JPH04149966A - Solid electrolyte-type fuel battery - Google Patents

Solid electrolyte-type fuel battery

Info

Publication number
JPH04149966A
JPH04149966A JP2275706A JP27570690A JPH04149966A JP H04149966 A JPH04149966 A JP H04149966A JP 2275706 A JP2275706 A JP 2275706A JP 27570690 A JP27570690 A JP 27570690A JP H04149966 A JPH04149966 A JP H04149966A
Authority
JP
Japan
Prior art keywords
electrode
air
fuel
gas
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275706A
Other languages
Japanese (ja)
Inventor
Akio Hosaka
保坂 明夫
Makoto Ono
大野 允
Masakazu Kubo
久保 昌和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2275706A priority Critical patent/JPH04149966A/en
Publication of JPH04149966A publication Critical patent/JPH04149966A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve gas-sealing property and prevent air and a fuel gas from being brought into contact with each other by arranging spacers which partition to form manifolds for supplying and discharging a fuel gas and supplying and discharging air in the peripheries of an air electrode and a fuel electrode, respectively. CONSTITUTION:An electrolyte sheet 1 is sandwiched between both electrodes of an air electrode 2 and a fuel electrode 3 from both sides and air is made to be supplied to the air electrode 2 and at the same time a fuel gas is made to be supplied to the fuel electrode 3 and one cell C is thus prepared and each cell is laminated into multilayers while a separator 6 is put between the cells. A manifold 7 for supplying air A and a manifold 8 for supplying the fuel gas F are installed in one side of the periphery of the electrolyte sheet 1 and at the same time manifold 9 for discharging air and a manifold 10 for discharging the fuel gas are installed in the other side of the periphery of the electrolyte sheet 1 and also the porous air electrode 2 is formed on one side of the electrolyte sheet 1 and the porous fuel electrode 3 is formed on the other side of the electrolyte sheet 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃料電池のう
ち、特に、固体電解質型燃料電池に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention particularly relates to solid oxide fuel cells among fuel cells used in the energy sector that directly converts the chemical energy of fuel into electrical energy. .

[従来の技術] 現在、固体電解質型燃料電池は、第一世代の燃料電池と
してのリン酸型燃料電池、第二世代の燃料電池としての
溶融炭酸塩型燃料電池に代る第三世代の燃料電池として
、その開発に向は検討が進められている。
[Prior Art] Currently, solid oxide fuel cells are a third generation fuel cell that replaces the phosphoric acid fuel cell as the first generation fuel cell and the molten carbonate fuel cell as the second generation fuel cell. Studies are underway to develop it as a battery.

現在検討が進められている固体電解質型燃料電池には、
平板型のものとか、円筒型のもの等があり、そのうち、
平板型の固体電解質型燃料電池は、第4図に一例を示す
如く、たとえば、イツトリア安定化ジルコニア系イオン
導電体を適用した電解質板1の両面側に、多孔質の空気
極2と燃料極3とを重ね合わせるように配置して接着し
、且つ空気極2側と燃料極3側にガス通路4aと5aを
形成するためのガス通路構造体45を配置し、空気極2
側のガス通路4aには空気(02ガス)を、又、燃料極
3側のガス通路5aには燃料ガス(H2ガス)を流すよ
うにして、空気極2側での反応により生じた酸素イオン
0−を電解質板lを通して燃料極3側へ到達させるよう
にし、一方、燃料極3側では、上記燃料ガスH2と上記
酸素イオンO〜か反応し、水H20として出されるよう
にしたものを1セルCとし、かかるセルCをセパレータ
6を介して多層に積層した構成のものがある。
Solid oxide fuel cells, which are currently being studied, include:
There are flat plate types and cylindrical types, among which,
As shown in FIG. 4, a flat plate type solid electrolyte fuel cell has, for example, a porous air electrode 2 and a porous fuel electrode 3 on both sides of an electrolyte plate 1 made of an yttria-stabilized zirconia-based ionic conductor. A gas passage structure 45 is arranged to form gas passages 4a and 5a on the air electrode 2 side and the fuel electrode 3 side, and the air electrode 2
Air (02 gas) is passed through the gas passage 4a on the side, and fuel gas (H2 gas) is passed through the gas passage 5a on the fuel electrode 3 side, so that oxygen ions generated by the reaction on the air electrode 2 side are 0- is made to reach the fuel electrode 3 side through the electrolyte plate 1, and on the other hand, on the fuel electrode 3 side, 1 There is a structure in which cells C are laminated in multiple layers with a separator 6 in between.

上記の如き平板型の固体電解質型燃料電池は、狭い容積
で大電力が取り出せ、且つセルCの厚さを薄くすればす
るほど積層したときにコンパクトにでき、その上、大電
力が得られるという特徴があり、特に、電解質板1は薄
いほど酸素イオン0−の通りがよくなり、性能をアップ
させることができる。
The flat plate type solid oxide fuel cell described above can extract a large amount of power in a small volume, and the thinner the cell C is, the more compact it can be when stacked, and it is also said that a large amount of power can be obtained. In particular, the thinner the electrolyte plate 1 is, the better the passage of oxygen ions 0- is, and the performance can be improved.

[発明が解決しようとする課題] ところが、第4図に示した如き構成のものでは、ガス通
路4a、 5aにガスを通すための外部ガスマニホール
ドが必要となり、装置が大型化すると共に、外部のガス
マニホールドの製作が大変であり、特に、高温のためガ
スマニホールドもセラミックス又は耐熱合金にする必要
があり、接着性、ガスシール性が難しく、殊に、耐熱合
金の場合は熱膨張を内部のスタックと合わせるのが難し
い、という問題かあり、又、外部ガスマニホールドの場
合、基本的にガスの流れは直交流となり、温度分布が悪
いこと、セルCの空気極2、燃料極3はポーラスである
ため、空気と燃料ガスが周辺より若干漏れて外部ガスマ
ニホールド内で混合するおそれがある。
[Problems to be Solved by the Invention] However, with the configuration shown in FIG. 4, an external gas manifold is required to pass gas through the gas passages 4a and 5a, which increases the size of the device and increases the It is difficult to manufacture gas manifolds, and in particular, the gas manifolds must be made of ceramics or heat-resistant alloys due to the high temperatures. Adhesion and gas sealing properties are difficult. In addition, in the case of an external gas manifold, the gas flow is basically a cross flow, resulting in poor temperature distribution, and the air electrode 2 and fuel electrode 3 of cell C are porous. Therefore, there is a risk that air and fuel gas may leak slightly from the surrounding area and mix within the external gas manifold.

そこで、本発明は、ガスマニホールド部の構造の単純化
とガスシール性の向上を図り、マニホールド部での空気
と燃料ガスの接触のおそれがないようにした平板型の固
体電解質型燃料電池を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a flat plate solid oxide fuel cell, which has a simplified structure of the gas manifold part and improved gas sealing properties, thereby eliminating the risk of contact between air and fuel gas in the manifold part. This is what I am trying to do.

[課題を解決するための手段] 本発明は、上記課題を解決するために、電解質板の両面
に、多孔質体とした薄膜の空気極と燃料極を接着し、該
空気極と燃料極の表面に、同じ電極材を重ねて構成して
なるガス通路構造体にてガス通路を形成し、且つ上記電
解質板の両面の周辺部に、上記空気極及び燃料極の各周
辺を覆うようにする固体電解質よりなるスペーサを配置
して1セルとし、該セルをセパレータを介し積層してス
ペーサとセパレータを接合するようにし、更に、上記セ
ル及びセパレータの周辺部−側と他側の両方に空気と燃
料ガスの各給排用マニホールドを形成し、各セルの空気
極側では、ガス通路を空気の供給用マニホールドと排出
用マニホールドとに連通させると共に、各セルの燃料極
側では、ガス通路を燃料ガスの供給用マニホールドと排
出用マニホールドとに連通させた構成とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention adheres porous thin film air electrodes and fuel electrodes to both sides of an electrolyte plate, and connects the air electrodes and fuel electrodes. A gas passage is formed on the surface by a gas passage structure formed by stacking the same electrode materials, and the periphery of both sides of the electrolyte plate is provided to cover each periphery of the air electrode and the fuel electrode. A spacer made of a solid electrolyte is arranged to form one cell, the cells are stacked with a separator in between, and the spacer and the separator are joined together, and furthermore, air is supplied to both the peripheral side and the other side of the cell and the separator. Each fuel gas supply/discharge manifold is formed, and on the air electrode side of each cell, the gas passage is communicated with the air supply manifold and the air discharge manifold, and on the fuel electrode side of each cell, the gas passage is connected to the air supply/discharge manifold. The gas supply manifold and the discharge manifold are connected to each other.

上記電解質板の両面への空気極と燃料極の接着はスクリ
ーン印刷法で多重に実施して厚み方向の組成を変えても
よい。又、上記空気極上又は燃料極上へのガス通路構造
体の設置は、多重印刷法により電極材を多重に接着して
成形させるようにしてもよく、またドクターブレード法
で成膜したものを積層後に削り取ってガス通路となる溝
を形成するようにすることもできる。
The air electrode and the fuel electrode may be adhered to both sides of the electrolyte plate in multiple ways using a screen printing method to change the composition in the thickness direction. In addition, the gas passage structure may be installed on the air electrode or fuel electrode by bonding and forming electrode materials in multiple layers using a multiple printing method, or by laminating a film formed by a doctor blade method. It is also possible to cut it out to form a groove that serves as a gas passage.

[作   用] 空気は空気供給用マニホールドから空気極側のガス通路
を拡散されて流れた後、反対側の排出用マニホールドに
集められて排出される。
[Function] After air is diffused and flows from the air supply manifold through the gas passage on the air electrode side, it is collected in the discharge manifold on the opposite side and discharged.

方、燃料ガスは燃料ガス供給用マニホールドから燃料極
側のガス通路を拡散されて流れた後、反対側の排出用マ
ニホールドに集められて排出される。この場合、空気極
側は燃料ガス給排用マニホールドを区画形成しているマ
スクプレートとしてのスペーサが空気極周辺に配置して
あり、燃料極側でも同様に空気の給排用マニホールドを
区画形成しているマスクプレートとしてのスペーサが燃
料極周辺に配置しであるので、多孔質体とした空気極、
燃料極てあっても周辺にガスが逃げることがなくなり、
又、空気と燃料ガスか混ざるおそれもなくなる。又、マ
ニホールドは、空気と燃料ガスの給排用として電解質板
、スペーサ、セパレータの周辺部に孔を設けただけの構
成でガスがマニホールドに集中するようになるので、マ
ニホールドの構造を単純化することができる。
On the other hand, after the fuel gas is diffused and flows from the fuel gas supply manifold through the gas passage on the fuel electrode side, it is collected in the discharge manifold on the opposite side and discharged. In this case, on the air electrode side, a spacer serving as a mask plate is placed around the air electrode to define a manifold for supplying and discharging fuel gas, and on the fuel electrode side, a manifold for supplying and discharging air is similarly defined. Since a spacer serving as a mask plate is placed around the fuel electrode, the porous air electrode,
Even if there is a fuel pole, gas will not escape to the surrounding area,
Also, there is no possibility that air and fuel gas will mix. In addition, the manifold simply has holes around the electrolyte plate, spacer, and separator for supplying and discharging air and fuel gas, and the gas concentrates in the manifold, simplifying the structure of the manifold. be able to.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第3図は本発明の一実施例を示すもので、薄
膜構造とした電解質板1を空気極2と燃料極3の画電極
で両面から挟み、空気極2側に空気を供給するようにす
ると共に、燃料極3側に燃料ガスを供給するようにしで
あるものを1セルCとし、各セルをセパレータ6を介し
て多層に積層するようにしである構成において、上記電
解質板1の周辺部の一側に空気への供給用マニホールド
7と燃料ガスFの供給用マニホールド8を設けると共に
、周辺部の他側に、空気の排出用マニホールド9と燃料
ガスの排出用マニホールド10を設け、且つ電解質板1
の片面には、たとえば、スクリーン印刷法によりスラリ
ー状の電極材を塗り付けて多孔質の空気極2を接着成形
させ、該空気極2面に上記空気の給排用マニホールド7
と9を開放させるようにし、又、電解質板1の反対面に
は、同様にスクリーン印刷法によりスラリー状の電極材
を塗布し多孔質の燃料極3を接着成形させて、燃料極3
面に上記燃料ガスの給排用マニホールド8と10を開放
させ、空気Aは供給用マニホールド7から空気極2に沿
い流れて排出用マニホールド9より排出されると共に、
燃料ガスFは供給用マニホールド8から燃料極3に沿い
流れて排出用マニホールド10より排出されるようにし
て、空気と燃料ガスが平行流となるようにする。
Figures 1 to 3 show an embodiment of the present invention, in which an electrolyte plate 1 having a thin film structure is sandwiched between picture electrodes of an air electrode 2 and a fuel electrode 3 from both sides, and air is supplied to the air electrode 2 side. In a configuration in which one cell C is configured to supply fuel gas to the fuel electrode 3 side, and each cell is stacked in multiple layers with a separator 6 in between, the electrolyte plate 1 A manifold 7 for supplying air and a manifold 8 for supplying fuel gas F are provided on one side of the periphery, and a manifold 9 for discharging air and a manifold 10 for discharging fuel gas are provided on the other side of the periphery. , and electrolyte plate 1
On one side of the air electrode 2, a porous air electrode 2 is adhesively molded by applying a slurry-like electrode material using, for example, a screen printing method, and the air supply/discharge manifold 7 is attached to the air electrode 2 surface.
and 9 are open, and on the opposite side of the electrolyte plate 1, a slurry-like electrode material is similarly applied by the screen printing method, and a porous fuel electrode 3 is adhesively molded to form the fuel electrode 3.
The fuel gas supply and discharge manifolds 8 and 10 are opened on the surface, and the air A flows from the supply manifold 7 along the air electrode 2 and is discharged from the discharge manifold 9.
The fuel gas F flows from the supply manifold 8 along the fuel electrode 3 and is discharged from the discharge manifold 10, so that air and fuel gas flow in parallel.

上記空気極2上と燃料極3上には、それぞれスラリー状
にした電極材を多重印刷法により多層に塗布させて所要
厚さのガス通路構造体11を複数列にわたり配置させて
、空気極2側にはガス通路12を形成すると共に、燃料
極3側にはガス通路13を形成するようにし、更に、上
記電解質板1の両面には、該電解質板1の周辺に設けた
燃料ガスの給排用マニホールド8.10に対応する燃料
ガスの給排用マニホールド8.10を残して中央部分を
切り抜き周辺部のみとしである固体電解質よりなる空気
極側スペーサ14と、電解質板1の周辺に設けた空気の
給排用マニホールド7.9に対応する空気の給排用マニ
ホールド7.9を残して中央部分を切り抜き周辺部のみ
としである固体電解質よりなる燃料極側スペーサ15と
を配置し、電解質板1と、その両面の空気極2、燃料極
3と、スペーサ14、I5とからなるセルCをセパレー
タ6を介し積層させるようにし、セパレータ6の周辺の
一側と他側にも、空気の給排用マニホールド7.9と燃
料ガスの給排用マニホールド8.10を設け、積層した
ときに各マニホールド7、8.9.10が積層方向に連
通されて流路が形成されるようにし、又、積層時にセパ
レータ6の周辺部とスペーサ14の接合部及びセパレー
タ6の周辺部とスペ〜す15の接合部は、セラミックス
系接着剤で接着し、周辺をガラス等の溶融密封剤で覆い
ガスのリークがないようにする。
On the air electrode 2 and the fuel electrode 3, electrode materials made into a slurry are coated in multiple layers using a multiplex printing method, and gas passage structures 11 of a required thickness are arranged in multiple rows. A gas passage 12 is formed on the side, and a gas passage 13 is formed on the fuel electrode 3 side.Furthermore, a fuel gas supply provided around the electrolyte plate 1 is formed on both sides of the electrolyte plate 1. The fuel gas supply/discharge manifold 8.10 corresponding to the exhaust manifold 8.10 is cut out in the center, and only the peripheral part is cut out.An air electrode side spacer 14 made of solid electrolyte is provided around the electrolyte plate 1. The air supply and discharge manifold 7.9 corresponding to the air supply and discharge manifold 7.9 corresponding to the air supply and discharge manifold 7.9 is cut out in the center part, and a fuel electrode side spacer 15 made of a solid electrolyte is placed. A cell C consisting of a plate 1, an air electrode 2 on both sides, a fuel electrode 3, a spacer 14, and an I5 is stacked with a separator 6 in between, and air is also formed on one side and the other side of the periphery of the separator 6. A supply/discharge manifold 7.9 and a fuel gas supply/discharge manifold 8.10 are provided so that when stacked, each manifold 7, 8.9.10 communicates in the stacking direction to form a flow path, In addition, during lamination, the joints between the periphery of the separator 6 and the spacer 14 and the joint between the periphery of the separator 6 and the spacer 15 are bonded with ceramic adhesive, and the periphery is covered with a molten sealant such as glass and sealed with gas. Make sure there are no leaks.

空気極2側へ供給される空気(02ガス)Aは、空気供
給用マニホールド7からガス通路12を流される間に反
応により酸素を減少して空気排出用マニホールド9に集
中させられ、該排出用マニホールド9より排出される。
Air (02 gas) A supplied to the air electrode 2 side is caused to reduce oxygen by reaction while flowing through the gas passage 12 from the air supply manifold 7, and is concentrated in the air discharge manifold 9. It is discharged from the manifold 9.

この間に多孔質体としである空気極2内を通って電解質
板1に達した空気(0□ガス)から反応により生成され
た酸素イオンO−は、電解質板lを通して燃料極3へと
到達させられる。一方、燃料極3側では、燃料ガス(H
2ガス)Fが燃料ガス供給用マニホールド8からガス通
路13へ導入され、該ガス通路13を流れる間に酸素イ
オンOと反応させられた後、排出用マニホールド10よ
り排出させられる。
During this time, oxygen ions O- generated by reaction from the air (0□ gas) that passed through the air electrode 2, which is a porous body, and reached the electrolyte plate 1, reach the fuel electrode 3 through the electrolyte plate 1. It will be done. On the other hand, on the fuel electrode 3 side, fuel gas (H
2 gas) F is introduced from the fuel gas supply manifold 8 into the gas passage 13, is reacted with oxygen ions O while flowing through the gas passage 13, and is then discharged from the discharge manifold 10.

上記において、ガス通路12と13は、空気極2と燃料
極3の表面に、電極材によるガス通路構遺体11を多重
印刷法により接着成形させることによって形成している
ので、複雑なガス通路12゜13でも簡単に形成できる
と共に、空気極2側を流れる空気Aや燃料極3側を流れ
る燃料ガスFの流通性が良好となり、且つ空気極2及び
燃料極3は、スクリーン印刷法により電解質板1に接着
成形されているので、電解質板1への接着性がよくて電
解質板の支持を強固に行うことができ、酸素イオンの通
しがより良くできて性能の向上を図ることが可能であり
、又、ガス通路構造体11を電流が流れる。又、空気極
2及び燃料極3は多孔質体であるが、空気極2側及び燃
料極3にはそれぞれマスクプレートとしてのスペーサ1
4及び15を配して、セパレータ6とは接着させると共
に周縁をガラス等の溶融密封剤で覆った構成とした上で
、空気極2側では燃料ガスの給排用マニホールド8.1
0を区画形成し、燃料極3側では空気の給排用マニホー
ルド7.9を区画形成しであるので、周辺からガスが漏
れるようなことがなくなると共に、電極の部分で空気と
燃料ガスか接触するようなおそれもない。
In the above, the gas passages 12 and 13 are formed by adhesively molding the gas passage structure 11 made of electrode material on the surfaces of the air electrode 2 and the fuel electrode 3 using a multiple printing method. The air electrode 2 and the fuel electrode 3 can be easily formed by forming an electrolyte plate using a screen printing method. 1, it has good adhesion to the electrolyte plate 1 and can firmly support the electrolyte plate, allowing oxygen ions to pass through better and improving performance. Also, a current flows through the gas passage structure 11. Furthermore, although the air electrode 2 and fuel electrode 3 are porous bodies, spacers 1 as mask plates are provided on the air electrode 2 side and the fuel electrode 3, respectively.
4 and 15 are arranged and adhered to the separator 6, and the periphery is covered with a molten sealant such as glass, and on the air electrode 2 side, a manifold 8.1 for supplying and discharging fuel gas is installed.
0 is partitioned, and the air supply/discharge manifold 7.9 is partitioned on the fuel electrode 3 side, so there is no possibility of gas leaking from the surrounding area, and there is no contact between air and fuel gas at the electrode part. There is no fear that it will.

なお、上記実施例では、ガス通路12.13を形成する
場合に、多重印刷法、すなわち、スラリー状とした電極
材をスクリーン印刷によりカス通路構造体11を何層に
も重ねて印刷して行く方法で電流の導体部分を構成する
ガス通路構造体11を成る高さに成形し、ガス通路構造
体11間にガス通路12.13を形成するようにした例
を示したか、他のガス通路成形方法として、電極材をド
クターブレード法やカレンダロール法て成膜多層化した
後、表面を削り取ってガス通路となる溝を形成すること
もできること、更に、射出成形法、泥漿鋳込法等によっ
て成形したものを電極膜上に付着させるようにするもの
もあること、電解質板1の両面に配置する空気極2と燃
料極3をスクリーン印刷法で接着成形させる場合を示し
たが、スクリーン印刷基以外の方法で成形させるように
してもよいこと、等は勿論であるが、多孔質体の電極2
.3の配置において、印刷法を採用すれば、電極厚み方
向にポアサイズを徐々に変えて行くことが可能となると
共に、ガス通路12.13の形成における多重印刷法を
採用すれば、多重印刷の過程で電極材の成分を徐々に変
えることができて電極やセパレータ膜との接着性を良く
し、緻密化による導電性向上を図ることが可能となる。
In the above embodiment, when forming the gas passages 12 and 13, the waste passage structure 11 is printed in multiple layers using a multiple printing method, that is, by screen printing using slurry electrode material. This is an example in which the gas passage structures 11 constituting the current conductor portion are formed to a height of 12, 13, and gas passages 12, 13 are formed between the gas passage structures 11. As a method, it is possible to form a multilayer electrode material using a doctor blade method or a calender roll method, and then scrape the surface to form grooves that will serve as gas passages.Furthermore, it is possible to form grooves that will become gas passages by using an injection molding method, a slurry casting method, etc. In some cases, the air electrode 2 and fuel electrode 3 disposed on both sides of the electrolyte plate 1 are adhesively molded using a screen printing method. It goes without saying that the electrode 2 of the porous body may be molded by the method described above.
.. In the arrangement 3, if a printing method is used, it becomes possible to gradually change the pore size in the electrode thickness direction, and if a multiple printing method is used to form the gas passages 12 and 13, the multiple printing process can be changed. By gradually changing the composition of the electrode material, it is possible to improve the adhesion with the electrode and separator film, and to improve the conductivity through densification.

[発明の効果] 以上述べた如く、本発明の固体電解質型燃料電池によれ
ば、周辺部の一側と他側に空気と燃料ガスの各給排用マ
ニホールドを形成した電解質板の両面の周辺部を除く中
央部分に、薄膜状の多孔質の空気極と燃料極を配置して
、空気極側では空気の給排用マニホールドが連通ずるよ
うにすると共に、燃料極側では燃料ガスの給排用マニホ
ールドが連通ずるようにし、且つ空気極側と燃料極側に
は電極材よりなるガス通路構造体を配置してそれぞれガ
ス通路を形成し、更に上記電解質板の両面側に、電極部
をくり抜いて周辺部のみとした固体電解質よりなるスペ
ーサを配して、空気極側のスペーサは周辺の一側と他側
に燃料ガスの給排用マニホールドを区画して形成し、燃
料極側のスペーサは周辺の一側と他側に空気の給排用マ
ニホールドを区画して形成し、これらを1セルとして、
周辺部の一側と他側に空気と燃料ガスの各給排用マニホ
ールドを形成したセパレータを介し積層するようにし、
セパレータの周辺とスペーサとの接合部を接着剤にて接
着させた構成としであるので、次の如き優れた効果を奏
し得る。
[Effects of the Invention] As described above, according to the solid oxide fuel cell of the present invention, the periphery of both sides of the electrolyte plate, in which manifolds for supplying and discharging air and fuel gas are formed on one side and the other side of the periphery. A thin film-like porous air electrode and a fuel electrode are placed in the center area, excluding the area, so that the manifold for supplying and discharging air is communicated on the air electrode side, and the manifold for supplying and discharging fuel gas is connected on the fuel electrode side. In addition, gas passage structures made of electrode materials are arranged on the air electrode side and the fuel electrode side to form gas passages, and electrode parts are cut out on both sides of the electrolyte plate. A spacer made of solid electrolyte is arranged only at the periphery, and the spacer on the air electrode side is formed by dividing a fuel gas supply/discharge manifold on one side and the other side of the periphery, and the spacer on the fuel electrode side is Air supply and exhaust manifolds are divided and formed on one side and the other side of the periphery, and these are considered as one cell.
They are stacked with separators formed on one side and the other side of the periphery with manifolds for supplying and discharging air and fuel gas,
Since the connecting portion between the periphery of the separator and the spacer is bonded with an adhesive, the following excellent effects can be achieved.

(i)  多孔質体の空気極側と同じく多孔質体の燃料
極側に流されるガスはスペーサの存在によりリークする
ことが少なく、又、異なるガスのマニホールドが区画形
成されているので、空気と燃料ガスとがマニホールド部
分て接触するようなことがな(なる。
(i) Gas flowing to the fuel electrode side of the porous body as well as the air electrode side of the porous body is less likely to leak due to the presence of the spacer, and since the manifolds for different gases are separated, it is possible to This prevents the fuel gas from coming into contact with the manifold.

(ii)  内部マニホールド型で且つ電極の周辺を覆
うようにするスペーサの使用により、ガス通路の簡易化
とシール性の向上が図れると共にマニホールド部の構造
を単純化できる。
(ii) By using an internal manifold type spacer that covers the periphery of the electrode, it is possible to simplify the gas passage and improve sealing performance, and to simplify the structure of the manifold part.

(iの 多孔質の空気極と燃料極を電解質板の両面に−
様に密着させているので、電解質板への良好な接触性が
確保できて空気極側からの酸素イオンが電解質板を通過
して燃料極へ到達する際の導通性を良くすることができ
ると共に、ガス通路を確保できてガスの流通性を良くす
ることができて、反応を促進させて性能を向上させるこ
とができる。
(The porous air electrode and fuel electrode of i are placed on both sides of the electrolyte plate.
Since they are in close contact with each other, it is possible to ensure good contact with the electrolyte plate, and it is possible to improve the conductivity when oxygen ions from the air electrode side pass through the electrolyte plate and reach the fuel electrode. , gas passages can be secured, gas flowability can be improved, reactions can be accelerated, and performance can be improved.

■ 電解質板の両面の空気極と燃料極の各表面に印刷法
でガス通路構造体を接着成形すると、複雑なガス通路で
も簡単に形成することができ、又、空気と燃料ガスの流
れを平行流とすることにより、熱応力を減少させること
ができることになる。
■ By adhering and molding gas passage structures on each surface of the air electrode and fuel electrode on both sides of the electrolyte plate, even complex gas passages can be easily formed, and the flow of air and fuel gas can be made parallel. By creating a flow, thermal stress can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の固体電解質型燃料電池の一実施例を示
す斜視図、第2図は第1図の■方向よりの断面図、第3
図は第1図を分解して示す図、第4図は従来の固体電解
質型燃料電池の概略斜視図である。 1・・・電解質板、2・・・空気極、3・・・燃料極、
6・・・セパレータ、7・・・空気の供給用マニホール
ド、8・・・燃料ガスの供給用マニホールド、9・・・
空気の排出用マニホールド、10・・・燃料ガスの排出
用マニホールド、11・・・ガス通路構造体、12.1
3・・・ガス通路、14・・・空気極側スペーサ、15
・・・燃料極側スペーサ。
FIG. 1 is a perspective view showing one embodiment of the solid oxide fuel cell of the present invention, FIG. 2 is a cross-sectional view taken from the ■ direction in FIG.
The figure is an exploded view of FIG. 1, and FIG. 4 is a schematic perspective view of a conventional solid oxide fuel cell. 1... Electrolyte plate, 2... Air electrode, 3... Fuel electrode,
6... Separator, 7... Air supply manifold, 8... Fuel gas supply manifold, 9...
Manifold for discharging air, 10... Manifold for discharging fuel gas, 11... Gas passage structure, 12.1
3... Gas passage, 14... Air electrode side spacer, 15
...Fuel electrode side spacer.

Claims (2)

【特許請求の範囲】[Claims] (1)電解質板の両面に、多孔質体とした薄膜状の空気
極と燃料極を配置し、該空気極と燃料極の表面に、電極
材よりなるガス通路構造体を配置してそれぞれガス通路
を形成し、且つ上記電解質板の空気極側に、該空気極の
周辺を覆うようにする固体電解質よりなる空気極側スペ
ーサを、又、電解質板の燃料極側に、該燃料極の周辺を
覆うようにする固体電解質よりなる燃料極側スペーサを
それぞれ配置したものを1セルとして、該セルをセパレ
ータを介し積層してセパレータと上記両スペーサとを接
着させ、上記セルの電解質板及び両スペーサとセパレー
タの各周辺部の一側と他側に空気と燃料ガスの各給排用
マニホールドを形成してなる構成を有することを特徴と
する固体電解質型燃料電池。
(1) A porous thin film air electrode and fuel electrode are arranged on both sides of the electrolyte plate, and a gas passage structure made of an electrode material is arranged on the surfaces of the air electrode and fuel electrode, respectively. An air electrode side spacer made of a solid electrolyte that forms a passage and covers the periphery of the air electrode on the air electrode side of the electrolyte plate; One cell is a cell in which fuel electrode side spacers made of solid electrolyte are arranged so as to cover the cells, and the cells are stacked with a separator in between, and the separator and both spacers are adhered, and the electrolyte plate and both spacers of the cell are stacked. What is claimed is: 1. A solid oxide fuel cell characterized by having a configuration in which manifolds for supplying and discharging air and fuel gas are formed on one side and the other side of each peripheral portion of a separator.
(2)空気極及び燃料極の表面に印刷法により電極材を
接着させてガス通路構造体を成形してなる請求項(1)
記載の固体電解質型燃料電池。
(2) Claim (1) in which the gas passage structure is formed by bonding electrode materials to the surfaces of the air electrode and the fuel electrode by a printing method.
The solid oxide fuel cell described above.
JP2275706A 1990-10-15 1990-10-15 Solid electrolyte-type fuel battery Pending JPH04149966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275706A JPH04149966A (en) 1990-10-15 1990-10-15 Solid electrolyte-type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275706A JPH04149966A (en) 1990-10-15 1990-10-15 Solid electrolyte-type fuel battery

Publications (1)

Publication Number Publication Date
JPH04149966A true JPH04149966A (en) 1992-05-22

Family

ID=17559236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275706A Pending JPH04149966A (en) 1990-10-15 1990-10-15 Solid electrolyte-type fuel battery

Country Status (1)

Country Link
JP (1) JPH04149966A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003214A1 (en) * 1999-07-02 2001-01-11 Ibiden Co., Ltd. Separator of solid-polymer fuel cell, method of manufacture thereof, and solid-polymer fuel cell
WO2003007413A1 (en) * 2001-07-13 2003-01-23 Ceramic Fuel Cells Limited Solid oxide fuel cell stack configuration
JP2008066127A (en) * 2006-09-07 2008-03-21 Kyocera Corp Cell stack device and fuel cell module
US7396384B2 (en) 2002-02-26 2008-07-08 Ceramic Fuel Cells Limited Fuel cell gas separator
US7648789B2 (en) 2001-07-13 2010-01-19 Ceremic Fuel Cells Limited Fuel cell gas separator plate with paths of electrically conductive material of a silver-glass composite
JP2010161074A (en) * 2009-01-07 2010-07-22 National Taiwan Univ Of Science & Technology Fuel cell and its manufacturing method
JPWO2009119771A1 (en) * 2008-03-26 2011-07-28 財団法人ファインセラミックスセンター Stack structure for stacked solid oxide fuel cell, stacked solid oxide fuel cell, and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003214A1 (en) * 1999-07-02 2001-01-11 Ibiden Co., Ltd. Separator of solid-polymer fuel cell, method of manufacture thereof, and solid-polymer fuel cell
WO2003007413A1 (en) * 2001-07-13 2003-01-23 Ceramic Fuel Cells Limited Solid oxide fuel cell stack configuration
US7648789B2 (en) 2001-07-13 2010-01-19 Ceremic Fuel Cells Limited Fuel cell gas separator plate with paths of electrically conductive material of a silver-glass composite
US7396384B2 (en) 2002-02-26 2008-07-08 Ceramic Fuel Cells Limited Fuel cell gas separator
JP2008066127A (en) * 2006-09-07 2008-03-21 Kyocera Corp Cell stack device and fuel cell module
JPWO2009119771A1 (en) * 2008-03-26 2011-07-28 財団法人ファインセラミックスセンター Stack structure for stacked solid oxide fuel cell, stacked solid oxide fuel cell, and manufacturing method thereof
JP2012099493A (en) * 2008-03-26 2012-05-24 Japan Fine Ceramics Center Stack structure for multilayer type solid oxide fuel cell, multilayer type solid oxide fuel cell, and method of manufacturing the same
JP2012109251A (en) * 2008-03-26 2012-06-07 Japan Fine Ceramics Center Laminated solid oxide fuel cell stack structure, laminated solid oxide fuel cell, and manufacturing method thereof
JP2010161074A (en) * 2009-01-07 2010-07-22 National Taiwan Univ Of Science & Technology Fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JPH09289028A (en) Electrolyte film, gas seal structure, and stack for solid polymer electrolyte type fuel cell
WO2000074159A1 (en) Unit cell of flat solid electrolytic fuel battery and cell stack comprising the same
JP2000048831A (en) Solid electrolyte fuel cell
JP3826636B2 (en) Fuel cell
JP5101866B2 (en) Fuel cell
US20040131915A1 (en) Solid oxide fuel cell stack
JPH04149966A (en) Solid electrolyte-type fuel battery
JP3878679B2 (en) Fuel cell
JPH03257760A (en) Solid electrolyte type fuel cell
JPH10241709A (en) Solid macromolecular film type fuel cell and separator for the same
JPS625569A (en) Molten carbonate type fuel cell stack
JP2012203999A (en) Fuel cell and manufacturing method thereof
JPH10199555A (en) Gas sealing structure of solid electrolyte fuel cell
JP2020095929A (en) Elastic cell frame for fuel cell, manufacturing method thereof, and unit cell using the same
JPH05129033A (en) Solid electrolytic fuel cell
JP5830403B2 (en) Electrolyte membrane / electrode structure for fuel cells
JPS6010564A (en) Seal structure for fuel cell
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH01183070A (en) Separator for fuel cell
JP7159126B2 (en) Electrochemical reaction cell stack
JP2004063094A (en) Fuel cell and fuel cell stack
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JP3496819B2 (en) Polymer electrolyte fuel cell