JPH03116659A - Solid electrolyte type fuel battery - Google Patents

Solid electrolyte type fuel battery

Info

Publication number
JPH03116659A
JPH03116659A JP1254694A JP25469489A JPH03116659A JP H03116659 A JPH03116659 A JP H03116659A JP 1254694 A JP1254694 A JP 1254694A JP 25469489 A JP25469489 A JP 25469489A JP H03116659 A JPH03116659 A JP H03116659A
Authority
JP
Japan
Prior art keywords
gas
single cells
solid electrolyte
single cell
distributing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1254694A
Other languages
Japanese (ja)
Inventor
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1254694A priority Critical patent/JPH03116659A/en
Publication of JPH03116659A publication Critical patent/JPH03116659A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce a contact resistance between single cells and gas distributing means by providing gas sealing means of the same material with the gas distributing means between the single cells and the gas distributing means. CONSTITUTION:A solid electrolyte type fuel battery has single cells 6, gas distributing means 20 and gas sealing means 7A, 7B, while the single cells 6 arranges anodes and cathodes on both main surfaces of the solid electrolyte body. The gas distributing means 20 are alternately arranged with the single cells for distributing reaction gas to the single cells 6, while receiving a current from both of an anode and a cathode. The gas sealing means 7A, 7B are provided in the intervals between the gas distributing means 20 and the single cells 6, and are formed by using powder of the same constitution with the electrodes of the single cells 6 coming in contact therewith. The same powder with the electrodes, therefore, comes to be interposed in the intervals between the single cells 6 and the gas supply means 20. This prevents leakage of reaction gas and also reduces contact resistance between the single cells 6 and the gas supply means 20 so that the solid electrolyte type fuel battery having a big electromotive force, a small internal resistance and an excellent output characteristic can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解質型燃料電池の構造に係り、特にガ
スシール性と電気伝導性に優れる一固体電解質型燃料電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a solid oxide fuel cell, and particularly to a solid oxide fuel cell having excellent gas sealing properties and electrical conductivity.

〔従来の技術〕[Conventional technology]

ジルコニア等の酸化物固体電解質を用いる燃料電池は、
その作動温度が800〜1100℃と高温であるため、
発電効率が高い上に触媒が不要であり、また電解質が固
定であるため取扱いが容易であるなどの特長を有し、第
三世代の燃料電池として期待されている。
Fuel cells using oxide solid electrolytes such as zirconia are
Because its operating temperature is as high as 800-1100℃,
It has high power generation efficiency, does not require a catalyst, and is easy to handle because the electrolyte is fixed, so it is expected to be used as a third-generation fuel cell.

従来固体電解質型燃料電池には第2図に示すような平板
型の構成が知られている。第2図は平板型固体電解質型
燃料電池の分解斜視図である。ランタンストロンチウム
マンガナイト(La (Sr) Mn0s)の酸化剤極
3.イツトリア安定化ジルコニアからなる固体電解質体
4.ニッケルージルコニア(NiZrOx)サーメット
の燃料極5とから単セル6が形成される。多孔質または
緻密質のLa(Sr)MnOs製リプ付導電性基材21
.ランタンクロマイト(LaCrOs)からなる緻密な
インタコネクタ23.多孔質または緻密質のN1−Zr
0.サーメットからなるリブ付導電性基材22とからセ
パレータ20が形成される。単セルとセパレータとは交
互に積層される。セパレー夕の立体的に直角交差した溝
にはそれぞれ異なった反応ガスが流される。インタコネ
クタ23は酸化剤ガスと燃料ガスを分離する。固体電解
質型燃料電池においては内部抵抗を小さくし、かつ電流
密度を小さくするために、固体電解質体について面積は
大きくかつ厚さを肉薄(数10〜数Loom)にするこ
とが必要である。また各電極についてもガス拡散性を良
くし、電極抵抗を下げるために数100μ程度に薄くす
ることが要求される。従って単セルとしては最大1鵡程
度に制限される。
Conventionally, solid oxide fuel cells have been known to have a flat plate configuration as shown in FIG. FIG. 2 is an exploded perspective view of a flat plate solid electrolyte fuel cell. Oxidizer electrode of lanthanum strontium manganite (La (Sr) Mn0s)3. Solid electrolyte body made of yttoria-stabilized zirconia4. A single cell 6 is formed from a fuel electrode 5 of nickel-zirconia (NiZrOx) cermet. Porous or dense La(Sr)MnOs conductive base material 21
.. Dense interconnector made of lanthanum chromite (LaCrOs) 23. Porous or dense N1-Zr
0. A separator 20 is formed from a ribbed conductive base material 22 made of cermet. Single cells and separators are alternately stacked. Different reaction gases are flowed through the three-dimensionally intersecting grooves of the separator at right angles. Interconnector 23 separates oxidizing gas and fuel gas. In a solid electrolyte fuel cell, in order to reduce internal resistance and current density, it is necessary to make the solid electrolyte body large in area and thin (several tens to several looms). Furthermore, each electrode is required to be thin to about several hundred micrometers in order to improve gas diffusivity and lower electrode resistance. Therefore, a single cell is limited to a maximum of about one parrot.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述のような固体電解質型燃料電池におい
ては、単セルやセパレータに反りが生じやすく、単セル
とセパレータの接触不良により電池の内部抵抗が大きく
なったり、反応ガスがリークして起電力の低下やガス利
用率の低下をもたらす。
However, in solid oxide fuel cells such as those mentioned above, the single cells and separators tend to warp, and poor contact between the single cells and separators can increase the internal resistance of the battery, and leakage of reactant gas can cause a decrease in electromotive force. This results in a decrease in the gas utilization rate.

この発明は上述の点に鑑みてなされ、その目的は、単セ
ルとセパレータ間に耐熱性で導電性のシール材料を用い
ることにより、ガスシール性に優れ、内部抵抗の小さい
固体電解質型燃料電池を提供することにある。
This invention was made in view of the above points, and its purpose is to create a solid oxide fuel cell with excellent gas sealing properties and low internal resistance by using a heat-resistant and conductive sealing material between a single cell and a separator. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば、単セル6と、ガス分配
手段20と、ガスシール手段7A、7Bとヲ有し、 単セルは固体電解質体の両主面にアノードとカソードを
配したものであり、 ガス分配手段は前記単セルと交互に配置されるものであ
り、単セルに反応ガスを分配するとともに前記アノード
とカソードの両電掻よりi流を収受し、 ガスシール手段は、前記単セルとガス分配手段の間隙に
設けられ、接触する単セルの電極と同一の組成の粉体を
用いて形成することにより達成される。
According to the present invention, the above-mentioned object has a single cell 6, a gas distribution means 20, and gas sealing means 7A, 7B, and the single cell has an anode and a cathode arranged on both main surfaces of a solid electrolyte body. The gas distribution means is arranged alternately with the single cells, and distributes the reaction gas to the single cells and receives the i current from both the anode and cathode electrodes, and the gas seal means is arranged alternately with the single cells, and the gas seal means This is achieved by forming a powder having the same composition as the electrode of the single cell that is provided in the gap between the single cell and the gas distribution means and in contact with the single cell.

アノードとしてはニッケルージルコニア(Ni−ZrO
オ)サーメットの他Co−ZrLサーメット等が用いら
れる* Zr0mはY20□で安定化したものの他Ca
Oで安定化したもの等が用いられる。カソードとしては
ランタンマンガナイト(LaMnOs)やLaMnO3
に5rCaまたはhgをドープしたLa(Sr)MnO
s、La(Ca)MnOs +La(Mg)MnO,、
ランタンコバルタイト(La(:oo、)やLaCoO
sにSr、Ca またはl’1gをドープしたLa (
Sr)CoOs1La(Ca)CoOs、La(Mg)
Co03 、InzOs−5no!、ランタン二フケラ
イト(LaNtOs)、5rFeO,5rPeCoOs
等が用いられる。
Nickel-zirconia (Ni-ZrO) is used as an anode.
e) In addition to cermet, Co-ZrL cermet etc. are used.* Zr0m is stabilized with Y20□ and Ca
Those stabilized with O are used. As a cathode, lanthanum manganite (LaMnOs) or LaMnO3
La(Sr)MnO doped with 5rCa or hg
s, La(Ca)MnOs +La(Mg)MnO,,
Lanthanum cobaltite (La(:oo,) and LaCoO
La (
Sr)CoOs1La(Ca)CoOs, La(Mg)
Co03, InzOs-5no! , lanthanum diphthalate (LaNtOs), 5rFeO, 5rPeCoOs
etc. are used.

ガス分配手段としては従来のセパレータの他、支持膜方
式における基板等が含まれる。支持膜方式においては基
板を支持体として、例えばこれに直接的に単セルが積層
形成され、この単セルの積層形成された基板に単セルの
積層されない他の基板が重合される。
The gas distribution means includes a conventional separator as well as a substrate in a supported film type. In the supported film method, a substrate is used as a support, for example, a single cell is directly laminated thereon, and another substrate on which a single cell is not laminated is superposed on the substrate on which the single cell is laminated.

〔作用〕[Effect]

単セルとガス分配手段との間に電極と同一材料のガスシ
ール手段を設けると、単セルやガス分配手段の反りに起
因する間隙がガスシール用粉体で充填されるためガスリ
ークが防止され、単セルとガス分配手段の接触抵抗が低
減される。
When a gas sealing means made of the same material as the electrode is provided between the unit cell and the gas distribution means, gas leakage is prevented because the gap caused by the warpage of the unit cell or the gas distribution means is filled with the gas sealing powder. Contact resistance between the unit cell and the gas distribution means is reduced.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図はこの発明の実施例に係る燃料電池の分解模式断
面図である。このような燃料電池は次のようにして調製
することができる。8モル%のY2O。
FIG. 1 is an exploded schematic sectional view of a fuel cell according to an embodiment of the present invention. Such a fuel cell can be prepared as follows. 8 mol% Y2O.

で安定化したZrO□の超微粒子原料(粒径約200人
)を100重量部、有機溶剤を80重量部1分散剤を1
重量部、消泡剤を0.5重量部、バインダを17重量部
、可塑剤を9重量部秤量し、ボットミルで48h混合分
散させてジルコニアのスラリを調製する。
100 parts by weight of ZrO
Weigh out 0.5 parts by weight of the antifoaming agent, 17 parts by weight of the binder, and 9 parts by weight of the plasticizer, and mix and disperse them in a bot mill for 48 hours to prepare a zirconia slurry.

スラリは減圧脱泡したあとポリエステル類のキャリアテ
ープ上にドクタブレード法を用いて15〇−厚にテープ
キャストされる。自然乾燥後所定速度で赤外線乾燥を行
い、グリーンテープをキャリアテープより剥離する。得
られたグリーンシートを4枚重ねてホントブレスしく温
度70℃、圧力10kg/−)、約600 ts厚の積
層体を得る0次いで空気中で500℃位まで徐々に昇温
しでグリーンシートに含まれる有機物を燃焼揮散させ、
1200℃で仮焼したのち荷重下、 1450℃で30
m1n、焼成して透明でかつ平坦な固体電解質体4を得
ることができる。
After degassing the slurry under reduced pressure, it is tape cast onto a polyester carrier tape to a thickness of 150 mm using a doctor blade method. After natural drying, infrared drying is performed at a predetermined speed, and the green tape is peeled off from the carrier tape. Four of the obtained green sheets were stacked to form a laminate with a thickness of about 600 ts at a temperature of 70°C and a pressure of 10kg/-).Then, the temperature was gradually raised to about 500°C in air to form green sheets. Burn and volatilize the organic matter contained,
After calcining at 1200℃, under load, 30℃ at 1450℃
m1n, a transparent and flat solid electrolyte body 4 can be obtained by firing.

固体電解質体4の主面の1方にNip、 Zr0t+エ
チレングリコールからなるインクを塗布、乾燥後、14
00℃で焼きつける。固体電解質体4の主面の他方には
SrをドープしたLaMn01とエチレングリコールか
らなるインクを塗布、乾燥し、1150℃で焼きつける
。このようにして単セル6が調製される。セパレータ2
0は次のようにして調製される。Caをドープしたラン
タンクロマイト(LaCrOs)の粉体を水に分散させ
、0.5重量%のポリビニルアルコールを添加溶解させ
る。次いで100−の粒径になるよう造粒し、金型を用
いてプレス成型する。1500℃で仮焼してから加工し
、1600℃で本焼成する0次にNiとZrO!を体積
比で1対1の割合でエチレングリコールと混合したペー
ストをセパレータ20のアノード側に塗布、乾燥しガス
シール手段7Bが形成される。NiとZr01は体積比
で2対lの割合でイソプロピルアルコールと水の1対1
混合溶液に分散すせることもできる。またLaMnO3
をエチレングリコールと混合したペーストをセパレータ
20のカソード側に塗布、乾燥してガスシール手段7A
を形成することができるm LaMnOsはイソプロピ
ルアルコールに分散させることもできる。ガスシール手
段を形成したあとで電池を組立て全体を締めつけてさら
にガスシール性を向上させる。
An ink consisting of Nip, Zr0t + ethylene glycol was applied to one of the main surfaces of the solid electrolyte body 4, and after drying, 14
Bake at 00℃. An ink made of Sr-doped LaMn01 and ethylene glycol is applied to the other main surface of the solid electrolyte body 4, dried, and baked at 1150°C. In this way, a single cell 6 is prepared. Separator 2
0 is prepared as follows. Ca-doped lanthanum chromite (LaCrOs) powder is dispersed in water, and 0.5% by weight of polyvinyl alcohol is added and dissolved therein. Next, the mixture is granulated to a particle size of 100 mm and press-molded using a mold. Zero-order Ni and ZrO that is calcined at 1500°C, processed, and then main fired at 1600°C! A paste prepared by mixing ethylene glycol with ethylene glycol at a volume ratio of 1:1 is applied to the anode side of the separator 20 and dried to form the gas sealing means 7B. Ni and Zr01 are mixed in isopropyl alcohol and water in a volume ratio of 2:1 and 1:1.
It can also be dispersed in a mixed solution. Also, LaMnO3
A paste mixed with ethylene glycol is applied to the cathode side of the separator 20 and dried to form the gas sealing means 7A.
m LaMnOs can also be dispersed in isopropyl alcohol. After forming the gas sealing means, the entire battery is assembled and tightened to further improve gas sealing properties.

〔発明の効果〕〔Effect of the invention〕

この発明によれば単セルと、ガス分配手段と、ガスシー
ル手段とを有し、 単セルは固体電解質体の両主面にアノードとカソードを
配したものであり、 ガス分配手段は前記単セルと交互に配置されるものであ
り、単セルに反応ガスを分配するとともに前記アノード
とカソードの両電極より電流を収受し、 ガスシール手段は、前記単セルとガス分配手段の間隙に
設けられ、接触する単セルの電極と同一の組成の粉体を
用いて形成されるので、単セルとガス供給手段の間隙に
電極と同一の粉体が介在することとなり、反応ガスのリ
ークが防止されるとともに単セルとガス供給手段の接触
抵抗が減少し、起電力が大きい上に、内部抵抗が小さ(
て出力特性に優れる固体電解質型燃料電池が得られる。
According to the present invention, there is provided a single cell, a gas distribution means, and a gas sealing means, wherein the single cell has an anode and a cathode arranged on both main surfaces of a solid electrolyte body, and the gas distribution means comprises the single cell. The gas sealing means is arranged in a gap between the single cell and the gas distribution means, and distributes the reaction gas to the single cell and receives current from both the anode and cathode electrodes, and the gas seal means is provided in the gap between the single cell and the gas distribution means. Since it is formed using powder with the same composition as the electrode of the single cell that it contacts, the same powder as the electrode is interposed between the single cell and the gas supply means, preventing leakage of reaction gas. At the same time, the contact resistance between the single cell and the gas supply means decreases, and the electromotive force is large and the internal resistance is small (
As a result, a solid oxide fuel cell with excellent output characteristics can be obtained.

【図面の簡単な説明】 第1図はこの発明の実施例に係る固体電解質型燃料電池
を示す分解模式断面図、第2図は従来の固体電解質型燃
料電池を示す分解斜視図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded schematic sectional view showing a solid oxide fuel cell according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing a conventional solid oxide fuel cell.

Claims (1)

【特許請求の範囲】 1)単セルと、ガス分配手段と、ガスシール手段とを有
し、 単セルは固体電解質体の両主面にアノードとカソードを
配したものであり、 ガス分配手段は前記単セルと交互に配置されるものであ
り、単セルに反応ガスを分配するとともに前記アノード
とカソードの両電極より電流を収受し、 ガスシール手段は、前記単セルとガス分配手段の間隙に
設けられ、接触する単セルの電極と同一の組成の粉体を
用いて形成するものであることを特徴とする固体電解質
型燃料電池。
[Claims] 1) A single cell, a gas distribution means, and a gas sealing means, the single cell having an anode and a cathode arranged on both main surfaces of a solid electrolyte body, and the gas distribution means having: The gas sealing means is arranged alternately with the single cell, and distributes the reaction gas to the single cell and receives current from both the anode and cathode electrodes, and the gas seal means is provided in the gap between the single cell and the gas distribution means. A solid oxide fuel cell characterized in that it is formed using a powder having the same composition as the electrodes of the single cells that are provided and in contact with each other.
JP1254694A 1989-09-29 1989-09-29 Solid electrolyte type fuel battery Pending JPH03116659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254694A JPH03116659A (en) 1989-09-29 1989-09-29 Solid electrolyte type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254694A JPH03116659A (en) 1989-09-29 1989-09-29 Solid electrolyte type fuel battery

Publications (1)

Publication Number Publication Date
JPH03116659A true JPH03116659A (en) 1991-05-17

Family

ID=17268563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254694A Pending JPH03116659A (en) 1989-09-29 1989-09-29 Solid electrolyte type fuel battery

Country Status (1)

Country Link
JP (1) JPH03116659A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010717A1 (en) * 1992-10-28 1994-05-11 Siemens Aktiengesellschaft Process for sealing high-temperature fuel cells and fuel cells sealed according to this process
EP0642185A3 (en) * 1993-09-01 1995-03-29 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
EP0692836A1 (en) * 1994-07-11 1996-01-17 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
JP2012160367A (en) * 2011-02-01 2012-08-23 Denso Corp Fuel cell stack, and fuel cell system
JP2014049270A (en) * 2012-08-31 2014-03-17 Ti:Kk Fuel battery
JP2015103452A (en) * 2013-11-26 2015-06-04 株式会社ノリタケカンパニーリミテド Air electrode material, contact material and solid oxide fuel battery cell
JP2016527670A (en) * 2013-06-28 2016-09-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh High temperature unit cell with porous gas induction channel layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010717A1 (en) * 1992-10-28 1994-05-11 Siemens Aktiengesellschaft Process for sealing high-temperature fuel cells and fuel cells sealed according to this process
EP0642185A3 (en) * 1993-09-01 1995-03-29 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
US5501914A (en) * 1993-09-01 1996-03-26 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
EP0692836A1 (en) * 1994-07-11 1996-01-17 Mitsubishi Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
US6316138B1 (en) 1994-07-11 2001-11-13 Mitsubishi, Jukogyo Kabushiki Kaisha Solid oxide electrolyte fuel cell
JP2012160367A (en) * 2011-02-01 2012-08-23 Denso Corp Fuel cell stack, and fuel cell system
JP2014049270A (en) * 2012-08-31 2014-03-17 Ti:Kk Fuel battery
JP2016527670A (en) * 2013-06-28 2016-09-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh High temperature unit cell with porous gas induction channel layer
JP2015103452A (en) * 2013-11-26 2015-06-04 株式会社ノリタケカンパニーリミテド Air electrode material, contact material and solid oxide fuel battery cell

Similar Documents

Publication Publication Date Title
KR100341402B1 (en) Single Cell and Stack Structure of Solid Oxide Fuel Cell
US5993986A (en) Solide oxide fuel cell stack with composite electrodes and method for making
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
US20060216575A1 (en) Perovskite materials with combined Pr, La, Sr, "A" site doping for improved cathode durability
JP3064746B2 (en) Flat solid electrolyte fuel cell
JPH07153469A (en) Solid electrolyte fuel cell
CN111384421A (en) Five-layer structure single cell, preparation method thereof and prepared product
CN113667998A (en) Reversible solid oxide electrolytic cell and preparation method thereof
Ishihara et al. Solid oxide fuel cell using Co doped La (Sr) Ga (Mg) O3 perovskite oxide with notably high power density at intermediate temperature
JPH03116659A (en) Solid electrolyte type fuel battery
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JP3113347B2 (en) Solid oxide fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
JPH10255832A (en) Composite air electrode material for solid fuel cell for low temperature operation
JPH0436962A (en) Fuel cell with solid electrolyte
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JPH06310156A (en) Flat solid electrolyte type fuel cell
JPH07161360A (en) Air electrode material for low temperature action type solid fuel cell
JP2948441B2 (en) Flat solid electrolyte fuel cell
JPH05151982A (en) Solid electrolyte fuel cell
JPH11297342A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JP2771090B2 (en) Solid oxide fuel cell
US12126057B2 (en) Sealed porous structures for solid oxide fuel cells and methods of fabricating thereof
JP2002075410A (en) Collector for solid-oxide fuel cell and solid-oxide fuel cell using same