US8614027B2 - Membrane-electrode assembly with integrated sealing material - Google Patents

Membrane-electrode assembly with integrated sealing material Download PDF

Info

Publication number
US8614027B2
US8614027B2 US13/304,484 US201113304484A US8614027B2 US 8614027 B2 US8614027 B2 US 8614027B2 US 201113304484 A US201113304484 A US 201113304484A US 8614027 B2 US8614027 B2 US 8614027B2
Authority
US
United States
Prior art keywords
membrane
ion
catalyst
sealing material
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/304,484
Other versions
US20120135330A1 (en
Inventor
Heiko Oschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to US13/304,484 priority Critical patent/US8614027B2/en
Publication of US20120135330A1 publication Critical patent/US20120135330A1/en
Application granted granted Critical
Publication of US8614027B2 publication Critical patent/US8614027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of electrochemistry and describes a catalyst-coated membrane and a membrane-electrode assembly produced therefrom for electro-chemical devices, for example fuel cells, electrolyzers or electrochemical sensors. Furthermore, a process for producing the catalyst-coated membrane and membrane-electrode assemblies is disclosed and their use is described.
  • Fuel cells convert a fuel and an oxidant at separate locations at two electrodes into electric power, heat and water.
  • the fuel employed can be hydrogen or a hydrogen-rich gas, and the oxidant used can be oxygen or air.
  • the energy conversion process in the fuel cell has a particularly high efficiency. For this reason, the fuel cells are becoming increasingly important for mobile, stationary and portable applications.
  • membrane fuel cells are particularly suitable for use in a wide variety of fields.
  • a fuel cell stack is a stack of fuel cell units.
  • a fuel cell unit will hereinafter also be referred to as a fuel cell for short. It comprises a membrane-electrode assembly (“MEA”) which is located between bipolar plates, which are also referred to as separator plates and serve to bring gas to the unit and conduct away electric current.
  • MEA membrane-electrode assembly
  • a membrane-electrode assembly comprises an ion-conducting membrane which is provided on both sides with catalyst-coated reaction layers, viz. the electrodes.
  • One of the reaction layers is configured as anode for the oxidation of hydrogen and the second reaction layer is configured as cathode for the reduction of oxygen.
  • Gas diffusion layers abbreviated as “GDLs”) made of carbon fiber felt; carbon fiber paper or woven carbon fiber fabrics are applied to these catalyst layers.
  • the GDLs provide good access for the reaction gases to the electrodes and readily conduct away the cell current.
  • such an arrangement will be referred to as a five-layer membrane-electrode assembly (“5-layer MEA”).
  • Anode and cathode generally contain electrocatalysts which catalyze the respective reaction (oxidation of hydrogen or reduction of oxygen).
  • catalytically active components preference is given to using the metals of the platinum group of the Periodic Table of the Elements.
  • the majority of catalysts used are supported catalysts in which the catalytically active platinum group metals have been applied in finely divided form to the surface of a conductive support material.
  • the mean crystallite size of the platinum group metals is from about 1 to 10 nm. Finely divided, conductive carbon blacks save been found to be useful as support materials.
  • the ion-conducting membrane preferably comprises proton-conducting polymer materials. These materials will hereinafter also be referred to as ionomers for short. Preference is given to using a tetrafluoro-ethylen-fluorovinyl ether copolymer bearing sulfonic acid groups. This material is, for example, marketed under the trade name Nafion® by DuPont. However, it is also possible to use other, in particular fluorine-free ionomer materials such as doped sulfonated polyether ketones or doped sulfonated or sulfinated aryl ketones and also doped polybenzimidazoles.
  • fluorine-free ionomer materials such as doped sulfonated polyether ketones or doped sulfonated or sulfinated aryl ketones and also doped polybenzimidazoles.
  • Suitable ion-conducting membranes are described by O. Savadogo in “Journal of New Materials for Electrochemical Systems” I, 47-66 (1998). For use in fuel cells, these membranes generally need to have a thickness of from 10 to 200 microns.
  • the present invention describes catalyst-coated membranes (CCMs) and membrane-electrode assemblies (MEAs) having an integrated sealing material.
  • CCMs catalyst-coated membranes
  • MEAs membrane-electrode assemblies
  • the sealing of the gas spaces of a fuel cell from the ambient air and the other reactive gas in this case is essential to the safety and to the wide introduction of fuel cell technology.
  • the use of sealing materials and their integration into the construction concept of the MEA is therefore of great importance.
  • membrane-electrode assemblies Such construction concepts for membrane-electrode assemblies are described, for example, in U.S. Pat. No. 3,134,697 and in EP 700,108 A2.
  • the membrane forms a rim extending over the electrodes and when the cell is sealed this is clamped between the cell plates and, if necessary, between further seals.
  • membrane-electrode assemblies (MEAs) having such an overhanging membrane rim are susceptible to mechanical damage to the membrane during manufacture and assembly. Damage to the membrane easily leads to failure of the cell, since the membrane has to separate the gas spaces of the reactive gases hydrogen and oxygen from one another.
  • the production of such products uses an increased amount of ion-conducting membrane material due to the area of the overhanging rim.
  • an MEA having an active area of 50 cm 2 (i.e. with dimensions of 7.1 ⁇ 7.1 cm) and a circumferential overhanging rim of 0.9 cm has a total area of 64 cm 2 . This corresponds to an additional area of 28% (based on the active area of 50 cm 2 ) of membrane material being required.
  • Ionomer membranes are organic polymers having a complicated structure and are therefore expensive. Larger membrane rims increase the material losses and thus finally make the total MEA product more expensive.
  • EP 586,461 B1 discloses a membrane-electrode assembly containing integrated sealing materials.
  • This MEA has a five-layer structure and is composed of an anode consisting of a catalyst-coated gas diffusion layer (GDL), an ion-conducting membrane and a cathode which once again consists of a catalyst-coated gas diffusion layer.
  • GDL catalyst-coated gas diffusion layer
  • CCMs catalyst-coated membranes
  • sealing material In the preferred embodiment of EP 586,461 B1, two layers of sealing material are required and in a further embodiment one layer of sealing material is employed, but considerable amounts of this are used since the sealing material is applied to the outside of the uppermost electrode (i.e. on the uppermost catalyst-coated gas diffusion layer) in order to produce the composite of the total MEA. Since anode, membrane and cathode each have to have a contact area for the sealing material, there is a large overlap zone which leads to a considerable loss of active MEA area.
  • EP 1,037,295 B1 describes the continuous production of catalyst-coated membranes by means of screen printing.
  • the catalyst layers are printed selectively (i.e. in a particular pattern) on the membrane in the form of a tape.
  • a margin which consists of membrane area but does not serve as active area is produced.
  • the CCMs produced by this process are therefore expensive and incur relatively high materials costs.
  • the ion-conducting membrane should be coated with catalyst over the entire front and/or reverse side and have no additional membrane rim.
  • the catalyst-coated ion-conducting membrane should be able to be processed further in a simple process to produce a five-layer membrane-electrode assembly.
  • the invention relates to a catalyst-coated ion-conducting membrane and a membrane-electrode assembly (MEA) for electrochemical devices, in particular for fuel cells.
  • the catalyst-coated, ion-conducting, membrane is provided with a sealing material which is applied in the edge region to one side of the membrane and has a thickness which corresponds to at least the total thickness of the catalyst-coated membrane.
  • the catalyst-coated ion-conducting membranes and the membrane-electrode assemblies produced therefrom can be manufactured inexpensively. They are used in PEM fuel cells, direct methanol fuel cells (DMFCs), electrolyzers and other electrochemical devices.
  • FIG. 1 A shows a preferred embodiment of the catalyst-coated membrane of the invention.
  • FIG. 1 B shows the catalyst-coated membrane of FIG. 1A in the joined state.
  • FIG. 1 C shows a five-layer membrane-electrode assembly of the invention.
  • FIG. 2 A shows another preferred embodiment of the catalyst-coated membrane of the invention.
  • FIG. 2 B shows the catalyst-coated membrane of FIG. 2A in the joined state.
  • FIG. 2 C shows another five-layer membrane-electrode assembly of the invention.
  • a feature of the catalyst-coated membranes (CCMs) of the invention is that they comprise a sealing material which is applied on one side in the edge region of the ion-conducting membrane.
  • the thickness of the sealing material is at least as great as the thickness of the coated ion-conducting membrane.
  • the ion-conducting membrane is coated with catalyst over the entire front and/or reverse side and has no circumferential, uncoated margin.
  • FIG. 1A shows a preferred embodiment of the catalyst-coated membrane which in this case consists of two layers (“2-layer CCM”).
  • the ion-conducting membrane ( 1 ) is provided with a catalyst layer ( 3 ) over the entire area of the membrane (i.e. without a margin).
  • a sheet-like sealing material ( 4 ) is applied to the opposite, uncoated side of the membrane.
  • FIG. 1B shows the two-layer structure with sealing material ( 4 ) in the joined state.
  • FIG. 1C shows a five-layer membrane-electrode assembly of the “semi-coextensive” design produced therefrom, which is obtainable by combining a catalyst-coated gas diffusion layer ( 5 ) on the front side and a catalyst-free gas diffusion layer ( 6 ) on the reverse side with a two-layer catalyst-coated membrane.
  • the ion-conducting membrane ( 1 ) and gas diffusion layer ( 5 ) have different dimensions.
  • the sealing material ( 4 ) is integrated into the membrane-electrode assembly and joins the insides (i.e. the sides facing the membrane) of the gas diffusion layers ( 5 ) and ( 6 ).
  • FIG. 2A shows a further preferred embodiment of the present invention.
  • the catalyst-coated membrane used here consists of three layers (“3-layer CCM”).
  • the ion-conducting membrane ( 1 ) is provided on the front side with catalyst layer ( 2 ) and on the reverse side with catalyst layer ( 3 ). Both catalyst layers are applied over the entire area of the membrane, i.e. there is no uncoated membrane margin.
  • a sheet-like sealing material ( 4 ) is applied to one side of the CCM.
  • FIG. 2B shows the three-layer structure with sealing material ( 4 ) in the joined state.
  • FIG. 2C shows a five-layer membrane-electrode assembly produced therefrom which is obtained by combining a catalyst-free gas diffusion layer ( 5 ) on the front side and a catalyst-free gas diffusion layer ( 6 ) on the reverse side with the three-layer catalyst-coated membrane (“3-layer CCM”).
  • the sealing material ( 4 ) is integrated into the membrane-electrode assembly and joins the insides (i.e. the sides facing the membrane) of the gas diffusion layers ( 5 ) and ( 6 ).
  • the catalyst-coated ion-conducting membranes can be produced by an inexpensive process since full-area coating of the membrane surface can be carried out.
  • CCMs having different formats and patterns can be obtained by simple cutting or stamping from a membrane coated over its entire area. Coating the membrane by means of screen printing does not require expensively produced screens, dimensional problems do not occur. A considerable saving of expensive membrane material is achieved, since a membrane margin does not arise.
  • the sealing material is also used in cost-saving fashion and only used to provide contact on the insides of the gas diffusion layers.
  • the catalyst-coated ion-conducting membranes can be processed further in a simple process (e.g. by superposition in fuel cell stack, by adhesive bonding, pressing or by lamination) to produce five-layer membrane-electrode assemblies. If desired, the entire process can be carried out in the continuous mode.
  • the sealing material it has been found that it is advantageous for the sealing material to be formed as a sheet and be applied to the membrane in an edge region of a particular minimum width. It is advantageous for the sealing material to overlap the ion-conducting membrane at the edge to a width of at least 1 mm.
  • the thickness of the sealing material (d D ) is also advantageous for the thickness of the sealing material (d D ) to be at least as great as the total thickness of the coated ion-conducting membrane (d CCM ). This achieves gas-tight, strong and durable bonding of the components. If, for example, a membrane made of Nafion 112® (DuPont) having a thickness of 50 microns is used and catalyst layers having a total thickness of, for example, 15 microns are applied, the total layer thickness of the coated ion-conducting membrane (d CCM ) is 65 microns. The thickness of the sealing material (d D ) should therefore likewise be at least 65 microns. Lower thicknesses of the sealing material lead to damage to the catalyst layers, too high layer thicknesses (i.e. thicknesses which are 50% greater than the total thickness of the CCM) lead to unnecessary consumption of material and also to dimensional problems.
  • sealing material it is possible to use polymers which under the operating conditions of the fuel cell do not release substances which would be able to interfere in the electrocatalysis or adversely affect the function of the fuel cell in another way.
  • the polymers have to be able to provide a gas-tight contact between the gas diffusion structures and active catalyst layers.
  • a further important feature of these polymers is the ability to form a strong, integral bond with the polymer electrolyte membrane.
  • Possible sealing materials are thermoplastic polymers and/or copolymers of the classes polyethylene, polypropylene, polyamides, polyurethanes, polyesters, elastomers such as silicone rubber, EPDM and thermosets such as epoxy resins and cyano-acrylates.
  • the polymer can be used in the form of a precut film or as a liquid or molding composition.
  • a precut film is used for the production process
  • the ion-conducting membrane can be placed together with an appropriately precut frame of sealing material in a press.
  • the frame is cut so that its inner open area corresponds to the dimensions of the desired active area of the MEA.
  • the sealing material is then applied with heating and under pressure.
  • heatable hydraulic presses, calendars, rollers, roller presses or other lamination devices all of which can, if appropriate, be operated continuously.
  • the pressing pressure is referred to a area pressure in the present patent application.
  • the area pressures employed (which are based on the window area of the sealing material) are in the range from 50 to 300 N/cm 2 .
  • the temperatures are in the range from 20 to 200° C.
  • the pressing time is preferably in the range from 1 to 10 minutes.
  • the subsequent further processing of the catalyst-coated membranes to produce membrane-electrode assemblies can be carried out using the same devices.
  • the area pressures (based on the total area of the larger gas diffusion layer) employed are preferably in the range from 50 to 200 N/cm 2 .
  • the five-layer membrane-electrode assemblies can be either of the “coextensive” design or of the “semi-coextensive” design. “Coextensive” means that the GDLs cover the entire area of the ion-conducting membrane, while “semi-coextensive” means that the ion-conducting membrane and the GDLs have different dimensions.
  • the gas diffusion layers can consist of porous, electrically conducted materials such as woven carbon fiber fabrics, carbon fiber felts or carbon fiber papers. They can, if required, be waterproofed and/or have an additional microlayer applied to the side which is in contact with the ion-conducting membrane. Furthermore, it can be provided with a catalyst layer. Such gas diffusion layers are now commercially available.
  • the catalyst-coated ion-conducting membranes (CCMs) and the membrane-electrode assemblies produced therefrom are used in PEM fuel cells, direct methanol fuel cells (DMFCs), electrolyzers and other electrochemical devices.
  • a three-layer membrane coated with catalyst over its entire area (CCM type for hydrogen/air operation; Umicore AG & Co KG, Hanau) is used as starting material.
  • the dimensions are 72 ⁇ 72 mm, the thickness of the membrane is 25 micron and the total thickness of the catalyst layers is 22 micron.
  • a sealing rim of polyamide (Vestamelt 3261, Degussa, Düsseldorf) having a thickness of 50 micron, internal window size of 68 ⁇ 68 mm and external dimensions of 100 ⁇ 100 mm is centered on the CCM and pressed between two PTFE plates of a hot press.
  • the hot press is set so that it applies an area pressure of 250 N/cm 2 based on the area of the sealing rim.
  • the temperature is 160° C. and the pressing time is 2 minutes. After slow cooling, the structure is taken from the press.
  • the three-layer CCM with sealing rim applied on one side is positioned centrally between two catalyst-free gas diffusion layers (type 30 BC, SGL-Carbon, Meitingen) having dimensions of 72 ⁇ 72 mm (anode) and 76 ⁇ 76 mm (cathode).
  • the structure is subsequently pressed in a hot press at 135° C. for 3 minutes, with the hot press being set so that it applies an area pressure of 100 N/cm 2 based on the area of the larger gas diffusion layer.
  • Slow cooling gives a five-layer MEA whose individual components are firmly bonded.
  • the five-layer MEA is built into a single cell in a PEM fuel cell test station and tested under hydrogen/air conditions (pressure: 1 bar, temperature: 70° C.). A cell voltage of 715 mV is obtained at a current density of 600 mA/cm 2 . This corresponds to a good power density of 0.43 W/cm 2 .
  • a 50 micron thick ionomer membrane is coated with a catalyst layer by continuous screen printing.
  • a cathode layer having a Pt loading of 0.4 mg Pt/cm 2 and a thickness of 15 micron is applied.
  • an active area of 72 ⁇ 72 mm is stamped from this structure.
  • a polyamide sealing rim (cf. example 1; window size 68 ⁇ 68 mm; thickness: 75 micron; external dimensions 100 ⁇ 100 mm) it centered on the uncoated membrane side and the overall structure is pressed between two PTFE plates in a hot press.
  • the area pressure is 250 N/cm 2 based on the total area of the sealing rim, the temperature is 160° C. and the pressing time is 2 minutes. After slow cooling, the two-layer CCM is taken from the press.
  • As gas diffusion layer for the cathode use is made of a catalyst-free GDL having dimensions of 76 ⁇ 76 mm.
  • Anode gas diffusion layer, two-layer CCM and cathode gas diffusion layer are stacked on top of one another so that the active area is centered and the anode catalyst layer comes into contact with the uncoated membrane side.
  • the structure is subsequently pressed in a hot press et 135° C. for 3 minutes.
  • the area pressure (based on the area of the gas diffusion layer) is 100 N/cm 2 . Slow cooling gives a five-layer MEE whose individual components are firmly bonded.
  • the five-layer MEA is built into a single cell in a PEM fuel cell test station and tested under hydrogen/air conditions (pressure: 1 bar, temperature: 70° C.). A cell voltage of 705 mV is obtained at a current density of 600 mA/cm 2 . This corresponds to a good power density of 0.42 W/cm 2 .

Abstract

The invention relates to a catalyst-coated ion-conducting membrane and a membrane-electrode assembly (MEA) for electrochemical devices, in particular for fuel cells. The catalyst-coated, ion-conducting membrane is provided with a sealing material which is applied in the edge region to one side of the membrane and has a thickness which corresponds to at least the total thickness of the catalyst-coated membrane. Owing to their simple, material-conserving construction, the catalyst-coated ion-conducting membranes and the membrane-electrode assemblies produced therefrom can be manufactured inexpensively. They are used in PEM fuel cells, direct methanol fuel cells (DMFCs), electrolysers and other electrochemical devices.

Description

This application is a divisional application of U.S. patent application Ser. No. 10/572,652, filed Apr. 19, 2007, now U.S. Pat. No. 8,067,130, issued Nov. 29, 2011, which in turn is a 371 national stage filing of international application PCT/EP2004/010501, filed Sep. 18, 2004; the disclosures of which are hereby incorporated by reference into the present disclosure.
BACKGROUND OF THE INVENTION
The invention relates to the field of electrochemistry and describes a catalyst-coated membrane and a membrane-electrode assembly produced therefrom for electro-chemical devices, for example fuel cells, electrolyzers or electrochemical sensors. Furthermore, a process for producing the catalyst-coated membrane and membrane-electrode assemblies is disclosed and their use is described.
Fuel cells convert a fuel and an oxidant at separate locations at two electrodes into electric power, heat and water. The fuel employed can be hydrogen or a hydrogen-rich gas, and the oxidant used can be oxygen or air. The energy conversion process in the fuel cell has a particularly high efficiency. For this reason, the fuel cells are becoming increasingly important for mobile, stationary and portable applications.
Owing to their compact construction, their power density and their high efficiency, membrane fuel cells (PEMFC, DMFC, etc.) are particularly suitable for use in a wide variety of fields.
For the purposes of the present invention, a fuel cell stack is a stack of fuel cell units. A fuel cell unit will hereinafter also be referred to as a fuel cell for short. It comprises a membrane-electrode assembly (“MEA”) which is located between bipolar plates, which are also referred to as separator plates and serve to bring gas to the unit and conduct away electric current.
A membrane-electrode assembly comprises an ion-conducting membrane which is provided on both sides with catalyst-coated reaction layers, viz. the electrodes. One of the reaction layers is configured as anode for the oxidation of hydrogen and the second reaction layer is configured as cathode for the reduction of oxygen. Gas diffusion layers (abbreviated as “GDLs”) made of carbon fiber felt; carbon fiber paper or woven carbon fiber fabrics are applied to these catalyst layers. The GDLs provide good access for the reaction gases to the electrodes and readily conduct away the cell current. For the purposes of the present invention, such an arrangement will be referred to as a five-layer membrane-electrode assembly (“5-layer MEA”). In contrast to this, there is the ion-conducting membrane coated with catalyst on the front and reverse sides which is referred to as 3-layer CCM (“catalyst-coated membrane”). It contains no gas diffusion layers. If only one side of the ion-conducting membrane is coated with catalyst, this is referred to as a two-layer catalyst-coated membrane (“2-layer CCM”).
Anode and cathode generally contain electrocatalysts which catalyze the respective reaction (oxidation of hydrogen or reduction of oxygen). As catalytically active components, preference is given to using the metals of the platinum group of the Periodic Table of the Elements. The majority of catalysts used are supported catalysts in which the catalytically active platinum group metals have been applied in finely divided form to the surface of a conductive support material. The mean crystallite size of the platinum group metals is from about 1 to 10 nm. Finely divided, conductive carbon blacks save been found to be useful as support materials.
The ion-conducting membrane preferably comprises proton-conducting polymer materials. These materials will hereinafter also be referred to as ionomers for short. Preference is given to using a tetrafluoro-ethylen-fluorovinyl ether copolymer bearing sulfonic acid groups. This material is, for example, marketed under the trade name Nafion® by DuPont. However, it is also possible to use other, in particular fluorine-free ionomer materials such as doped sulfonated polyether ketones or doped sulfonated or sulfinated aryl ketones and also doped polybenzimidazoles. Suitable ion-conducting membranes are described by O. Savadogo in “Journal of New Materials for Electrochemical Systems” I, 47-66 (1998). For use in fuel cells, these membranes generally need to have a thickness of from 10 to 200 microns.
The present invention describes catalyst-coated membranes (CCMs) and membrane-electrode assemblies (MEAs) having an integrated sealing material. The products according to the invention have a simplified, material-conserving structure and can therefore be produced more cheaply than the conventional materials obtainable according to the prior art.
The sealing of the gas spaces of a fuel cell from the ambient air and the other reactive gas in this case is essential to the safety and to the wide introduction of fuel cell technology. The use of sealing materials and their integration into the construction concept of the MEA is therefore of great importance.
Such construction concepts for membrane-electrode assemblies are described, for example, in U.S. Pat. No. 3,134,697 and in EP 700,108 A2. In these concepts, the membrane forms a rim extending over the electrodes and when the cell is sealed this is clamped between the cell plates and, if necessary, between further seals. However, membrane-electrode assemblies (MEAs) having such an overhanging membrane rim are susceptible to mechanical damage to the membrane during manufacture and assembly. Damage to the membrane easily leads to failure of the cell, since the membrane has to separate the gas spaces of the reactive gases hydrogen and oxygen from one another. Furthermore, the production of such products uses an increased amount of ion-conducting membrane material due to the area of the overhanging rim. Depending on the structure and construction of the MEA, up to 50% more membrane material (based on the active area of the membrane) is required. Thus, for example, an MEA having an active area of 50 cm2 (i.e. with dimensions of 7.1×7.1 cm) and a circumferential overhanging rim of 0.9 cm has a total area of 64 cm2. This corresponds to an additional area of 28% (based on the active area of 50 cm2) of membrane material being required. Ionomer membranes are organic polymers having a complicated structure and are therefore expensive. Larger membrane rims increase the material losses and thus finally make the total MEA product more expensive.
EP 586,461 B1 discloses a membrane-electrode assembly containing integrated sealing materials. This MEA has a five-layer structure and is composed of an anode consisting of a catalyst-coated gas diffusion layer (GDL), an ion-conducting membrane and a cathode which once again consists of a catalyst-coated gas diffusion layer. In contrast to the present patent application, no catalyst-coated membranes (“CCMs”) are used for producing this MEA. The MEA production process is significantly more inflexible and differs substantially from the present patent application. In the preferred embodiment of EP 586,461 B1, two layers of sealing material are required and in a further embodiment one layer of sealing material is employed, but considerable amounts of this are used since the sealing material is applied to the outside of the uppermost electrode (i.e. on the uppermost catalyst-coated gas diffusion layer) in order to produce the composite of the total MEA. Since anode, membrane and cathode each have to have a contact area for the sealing material, there is a large overlap zone which leads to a considerable loss of active MEA area.
EP 1,037,295 B1 describes the continuous production of catalyst-coated membranes by means of screen printing. The catalyst layers are printed selectively (i.e. in a particular pattern) on the membrane in the form of a tape. A margin which consists of membrane area but does not serve as active area is produced. The CCMs produced by this process are therefore expensive and incur relatively high materials costs.
It is therefore an object of the present invention to provide a catalyst-coated ion-conducting membrane which contains an integrated sealing material and can be produced inexpensively and simply. To allow inexpensive production, the ion-conducting membrane should be coated with catalyst over the entire front and/or reverse side and have no additional membrane rim. The catalyst-coated ion-conducting membrane should be able to be processed further in a simple process to produce a five-layer membrane-electrode assembly.
SUMMARY OF THE INVENTION
The invention relates to a catalyst-coated ion-conducting membrane and a membrane-electrode assembly (MEA) for electrochemical devices, in particular for fuel cells. The catalyst-coated, ion-conducting, membrane is provided with a sealing material which is applied in the edge region to one side of the membrane and has a thickness which corresponds to at least the total thickness of the catalyst-coated membrane. Owing to their simple, material-conserving construction, the catalyst-coated ion-conducting membranes and the membrane-electrode assemblies produced therefrom can be manufactured inexpensively. They are used in PEM fuel cells, direct methanol fuel cells (DMFCs), electrolyzers and other electrochemical devices.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A—shows a preferred embodiment of the catalyst-coated membrane of the invention.
FIG. 1B—shows the catalyst-coated membrane of FIG. 1A in the joined state.
FIG. 1C—shows a five-layer membrane-electrode assembly of the invention.
FIG. 2A—shows another preferred embodiment of the catalyst-coated membrane of the invention.
FIG. 2B—shows the catalyst-coated membrane of FIG. 2A in the joined state.
FIG. 2C—shows another five-layer membrane-electrode assembly of the invention.
DETAILED DESCRIPTION OF THE INVENTION
A feature of the catalyst-coated membranes (CCMs) of the invention is that they comprise a sealing material which is applied on one side in the edge region of the ion-conducting membrane. The thickness of the sealing material is at least as great as the thickness of the coated ion-conducting membrane. The ion-conducting membrane is coated with catalyst over the entire front and/or reverse side and has no circumferential, uncoated margin. The figures below describe various embodiments of the invention in more detail.
FIG. 1A shows a preferred embodiment of the catalyst-coated membrane which in this case consists of two layers (“2-layer CCM”). Here, the ion-conducting membrane (1) is provided with a catalyst layer (3) over the entire area of the membrane (i.e. without a margin). A sheet-like sealing material (4) is applied to the opposite, uncoated side of the membrane.
FIG. 1B shows the two-layer structure with sealing material (4) in the joined state.
FIG. 1C shows a five-layer membrane-electrode assembly of the “semi-coextensive” design produced therefrom, which is obtainable by combining a catalyst-coated gas diffusion layer (5) on the front side and a catalyst-free gas diffusion layer (6) on the reverse side with a two-layer catalyst-coated membrane. The ion-conducting membrane (1) and gas diffusion layer (5) have different dimensions. The sealing material (4) is integrated into the membrane-electrode assembly and joins the insides (i.e. the sides facing the membrane) of the gas diffusion layers (5) and (6).
FIG. 2A shows a further preferred embodiment of the present invention. The catalyst-coated membrane used here consists of three layers (“3-layer CCM”). The ion-conducting membrane (1) is provided on the front side with catalyst layer (2) and on the reverse side with catalyst layer (3). Both catalyst layers are applied over the entire area of the membrane, i.e. there is no uncoated membrane margin. A sheet-like sealing material (4) is applied to one side of the CCM.
FIG. 2B shows the three-layer structure with sealing material (4) in the joined state.
FIG. 2C shows a five-layer membrane-electrode assembly produced therefrom which is obtained by combining a catalyst-free gas diffusion layer (5) on the front side and a catalyst-free gas diffusion layer (6) on the reverse side with the three-layer catalyst-coated membrane (“3-layer CCM”). Here too, the sealing material (4) is integrated into the membrane-electrode assembly and joins the insides (i.e. the sides facing the membrane) of the gas diffusion layers (5) and (6).
The catalyst-coated ion-conducting membranes can be produced by an inexpensive process since full-area coating of the membrane surface can be carried out. CCMs having different formats and patterns can be obtained by simple cutting or stamping from a membrane coated over its entire area. Coating the membrane by means of screen printing does not require expensively produced screens, dimensional problems do not occur. A considerable saving of expensive membrane material is achieved, since a membrane margin does not arise. Furthermore, the sealing material is also used in cost-saving fashion and only used to provide contact on the insides of the gas diffusion layers. The catalyst-coated ion-conducting membranes can be processed further in a simple process (e.g. by superposition in fuel cell stack, by adhesive bonding, pressing or by lamination) to produce five-layer membrane-electrode assemblies. If desired, the entire process can be carried out in the continuous mode.
It has been found that it is advantageous for the sealing material to be formed as a sheet and be applied to the membrane in an edge region of a particular minimum width. It is advantageous for the sealing material to overlap the ion-conducting membrane at the edge to a width of at least 1 mm.
It is also advantageous for the thickness of the sealing material (dD) to be at least as great as the total thickness of the coated ion-conducting membrane (dCCM). This achieves gas-tight, strong and durable bonding of the components. If, for example, a membrane made of Nafion 112® (DuPont) having a thickness of 50 microns is used and catalyst layers having a total thickness of, for example, 15 microns are applied, the total layer thickness of the coated ion-conducting membrane (dCCM) is 65 microns. The thickness of the sealing material (dD) should therefore likewise be at least 65 microns. Lower thicknesses of the sealing material lead to damage to the catalyst layers, too high layer thicknesses (i.e. thicknesses which are 50% greater than the total thickness of the CCM) lead to unnecessary consumption of material and also to dimensional problems.
As sealing material, it is possible to use polymers which under the operating conditions of the fuel cell do not release substances which would be able to interfere in the electrocatalysis or adversely affect the function of the fuel cell in another way. The polymers have to be able to provide a gas-tight contact between the gas diffusion structures and active catalyst layers. A further important feature of these polymers is the ability to form a strong, integral bond with the polymer electrolyte membrane. Possible sealing materials are thermoplastic polymers and/or copolymers of the classes polyethylene, polypropylene, polyamides, polyurethanes, polyesters, elastomers such as silicone rubber, EPDM and thermosets such as epoxy resins and cyano-acrylates.
To apply the sealing material, the polymer can be used in the form of a precut film or as a liquid or molding composition. When a precut film is used for the production process, the ion-conducting membrane can be placed together with an appropriately precut frame of sealing material in a press. The frame is cut so that its inner open area corresponds to the dimensions of the desired active area of the MEA. The sealing material is then applied with heating and under pressure. To carry out this process, it is possible to use heatable hydraulic presses, calendars, rollers, roller presses or other lamination devices, all of which can, if appropriate, be operated continuously. The pressing pressure is referred to a area pressure in the present patent application. The area pressures employed (which are based on the window area of the sealing material) are in the range from 50 to 300 N/cm2. The temperatures are in the range from 20 to 200° C. The pressing time is preferably in the range from 1 to 10 minutes.
The subsequent further processing of the catalyst-coated membranes to produce membrane-electrode assemblies can be carried out using the same devices. For this purpose, the area pressures (based on the total area of the larger gas diffusion layer) employed are preferably in the range from 50 to 200 N/cm2.
However, it is also possible to combine the catalyst-coated membrane, the sealing material and the gas diffusion layers required in a multilayer structure and to produce the five-layer membrane-electrode assembly in one step (i.e. single-stage production). The values for the area pressure are then selected from within the above-described ranges.
The five-layer membrane-electrode assemblies can be either of the “coextensive” design or of the “semi-coextensive” design. “Coextensive” means that the GDLs cover the entire area of the ion-conducting membrane, while “semi-coextensive” means that the ion-conducting membrane and the GDLs have different dimensions.
The gas diffusion layers (GDLs) can consist of porous, electrically conducted materials such as woven carbon fiber fabrics, carbon fiber felts or carbon fiber papers. They can, if required, be waterproofed and/or have an additional microlayer applied to the side which is in contact with the ion-conducting membrane. Furthermore, it can be provided with a catalyst layer. Such gas diffusion layers are now commercially available.
The catalyst-coated ion-conducting membranes (CCMs) and the membrane-electrode assemblies produced therefrom are used in PEM fuel cells, direct methanol fuel cells (DMFCs), electrolyzers and other electrochemical devices.
The following examples illustrate the invention.
Example 1 a) Production of a Three-Layer CCM with Integrated Sealing Material
A three-layer membrane coated with catalyst over its entire area (CCM type for hydrogen/air operation; Umicore AG & Co KG, Hanau) is used as starting material. The Pt loading of the CCM is 0.2 mg of Pt/cm2 on the anode side and 0.4 mg Pt/cm2 on the cathode side (i.e. total loading=0.6 mg Pt/cm2). The dimensions are 72×72 mm, the thickness of the membrane is 25 micron and the total thickness of the catalyst layers is 22 micron. A sealing rim of polyamide (Vestamelt 3261, Degussa, Düsseldorf) having a thickness of 50 micron, internal window size of 68×68 mm and external dimensions of 100×100 mm is centered on the CCM and pressed between two PTFE plates of a hot press. The hot press is set so that it applies an area pressure of 250 N/cm2 based on the area of the sealing rim. The temperature is 160° C. and the pressing time is 2 minutes. After slow cooling, the structure is taken from the press.
b) Production of a Five-Layer MEA (Semi-Coextensive Design)
The three-layer CCM with sealing rim applied on one side is positioned centrally between two catalyst-free gas diffusion layers (type 30 BC, SGL-Carbon, Meitingen) having dimensions of 72×72 mm (anode) and 76×76 mm (cathode). The structure is subsequently pressed in a hot press at 135° C. for 3 minutes, with the hot press being set so that it applies an area pressure of 100 N/cm2 based on the area of the larger gas diffusion layer. Slow cooling gives a five-layer MEA whose individual components are firmly bonded.
c) Electrochemical Measurement
The five-layer MEA is built into a single cell in a PEM fuel cell test station and tested under hydrogen/air conditions (pressure: 1 bar, temperature: 70° C.). A cell voltage of 715 mV is obtained at a current density of 600 mA/cm2. This corresponds to a good power density of 0.43 W/cm2.
Example 2 a) Production of a Two-Layer CCM with Integrated Sealing Material
A 50 micron thick ionomer membrane is coated with a catalyst layer by continuous screen printing. A cathode layer having a Pt loading of 0.4 mg Pt/cm2 and a thickness of 15 micron is applied. After drying, an active area of 72×72 mm is stamped from this structure. A polyamide sealing rim (cf. example 1; window size 68×68 mm; thickness: 75 micron; external dimensions 100×100 mm) it centered on the uncoated membrane side and the overall structure is pressed between two PTFE plates in a hot press. The area pressure is 250 N/cm2 based on the total area of the sealing rim, the temperature is 160° C. and the pressing time is 2 minutes. After slow cooling, the two-layer CCM is taken from the press.
b) Production of a Five-Layer MEA
A large gas diffusion layer for the anode (type 30 BC, SGL-Carbon, Meitingen) is provided over its entire area with a catalyst layer (Pt loading=0.2 mg/cm2). After drying, a smaller GDL having dimensions of 76×76 mm is stamped out. As gas diffusion layer for the cathode, use is made of a catalyst-free GDL having dimensions of 76×76 mm. Anode gas diffusion layer, two-layer CCM and cathode gas diffusion layer are stacked on top of one another so that the active area is centered and the anode catalyst layer comes into contact with the uncoated membrane side. The structure is subsequently pressed in a hot press et 135° C. for 3 minutes. The area pressure (based on the area of the gas diffusion layer) is 100 N/cm2. Slow cooling gives a five-layer MEE whose individual components are firmly bonded.
c) Electrochemical Measurement
The five-layer MEA is built into a single cell in a PEM fuel cell test station and tested under hydrogen/air conditions (pressure: 1 bar, temperature: 70° C.). A cell voltage of 705 mV is obtained at a current density of 600 mA/cm2. This corresponds to a good power density of 0.42 W/cm2.

Claims (13)

What is claimed is:
1. A membrane-electrode assembly for electrochemical devices which comprises an ion-conducting membrane having a front side, a reverse side and an edge region, a first catalyst layer on the front side, a second catalyst layer on the reverse side, a first gas diffusion layer on the front side, a second gas diffusion layer on the reverse side and a sealing material, wherein the sealing material is applied in the edge region of the ion-conducting membrane and overlaps the ion-conducting membrane circumferentially in the edge region to a width of at least 1 mm on either the front side or the reverse side of the ion-conducting membrane.
2. The membrane-electrode assembly as claimed in claim 1, wherein the sealing material has a thickness (dD) at least as great as the thickness of the catalyst-coated ion-conducting membrane.
3. The membrane-electrode assembly as claimed in claim 1, wherein the gas diffusion layers comprise a porous, electrically conductive material.
4. The membrane-electrode assembly as claimed in claim 3, wherein the porous, electrically conductive material is a woven carbon fiber fabric, a carbon fiber felt or a carbon fiber paper.
5. An electrochemical device comprising the membrane-electrode assembly as claimed in claim 1.
6. An electrochemical device as claimed in claim 5, wherein the electrochemical device is a fuel cell.
7. The membrane-electrode assembly as claimed in claim 1, wherein the ion-conducting membrane and at least one of the gas diffusion layers have different dimensions.
8. The membrane-electrode assembly as claimed in claim 1, wherein the sealing material comprises a thermoplastic polymer and/or copolymer selected from the group consisting of polyethylenes, polypropylenes, polytetrafluoroethylenes, PVDF, polyesters, polyamides, polyamide elastomers, polyimides and polyurethanes, an elastomer selected from the group consisting of silicones, silicone elastomers, EPDM, fluorinated elastomers, perfluorinated elastomers, chloroprene elastomers, and fluorosilicone elastomers and/or a thermoset polymer selected from the group consisting of epoxy resins, phenolic resins and cyano-acrylates.
9. The membrane-electrode assembly as claimed in claim 1, wherein the ion-conducting membrane comprises an organic polymer selected from the group consisting of proton-conducting perfluorinated polymeric sulfonic acid compounds, doped polybenzimidazoles, polyether ketones, polysulfones and ion-conducting ceramic materials.
10. A process for producing a membrane-electrode assembly having an integrated sealing material, which comprises
providing a catalyst-coated ion-conducting membrane with a sealing material, wherein the catalyst-coated ion-conducting membrane has a front side, reverse side and an edge region, and has a first catalyst layer on the front side and a second catalyst layer on the reverse side, and wherein the sealing material is in the edge region of the ion-conducting membrane and overlaps the ion-conducting membrane circumferentially in the edge region to a width of at least 1 mm on either the front side or the reverse side of the ion-conducting membrane, and
applying a gas diffusion layer to each of the front and reverse sides of the catalyst-coated ion-conducting membrane under elevated pressure or elevated temperature or both.
11. The process as claimed in claim 10, wherein the pressure (quoted as area pressure based on the area of the gas diffusion layer) is in the range from 50 to 200 N/cm2 and the temperature is in the range from 20 to 200° C.
12. A process for producing a membrane-electrode assembly having an integrated sealing material, which comprises
providing an ion-conducting membrane having front and reverse sides, a surface area and an edge region and at least one catalyst layer applied to the entire surface area,
positioning the sealing material on one side of the membrane in the edge region of the ion-conducting membrane,
positioning a gas diffusion layer on each of the front and reverse sides of the catalyst-coated ion-conducting membrane, and
bonding the membrane, sealing material and gas diffusion layer at elevated pressure or elevated temperature or both,
wherein the sealing material overlaps the ion-conducting membrane circumferentially in the edge region to a width of at least 1 mm.
13. The process as claimed in claim 12, wherein the pressure (quoted as area pressure based on the area of the gas diffusion layer) is in the range from 50 to 200 N/cm2 and the temperature is in the range from 20 to 200° C.
US13/304,484 2003-09-20 2011-11-25 Membrane-electrode assembly with integrated sealing material Active US8614027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/304,484 US8614027B2 (en) 2003-09-20 2011-11-25 Membrane-electrode assembly with integrated sealing material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP03021349 2003-09-20
EP03021349.0 2003-09-20
EP03021349 2003-09-20
PCT/EP2004/010501 WO2005029620A1 (en) 2003-09-20 2004-09-18 Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom
US57265207A 2007-04-19 2007-04-19
US13/304,484 US8614027B2 (en) 2003-09-20 2011-11-25 Membrane-electrode assembly with integrated sealing material

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2004/010501 Division WO2005029620A1 (en) 2003-09-20 2004-09-18 Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom
US10/572,652 Division US8067130B2 (en) 2003-09-20 2004-09-18 Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom
US57265207A Division 2003-09-20 2007-04-19

Publications (2)

Publication Number Publication Date
US20120135330A1 US20120135330A1 (en) 2012-05-31
US8614027B2 true US8614027B2 (en) 2013-12-24

Family

ID=34354419

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/572,652 Active 2028-01-03 US8067130B2 (en) 2003-09-20 2004-09-18 Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom
US13/304,484 Active US8614027B2 (en) 2003-09-20 2011-11-25 Membrane-electrode assembly with integrated sealing material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/572,652 Active 2028-01-03 US8067130B2 (en) 2003-09-20 2004-09-18 Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom

Country Status (5)

Country Link
US (2) US8067130B2 (en)
EP (1) EP1671388B1 (en)
CN (1) CN1871731B (en)
CA (1) CA2539602C (en)
WO (1) WO2005029620A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014056A1 (en) * 2003-07-14 2005-01-20 Umicore Ag & Co. Kg Membrane electrode unit for electrochemical equipment
US20060078781A1 (en) * 2004-10-08 2006-04-13 3M Innovative Properties Company Curable subgasket for a membrane electrode assembly
CA2610424C (en) * 2005-05-31 2013-03-19 Nissan Motor Co., Ltd. Electrolyte membrane-electrode assembly and method for production thereof
EP1826849A1 (en) 2006-02-24 2007-08-29 Auto-Juntas, S.A. Unipersonal Membrane electrode assembly with reinforced sealing structure
JP2009193860A (en) * 2008-02-15 2009-08-27 Asahi Glass Co Ltd Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
CN101856652A (en) * 2009-04-10 2010-10-13 上海蓝蔚科技发展有限公司 Spraying method of proton exchange membrane catalyst for fuel battery
KR101035619B1 (en) * 2009-08-26 2011-05-19 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell and fuel cell stack
CN101800298B (en) * 2010-03-11 2012-01-11 武汉理工新能源有限公司 Frame laminate material and application thereof in preparing membrane electrode with sealed frame core component
GB201012980D0 (en) * 2010-08-03 2010-09-15 Johnson Matthey Plc Membrane
US9012092B2 (en) * 2011-04-04 2015-04-21 Laor Consulting Llc Fiber felt capacitors and batteries
JP5683433B2 (en) * 2011-11-07 2015-03-11 本田技研工業株式会社 Fuel cell stack
JP5855442B2 (en) * 2011-12-15 2016-02-09 本田技研工業株式会社 Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
US9698431B2 (en) * 2012-05-30 2017-07-04 GM Global Technology Operations LLC Diffusion media and method of preparation
JP5900311B2 (en) * 2012-12-18 2016-04-06 トヨタ自動車株式会社 Fuel cell and manufacturing method thereof
KR101484206B1 (en) * 2013-05-02 2015-01-16 현대자동차 주식회사 Membrane electrode assembly for fuel cell
JP6231823B2 (en) * 2013-09-02 2017-11-15 本田技研工業株式会社 Fuel cell and manufacturing method thereof
US10361441B2 (en) 2013-12-17 2019-07-23 3M Innovative Properties Company Membrane electrode assembly and methods of making the same
KR101620155B1 (en) * 2014-01-22 2016-05-12 현대자동차주식회사 Fuel cell and manufacturing method thereof
JP6326862B2 (en) * 2014-02-26 2018-05-23 凸版印刷株式会社 Membrane electrode assembly, fuel cell, and method of manufacturing membrane electrode assembly
CN105226316B (en) * 2014-06-27 2018-06-19 本田技研工业株式会社 Fuel cell and its manufacturing method
DE102017214983A1 (en) * 2017-08-28 2019-02-28 Audi Ag Membrane electrode assembly with a seal assembly, fuel cell and fuel cell stack
DE102018003774A1 (en) 2018-05-09 2019-01-24 Daimler Ag Membrane electrode arrangement for a fuel cell
GB201912062D0 (en) * 2019-08-22 2019-10-09 Johnson Matthey Fuel Cells Ltd Catalysed membrane
CN112259757B (en) * 2020-12-17 2022-05-17 安徽明天氢能科技股份有限公司 Membrane electrode sealing filler and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010215A1 (en) 1998-08-10 2000-02-24 Axiva Gmbh Fuel cell with improved long-term performance, method for operating a pme fuel cell and pme fuel cell battery
DE19903352A1 (en) 1999-01-28 2000-08-10 Siemens Ag PEM fuel cell and process for its manufacture
DE19926027A1 (en) 1999-05-28 2000-11-30 Heliocentris Energiesysteme Membrane electrode unit with integrated sealing edge
US6475656B1 (en) * 1997-01-29 2002-11-05 Proton Motor Fuel Cell Gmbh Membrane-electrode unit with an integrated wear ring, and method of making the same
US20120012457A1 (en) * 2003-07-14 2012-01-19 Umicore Ag & Co. Kg Membrane eletrode unit for the electrolysis of water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829142A1 (en) * 1998-06-30 2000-01-05 Manhattan Scientifics Inc Gas-tight combination of bipolar plate and membrane-electrode assembly of polymer electrolyte membrane fuel cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475656B1 (en) * 1997-01-29 2002-11-05 Proton Motor Fuel Cell Gmbh Membrane-electrode unit with an integrated wear ring, and method of making the same
WO2000010215A1 (en) 1998-08-10 2000-02-24 Axiva Gmbh Fuel cell with improved long-term performance, method for operating a pme fuel cell and pme fuel cell battery
US6852440B1 (en) 1998-08-10 2005-02-08 Axiva Gmbh Fuel cell with improved long term performance, method for operating a PME fuel cell and PME fuel cell battery
DE19903352A1 (en) 1999-01-28 2000-08-10 Siemens Ag PEM fuel cell and process for its manufacture
US20020015873A1 (en) 1999-01-28 2002-02-07 Dieter Bruckner PEM fuel cell and process for its production
DE19926027A1 (en) 1999-05-28 2000-11-30 Heliocentris Energiesysteme Membrane electrode unit with integrated sealing edge
US6756147B1 (en) 1999-05-28 2004-06-29 Heliocentris Energiesysteme Gmbh Membrane electrode unit comprising an integrated sealing edge
US20120012457A1 (en) * 2003-07-14 2012-01-19 Umicore Ag & Co. Kg Membrane eletrode unit for the electrolysis of water

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Search Report dated Mar. 2, 2005 for International Application PCT/EP2004/010501.
International Written Opinion dated Mar. 2, 2005 for International Application PCT/EP2004/010501.

Also Published As

Publication number Publication date
US20120135330A1 (en) 2012-05-31
US8067130B2 (en) 2011-11-29
EP1671388A1 (en) 2006-06-21
CA2539602A1 (en) 2005-03-31
WO2005029620A1 (en) 2005-03-31
EP1671388B1 (en) 2016-07-13
CN1871731A (en) 2006-11-29
US20070298302A1 (en) 2007-12-27
CA2539602C (en) 2013-10-29
CN1871731B (en) 2013-03-13

Similar Documents

Publication Publication Date Title
US8614027B2 (en) Membrane-electrode assembly with integrated sealing material
US8685200B2 (en) Process for manufacturing a catalyst-coated ionomer membrane with protective film layer
US8343321B2 (en) Membrane electrode unit for the electrolysis of water
US6723464B2 (en) Membrane-electrode-assembly with solid polymer electrolyte
CA2430681C (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes
JP2007533088A (en) Multilayer electrode assembly (ML-MEA) and method of manufacturing the same
JP5183925B2 (en) Process for producing a polymer electrolyte membrane coated with a catalyst
CA2864082C (en) Membrane electrode assembly for polymer electrolyte fuel cell
CA2528141C (en) Membrane-electrode unit for direct methanol fuel cells and method for the production thereof
US8192895B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
KR101189675B1 (en) Catalyst-coated membrane with integrated sealing material and membrane-electrode assembly produced therefrom
JP2006338941A (en) Electrolyte membrane-electrode assembly
JP2007103291A (en) Manufacturing method of membrane/electrode assembly for direct methanol fuel cell
CA2391398A1 (en) Direct methanol cell with circulating electrolyte

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8