接合体を、燃料ガス供給用のガス流路および冷却水流路を有するセパレータ板と、酸化剤ガス供給用のガス流路および冷却水流路を有するセパレータ板とで挟持し、両セパレータ板間でカソードおよびアノードの周囲にフッ素ゴム製のガスケットを配置し、有効電極面積(アノードまたはカソードの有効電極面積)が196cm2である単電池(本発明の高分子電解質型燃料電池)を得た。
《比較例1》
第1膜補強部材22及び24並びに第2膜補強部材26及び28の代わりに、図13に示した額縁状の保護膜220及び保護膜240(ここでは、何れも実施例1と同じPEN製のもの)を配置したこと以外は、実施例1と同様にして膜−補強部材接合体、膜−触媒層接合体、膜−電極接合体および単電池(単電池2)を作製した。
[評価試験]
(1)エージング処理(活性化処理)
実施例1および比較例1で得られた単電池1及び単電池2を、64℃に制御し、アノード側のガス流路に燃料ガスとして水素ガスを供給し、カソード側のガス流路に空気をそれぞれ供給した。この際、水素ガス利用率を70%に設定し、空気利用率を55%に設定し、水素ガスおよび空気の露点がそれぞれ約64℃となるように加湿してから単電池に供給した。そして、電流密度0.2A/cm2 で12時間、単電池を運転してエージングを行った。
(2)電池出力特性評価試験1
実施例1及び比較例1の単電池について、燃料電池の実運転に近い条件で行う定格耐久試験を行った。
The membrane electrode assembly is sandwiched between a separator plate having a gas flow path for supplying fuel gas and a cooling water flow path and a separator plate having a gas flow path for supplying oxidant gas and a cooling water flow path. Between the cathode and the anode, a fluororubber gasket was arranged to obtain a single cell (polymer electrolyte fuel cell of the present invention) having an effective electrode area (effective electrode area of the anode or cathode) of 196 cm 2 . .
<< Comparative Example 1 >>
Instead of the first membrane reinforcing members 22 and 24 and the second membrane reinforcing members 26 and 28, the frame-shaped protective film 220 and protective film 240 shown in FIG. 13 (here, both are made of the same PEN as in Example 1). A membrane-reinforcing member assembly, a membrane-catalyst layer assembly, a membrane-electrode assembly, and a unit cell (unit cell 2) were prepared in the same manner as in Example 1 except that the above were disposed.
[Evaluation test]
(1) Aging process (activation process)
The unit cell 1 and the unit cell 2 obtained in Example 1 and Comparative Example 1 are controlled to 64 ° C., hydrogen gas is supplied as a fuel gas to the anode-side gas flow channel, and air is supplied to the cathode-side gas channel. Each supplied. At this time, the hydrogen gas utilization rate was set to 70%, the air utilization rate was set to 55%, and the dew points of hydrogen gas and air were each humidified so as to be about 64 ° C., and then supplied to the unit cell. Then, aging was performed by operating the cell at a current density of 0.2 A / cm 2 for 12 hours.
(2) Battery output characteristic evaluation test 1
About the single cell of Example 1 and Comparative Example 1, the rated durability test performed on the conditions close | similar to the actual driving | operation of a fuel cell was done.

定格耐久試験においては、電流密度を0.16A/cm2とし、アノード側のガス流路に、水素ガス利用率が75%となるように、水素および二酸化炭素の混合ガス(体積比3:1)を供給した以外は、上記エージングと同じ条件下で各単電池を運転し、12時間経過後の出力電圧を記録した。
(3)電池出力特性評価試験2
実施例1及び比較例1の単電池について、膜電極接合体の劣化を加速して、より短時間で寿命の判断が可能な加速耐久試験を行った。
In the rated durability test, the current density was 0.16 A / cm 2 , and the mixed gas of hydrogen and carbon dioxide (volume ratio 3: 1) was set so that the hydrogen gas utilization rate would be 75% in the gas flow path on the anode side. ) Was operated under the same conditions as the above aging, and the output voltage after 12 hours was recorded.
(3) Battery output characteristic evaluation test 2
For the single cells of Example 1 and Comparative Example 1, accelerated durability tests were performed in which the deterioration of the membrane electrode assembly was accelerated and the life could be judged in a shorter time.

加速耐久試験においては、実施例1および比較例1で得られた単電池1及び単電池2を、90℃に制御した以外は、上記電池出力特性評価試験1(定格耐久試験)と同じ条件下で各単電池を運転し、12時間経過後の出力電圧を記録した。なお、単電池1及び単電池2の90℃の制御は加熱用のヒータを用いて行った。   In the accelerated durability test, the unit cell 1 and the unit cell 2 obtained in Example 1 and Comparative Example 1 were controlled at 90 ° C. under the same conditions as the battery output characteristic evaluation test 1 (rated durability test). Each cell was operated and the output voltage after 12 hours was recorded. In addition, the 90 degreeC control of the cell 1 and the cell 2 was performed using the heater for heating.

Figure 0005101185

表1に示した結果から明らかなように、実施例1は、比較例1と同等の電池出力特性を有することが確認できた。
Figure 0005101185

As is clear from the results shown in Table 1, it was confirmed that Example 1 had the same battery output characteristics as Comparative Example 1.

以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to the said embodiment.

例えば、上述した本発明の実施形態については、膜補強部材(例えば、図1に示した第1膜補強部材22及び24)の外側の周縁部(エッジ)が高分子電解質膜(例えば、図1に示した高分子電解質膜10)の周縁部(エッジ)が一致している態様(高分子電解質膜の主面の略法線方向から見た場合に膜補強部材の外側のエッジと高分子電解質膜のエッジが重なり、高分子電解質膜のエッジがはみ出て見えない状態となっている態様)について説明したが、本発明はこれに限定されるものではなく、本発明においては、例えば、本発明の効果を得られる範囲において、膜補強部材のエッジが高分子電解質膜のエッジよりも全体的に又は部分的にはみ出している構成を有していてもよく、高分子電解質膜のエッジが膜補強部材のエッジよりも全体的に又は部分的にはみ出している構成を有していてもよい。   For example, in the embodiment of the present invention described above, the outer peripheral edge (edge) of the membrane reinforcing member (for example, the first membrane reinforcing members 22 and 24 shown in FIG. 1) is the polymer electrolyte membrane (for example, FIG. 1). (Polymer electrolyte membrane 10) shown in FIG. 5 is aligned with the peripheral edge (edge) (when viewed from the substantially normal direction of the main surface of the polymer electrolyte membrane, the outer edge of the membrane reinforcing member and the polymer electrolyte) The embodiment in which the edges of the membranes overlap and the edges of the polymer electrolyte membrane protrude and cannot be seen has been described. However, the present invention is not limited to this, and in the present invention, for example, the present invention The edge of the membrane reinforcing member may be entirely or partially protruded from the edge of the polymer electrolyte membrane as long as the above effect is obtained. All than the edge of the member It may have or partially protruding Configurations.

本発明の膜−補強部材接合体、膜−触媒層接合体、及び膜−電極接合体は、大量生産が可能な高分子電解質形燃料電池の部品として有用である。   The membrane-reinforcing member assembly, membrane-catalyst layer assembly, and membrane-electrode assembly of the present invention are useful as parts of a polymer electrolyte fuel cell capable of mass production.

本発明の高分子電解質形燃料電池は、自動車などの移動体、分散型(オンサイト型)発電システム(家庭用コジェネレーションシステム)などの主電源又は補助電源として好適に利用されることが期待される。   The polymer electrolyte fuel cell of the present invention is expected to be suitably used as a main power source or auxiliary power source for a moving body such as an automobile, a distributed (on-site) power generation system (home cogeneration system), and the like. The

本発明の膜−膜補強部材接合体の第1実施形態の基本構成の一例を示す斜視図である。It is a perspective view which shows an example of the basic composition of 1st Embodiment of the membrane-membrane reinforcement member assembly of the present invention. 図1に示す膜−膜補強部材接合体1にさらに触媒層が配置された膜−触媒層接合体(本発明の膜−触媒層接合体の第1実施形態)の基本構成の一例を示す斜視図である。1 is a perspective view showing an example of a basic configuration of a membrane-catalyst layer assembly (first embodiment of the membrane-catalyst layer assembly of the present invention) in which a catalyst layer is further arranged on the membrane-membrane reinforcing member assembly 1 shown in FIG. FIG. 図2に示す膜−触媒層接合体2にさらにガス拡散層が配置された膜−電極接合体(本発明の膜−電極接合体の第1実施形態)の基本構成の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a basic configuration of a membrane-electrode assembly (first embodiment of the membrane-electrode assembly of the present invention) in which a gas diffusion layer is further arranged on the membrane-catalyst layer assembly 2 shown in FIG. 2. is there. 図3に示す膜−電極接合体3を具備する燃料電池(本発明の高分子電解質形燃料電池の第1実施形態)の基本構成の一例(単電池の部分)を示す断面図である。FIG. 4 is a cross-sectional view showing an example (unit cell portion) of a basic configuration of a fuel cell (first embodiment of the polymer electrolyte fuel cell of the present invention) including the membrane-electrode assembly 3 shown in FIG. 3. 図1に示した膜−膜補強部材接合体1、図2に示した膜−触媒層接合体2及び図3に示した膜−電極接合体3を製造するための一連の工程の一部を概略的に示す説明図である。Part of a series of steps for manufacturing the membrane-membrane reinforcing member assembly 1 shown in FIG. 1, the membrane-catalyst layer assembly 2 shown in FIG. 2, and the membrane-electrode assembly 3 shown in FIG. It is explanatory drawing shown roughly. 図5における第1工程P1の作業を説明するための説明図である。It is explanatory drawing for demonstrating the operation | work of the 1st process P1 in FIG. 図5における第2工程P2の作業を説明するための説明図である。It is explanatory drawing for demonstrating the operation | work of the 2nd process P2 in FIG. 図5における第3工程P3の作業を説明するための説明図である。It is explanatory drawing for demonstrating the operation | work of the 3rd process P3 in FIG. 膜−膜補強部材接合体1の構成部材となる膜−膜補強部材積層体の製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the membrane-membrane reinforcement member laminated body used as the structural member of the membrane-membrane reinforcement member assembly 1. FIG. 膜−膜補強部材積層体を接合する作業を説明するための説明図である。It is explanatory drawing for demonstrating the operation | work which joins a membrane-membrane reinforcement member laminated body. 本発明の膜−膜補強部材接合体の第2実施形態の基本構成の一例を示す斜視図である。It is a perspective view which shows an example of the basic composition of 2nd Embodiment of the membrane-membrane reinforcement member assembly of this invention. 図11に示した膜−膜補強部材接合体1Aに備えられる内部補強膜80の基本構成の一例を示す要部拡大正面図である。FIG. 12 is an enlarged front view of an essential part showing an example of a basic configuration of an internal reinforcing membrane 80 provided in the membrane-membrane reinforcing member assembly 1A shown in FIG. 特許文献1に記載の高分子電解質形燃料電池のうちの、固体高分子電解質膜と、ふっ素樹脂シート(保護膜)との位置関係を説明するための要部分解斜視図である。3 is an exploded perspective view of a main part for explaining the positional relationship between a solid polymer electrolyte membrane and a fluororesin sheet (protective membrane) in a polymer electrolyte fuel cell described in Patent Document 1. FIG. 特許文献1に記載の高分子電解質形燃料電池を、公知の薄膜積層体の製造技術を用いて大量生産しようと意図する場合に一般的に想定される製造法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method generally assumed when it intends to mass-produce the polymer electrolyte fuel cell of patent document 1 using the manufacturing technique of a well-known thin film laminated body.

符号の説明Explanation of symbols

1、1A・・・膜−膜補強部材接合体、2、膜−触媒層接合体、3・・・膜−電極接合体、4・・・燃料電池、10・・・高分子電解質膜、10A・・・高分子電解質−内部補強膜複合体、11・・・第1高分子電解質膜、12・・・第2高分子電解質膜、22、24・・・第1膜補強部材、26、28・・・第2膜補強部材、31・・・第1触媒層、32・・・第2触媒層、41・・・第1ガス拡散層、42・・・第2ガス拡散層、50、52・・・セパレーター、60、62・・・ガスケット、70、72、74、76・・・隙間、78・・・ガス流路、80・・・内部補強膜、82・・・開口部、120A、120B、122、134A、134B・・・ロール、124、126・・・熱圧着機、128、130・・・ローラ、130B、130C・・・触媒層塗工機、132・・・裁断機、135A、135B・・・基材−膜補強部材積層体、136A、136B・・・膜補強部材、137A、137B・・・基材、138・・・膜補強部材切断面、140・・・高分子電解質膜、141・・・膜−膜補強部材積層体、142A、142B・・・膜補強部材、143、144、145・・・積層体、186・・・マスク、186A・・・開口部、190・・・触媒層、D1、D2、D3・・・進行方向、F1・・・第1主面、F2・・・第2主面、F3・・・第1触媒層の主面、F4・・・第2触媒層の主面、F5・・・第1ガス拡散層の主面、F6・・・第2ガス拡散層の主面、F1A、F22、F24、F26、F28・・・主面、P1・・・第1工程、P2・・・第2工程、P3・・・第3工程、P4・・・第4工程、P5・・・第5工程。     DESCRIPTION OF SYMBOLS 1, 1A ... Membrane-membrane reinforcement member assembly, 2, Membrane-catalyst layer assembly, 3 ... Membrane-electrode assembly, 4 ... Fuel cell, 10 ... Polymer electrolyte membrane, 10A ... Polymer electrolyte-inner reinforcing membrane composite, 11 ... first polymer electrolyte membrane, 12 ... second polymer electrolyte membrane, 22, 24 ... first membrane reinforcing member, 26, 28 ... 2nd membrane reinforcement member, 31 ... 1st catalyst layer, 32 ... 2nd catalyst layer, 41 ... 1st gas diffusion layer, 42 ... 2nd gas diffusion layer, 50, 52 ... Separator, 60, 62 ... Gasket, 70, 72, 74, 76 ... Gap, 78 ... Gas flow path, 80 ... Internal reinforcing membrane, 82 ... Opening, 120A, 120B, 122, 134A, 134B ... rolls, 124, 126 ... thermocompression bonding machines, 128, 130 ... rollers, 130B, 13 C ... Catalyst layer coating machine, 132 ... Cutting machine, 135A, 135B ... Base material-membrane reinforcing member laminate, 136A, 136B ... Membrane reinforcing member, 137A, 137B ... Base material 138 ... membrane reinforcing member cut surface, 140 ... polymer electrolyte membrane, 141 ... membrane-membrane reinforcing member laminate, 142A, 142B ... membrane reinforcing members, 143, 144, 145 ... Laminate, 186 ... Mask, 186A ... Opening, 190 ... Catalyst layer, D1, D2, D3 ... Traveling direction, F1 ... First main surface, F2 ... Second main Surface, F3 ... main surface of the first catalyst layer, F4 ... main surface of the second catalyst layer, F5 ... main surface of the first gas diffusion layer, F6 ... main surface of the second gas diffusion layer Surface, F1A, F22, F24, F26, F28 ... main surface, P1 ... first step, P2 ... second step, P3 ... third step, P4 ... fourth step, P ... fifth step.

Claims (6)

互いに対向しておりかつ略矩形状を呈する1対の第1主面及び第2主面を有する高分子電解質膜と、
前記第1主面の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、前記第1主面よりも小さな主面を有しかつ巻回できる膜状の形状を呈する、前記高分子電解質膜を補強するための1対の第1膜補強部材と、
前記第2主面の4辺のうちの互いに対向する1組の辺に沿う部分に配置されており、前記第2主面よりも小さな主面を有しかつ巻回できる膜状の形状を呈する、前記高分子電解質膜を補強するための1対の第2膜補強部材と、
を有しており、
前記1対の第1膜補強部材が配置された前記第1主面の前記1組の辺と、前記1対の第2膜補強部材が配置された前記第2主面の前記1組の辺とが略直交しており、
前記1対の第1膜補強部材と前記1対の第2膜補強部材とは、全体として前記高分子電解質膜の4辺に沿って前記第1主面と前記第2主面とに交互に存在するように延在しかつ前記高分子電解質膜の4隅の部分を挟むように配置されており、
前記第1膜補強部材及び前記第2膜補強部材は、ポリエチレンナフタレート、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、フルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフィド、ポリイミド、及び、ポリイミドアミドからなる群より選択される少なくとも1種の合成樹脂を含んで構成されている、膜−膜補強部材接合体。
A polymer electrolyte membrane having a pair of first main surface and second main surface facing each other and having a substantially rectangular shape;
It is arranged in a portion along a pair of opposite sides of the four sides of the first main surface, has a main surface smaller than the first main surface, and exhibits a film-like shape that can be wound. A pair of first membrane reinforcing members for reinforcing the polymer electrolyte membrane;
It is arranged in a portion along a pair of opposite sides of the four sides of the second main surface, has a main surface smaller than the second main surface, and exhibits a film-like shape that can be wound. A pair of second membrane reinforcing members for reinforcing the polymer electrolyte membrane;
Have
The one set of sides of the first main surface where the pair of first membrane reinforcing members are arranged, and the one set of sides of the second main surface where the pair of second membrane reinforcing members are arranged And are almost orthogonal,
The pair of first membrane reinforcing members and the pair of second membrane reinforcing members are alternately arranged on the first main surface and the second main surface along the four sides of the polymer electrolyte membrane as a whole. Extending so as to exist and arranged so as to sandwich the four corner portions of the polymer electrolyte membrane ,
The first membrane reinforcing member and the second membrane reinforcing member are polyethylene naphthalate, polytetrafluoroethylene, polyethylene terephthalate, fluoroethylene-propylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, polyethylene, polypropylene. And at least one synthetic resin selected from the group consisting of polyetheramide, polyetherimide, polyetheretherketone, polyethersulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, and polyimideamide. A membrane-membrane reinforcing member assembly.
前記高分子電解質膜中に配置されておりイオン伝導パスとなる貫通孔を有する内部補強膜を更に具備している、請求項1に記載の膜−膜補強部材接合体。   The membrane-membrane reinforcing member assembly according to claim 1, further comprising an internal reinforcing membrane disposed in the polymer electrolyte membrane and having a through hole serving as an ion conduction path. 請求項1又は2に記載の膜−膜補強部材接合体と、
前記膜−膜補強部材接合体の前記高分子電解質膜の前記第1主面のうちの前記第1膜補強部材が配置されてない領域の少なくとも一部に配置されている第1触媒層と、
前記膜−膜補強部材接合体の前記高分子電解質膜の前記第2主面のうちの前記第2膜補強部材が配置されていない領域の少なくとも一部に配置されている第2触媒層と、を有する、膜−触媒層接合体。
The membrane-membrane reinforcing member assembly according to claim 1 or 2 ,
A first catalyst layer disposed in at least a part of a region of the first main surface of the polymer electrolyte membrane of the membrane-membrane reinforcing member assembly where the first membrane reinforcing member is not disposed;
A second catalyst layer disposed in at least a part of a region of the second main surface of the polymer electrolyte membrane of the membrane-membrane reinforcing member assembly where the second membrane reinforcing member is not disposed; A membrane-catalyst layer assembly comprising:
請求項に記載の膜−触媒層接合体と、
前記膜−触媒層接合体の前記第1触媒層を被覆するように配置されている第1ガス拡散層と、
前記膜−触媒層接合体の前記第2触媒層を被覆するように配置されている第2ガス拡散層と、を有する、膜−電極接合体。
The membrane-catalyst layer assembly according to claim 3 ,
A first gas diffusion layer arranged to cover the first catalyst layer of the membrane-catalyst layer assembly;
And a second gas diffusion layer disposed so as to cover the second catalyst layer of the membrane-catalyst layer assembly.
前記第1ガス拡散層は、前記第1触媒層と前記第1膜補強部材の少なくとも一部とを被覆するように配置されており、
前記第2ガス拡散層は、前記第2触媒層と前記第2膜補強部材の少なくとも一部とを被覆するように配置されている、請求項に記載の膜−電極接合体。
The first gas diffusion layer is disposed so as to cover the first catalyst layer and at least a part of the first membrane reinforcing member,
The membrane-electrode assembly according to claim 4 , wherein the second gas diffusion layer is disposed so as to cover the second catalyst layer and at least a part of the second membrane reinforcing member.
請求項又はに記載の膜−電極接合体と、前記膜−電極接合体の前記第1ガス拡散層が形成された主面の周縁部に該第1ガス拡散層を囲むように配置された額縁状の第1ガスケットと、一方の主面に一方の反応ガスの溝状の流路が形成され該一方の主面が前記膜−電極接合体の前記第1ガス拡散層と前記第1ガスケットとに接触するように配置された板状の第1セパレータと、前記膜−電極接合体の前記第2ガス拡散層が形成された主面の周縁部に該第2ガス拡散層を囲むように配置された額縁状の第2ガスケットと、一方の主面に他方の反応ガスの溝状の流路が形成され該一方の主面が前記膜−電極接合体の前記第2ガス拡散層と前記第2ガスケットとに接触するように配置された板状の第2セパレータと、を具備している、高分子電解質形燃料電池。 The membrane-electrode assembly according to claim 4 or 5 and a peripheral portion of a main surface of the membrane-electrode assembly where the first gas diffusion layer is formed are disposed so as to surround the first gas diffusion layer. A frame-shaped first gasket, and a groove-like flow path of one reaction gas is formed on one main surface, and the one main surface is the first gas diffusion layer of the membrane-electrode assembly and the first A plate-like first separator disposed so as to be in contact with the gasket and a peripheral portion of a main surface of the membrane-electrode assembly on which the second gas diffusion layer is formed so as to surround the second gas diffusion layer A frame-shaped second gasket disposed on the first main surface, and a groove-like flow path for the other reactive gas on one main surface, the one main surface being the second gas diffusion layer of the membrane-electrode assembly A plate-like second separator disposed so as to come into contact with the second gasket, and polymer electrolysis Fuel cell.
JP2007166281A 2005-09-15 2007-06-25 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell Expired - Fee Related JP5101185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166281A JP5101185B2 (en) 2005-09-15 2007-06-25 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005268895 2005-09-15
JP2005268895 2005-09-15
JP2007166281A JP5101185B2 (en) 2005-09-15 2007-06-25 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006249466A Division JP4015677B2 (en) 2005-09-15 2006-09-14 Method for manufacturing membrane-membrane reinforcing member assembly, method for manufacturing membrane-catalyst layer assembly, method for manufacturing membrane-electrode assembly, and method for manufacturing polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2007242637A JP2007242637A (en) 2007-09-20
JP5101185B2 true JP5101185B2 (en) 2012-12-19

Family

ID=38587935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166281A Expired - Fee Related JP5101185B2 (en) 2005-09-15 2007-06-25 Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5101185B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027461A (en) 2008-07-22 2010-02-04 Toyota Motor Corp Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
JP5170265B2 (en) * 2011-01-20 2013-03-27 トヨタ自動車株式会社 Manufacturing method of membrane electrode assembly
JP2018125247A (en) * 2017-02-03 2018-08-09 エムテックスマート株式会社 Method of manufacturing membrane/electrode assembly of pefc type fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793146B2 (en) * 1985-06-28 1995-10-09 株式会社東芝 Molten carbonate fuel cell stack
JP4889168B2 (en) * 2001-08-23 2012-03-07 大阪瓦斯株式会社 Polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2004247123A (en) * 2003-02-13 2004-09-02 Toray Ind Inc Manufacturing method of polymer electrolyte film, and polymer fuel cell using same
JP2005216769A (en) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd Solid polymer electrolyte membrane, its manufacturing method, and membrane electrode joint body having solid polymer electrolyte membrane

Also Published As

Publication number Publication date
JP2007242637A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US7622215B2 (en) Composite electrolyte membrane, catalyst-coated membrane assembly, membrane-electrode assembly and polymer electrolyte fuel cell
US8192896B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, polymer electrolyte fuel cell, and method for manufacturing membrane-electrode assembly
US9083012B2 (en) Membrane electrode assembly having an adhesive layer impregnating through an electrocatalyst layer and into a first gas diffusion substrate
US8614027B2 (en) Membrane-electrode assembly with integrated sealing material
JP5214471B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
US8192893B2 (en) Membrane-membrane reinforcing membrane assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
US8192895B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2008071542A (en) Polymer-electrolyte fuel cell, and its manufacturing method
US8663872B2 (en) Method for manufacturing membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5153130B2 (en) Membrane electrode assembly
JP4015677B2 (en) Method for manufacturing membrane-membrane reinforcing member assembly, method for manufacturing membrane-catalyst layer assembly, method for manufacturing membrane-electrode assembly, and method for manufacturing polymer electrolyte fuel cell
US20230411660A1 (en) Membrane electrode assembly combined roll, membrane electrode assembly, and polymer electrolyte fuel cell
JP5101185B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP5245440B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP5087216B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2004349013A (en) Fuel cell stack
JP2003142110A (en) Electrode for fuel cell and fuel cell
JP2010108803A (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees