JPH0290470A - Lamination type fuel battery - Google Patents

Lamination type fuel battery

Info

Publication number
JPH0290470A
JPH0290470A JP63239749A JP23974988A JPH0290470A JP H0290470 A JPH0290470 A JP H0290470A JP 63239749 A JP63239749 A JP 63239749A JP 23974988 A JP23974988 A JP 23974988A JP H0290470 A JPH0290470 A JP H0290470A
Authority
JP
Japan
Prior art keywords
separator
plate
cathode
current collecting
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63239749A
Other languages
Japanese (ja)
Other versions
JP2708500B2 (en
Inventor
Tatsunori Okada
達典 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63239749A priority Critical patent/JP2708500B2/en
Publication of JPH0290470A publication Critical patent/JPH0290470A/en
Application granted granted Critical
Publication of JP2708500B2 publication Critical patent/JP2708500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate manufacturing of a separator and to lower the thickness of the separator by constituting the separator of one plate, and making plural projections on both sides of the separator so that they may form gas passages. CONSTITUTION:In a lamination type fuel battery a plurality of single batteries are laminated. In a separator which is interposed between each laminated single battery, a projection 17a for cathode contacting with a cathode current collecting plate and a projection 17b for anode contacting with an anode current collecting plate 15 are formed respectively by press processing to a flat plate. This way, fuel gas passages are formed respectively between the cathode current collecting plate and the separator 17 and between the anode current collecting plate and the separator so that oxidizer gas may flow in the directions of arrows A and B. Hereby, the manufacturing of the separator 17 becomes simple and the thickness of the separator 17 can be reduced to the indispensable minimum, and the height of the whole lamination can be lowered.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複数の単電池をセパレータを介して積層し
た積層形燃料電池に関し、特にセパレータの改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a stacked fuel cell in which a plurality of unit cells are stacked with a separator in between, and particularly relates to an improvement in the separator.

[従来の技術] 第4図は例えば特開昭61136471号公報等に示さ
れたものと同種の従来の積層形燃料電池のセパレータの
一例を示す斜視図であり、図において(1)は平板状の
セパレータ板、(2)はセパレータ板(1)の上面に設
けられた第1の波形板、(3)は第1の波形板(2)に
よって形成された燃料ガス流路、(4)はセパレータ板
(1)の下面に設けられた第2の波形板、(5)は第2
の波形板(4)によって形成され燃料ガス流路(3)に
対して直角方向へ向いた酸化剤カス流路である。
[Prior Art] FIG. 4 is a perspective view showing an example of a conventional stacked fuel cell separator of the same type as shown in, for example, Japanese Patent Application Laid-Open No. 61136471. In the figure, (1) is a flat plate type separator. (2) is the first corrugated plate provided on the upper surface of the separator plate (1), (3) is the fuel gas flow path formed by the first corrugated plate (2), (4) is the separator plate of The second corrugated plate (5) is provided on the lower surface of the separator plate (1).
This is an oxidant waste flow path formed by a corrugated plate (4) and oriented in a direction perpendicular to the fuel gas flow path (3).

また、積層形燃料電池は、複数の単電池(図示せず)が
上記のようなセパレータを介して積層されてなっており
、各単電池は、電解質マトリックス(図示せず)を燃料
型m<図示せず)と酸化剤電極(図示せず)とで挟んで
なっている。このため、第1の波形板(2)の上には燃
料電極が、第2の波形板(4)の下には酸化剤電極がそ
れぞれ来るようになっている。
In addition, a stacked fuel cell is made up of a plurality of single cells (not shown) stacked together with the above-mentioned separators in between, and each single cell has an electrolyte matrix (not shown) in a fuel type m< (not shown) and an oxidizer electrode (not shown). For this reason, the fuel electrode is placed above the first corrugated plate (2), and the oxidizer electrode is placed below the second corrugated plate (4).

上記のように構成された従来の積層形燃料電池において
は、燃料ガスが燃料ガス流路(3)を燃料電極に接しな
がら流れ、酸化剤ガスが酸化剤カス流路(5)を酸化剤
電極に接しながら流れる。
In the conventional stacked fuel cell configured as described above, fuel gas flows through the fuel gas flow path (3) in contact with the fuel electrode, and oxidant gas flows through the oxidant waste flow path (5) between the oxidant electrode and the fuel gas flow path (3). It flows while touching.

これによって、各単電池で電池反応が起こり、発電が行
われる。
As a result, a battery reaction occurs in each cell, and electricity is generated.

[発明が解決しようとする課題] 上記のように構成された従来の積層形燃料電池において
は、セパレータとしてセパレータ板(1)と第1及び第
2の波形板(2)、(4)とを用いていたのて、これら
第1及び第2の波形板(2)(4)をセパレータ板(1
)に取り付ける部分が必要てあり、このためそれぞれの
板厚分だけ必要以上に高くなってしまい、これを多数積
層するため、全体の積層高さが高くなってしまい、コン
パクト性に欠けるという問題点があった。また、セパレ
ータ板く1)と第1及び第2の波形板(2)。
[Problems to be Solved by the Invention] In the conventional stacked fuel cell configured as described above, a separator plate (1) and first and second corrugated plates (2) and (4) are used as separators. These first and second corrugated plates (2) and (4) were used as a separator plate (1
), which increases the height of each board more than necessary, and since many of these are stacked, the overall stacking height becomes high, resulting in a lack of compactness. was there. Also, a separator plate 1) and first and second corrugated plates (2).

(4)との間の電気的な接触抵抗を低減させるために、
この部分を溶接により接合する必要があり、組立工程が
複雑になり、手間がかかるという問題点もあった。
(4) In order to reduce the electrical contact resistance between
This part had to be joined by welding, which made the assembly process complicated and time-consuming.

この発明は、上記のような問題点を解決するためになさ
れたちのて、積層高さを低くでき、これにより全体をコ
ンパクトにてき、また組立工程か簡単て手間がかからな
い積層形燃料電池を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to reduce the stacking height, thereby making the whole compact, and to obtain a stacked fuel cell whose assembly process is simple and requires no labor. The purpose is to

[課題を解決するための手段] この発明に係る積層形燃料電池は、セパレータを一枚板
で構成するとともに、このセパレータの両面に接する各
単電池との間に、互いに交差する方向へ向いたカス流路
をそれぞれ形成するように、セパレータの両面に複数の
凸部を形成したものである。
[Means for Solving the Problems] A stacked fuel cell according to the present invention includes a separator made of a single plate, and a cell that is oriented in a direction that intersects with each other between each unit cell that is in contact with both sides of the separator. A plurality of convex portions are formed on both sides of the separator so as to form respective waste flow paths.

[作用] この発明のセパレータは、両面に突出した凸部によって
、その両面に接する各単電池のそれぞれとの間に、互い
に交差する方向へ向いたガス流路をそれぞれ形成する。
[Function] The separator of the present invention has convex portions protruding on both surfaces to form gas passages oriented in directions intersecting with each other between the separator and each unit cell in contact with both surfaces.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による積層形燃料電池を示
す酸化剤ガス入口側からみた要部断面図、第2図は第1
図のセパレータを示す斜視図である。
FIG. 1 is a cross-sectional view of the main parts of a stacked fuel cell according to an embodiment of the present invention, viewed from the oxidant gas inlet side, and FIG.
FIG. 3 is a perspective view showing the separator shown in the figure.

図において、(11)は電解質マトリックス、(12)
は電解質マトリックス(11)の下面に設けられなカソ
ード電極、(13)は電解質マトリックス(11)の上
面に設けられたアノード電極、り14)はカソード電極
(12)の下面に設けられた金属板からなるカソード集
電板であり、このカソード集電板(14)には多数の孔
が形成されている。(15)はアノード電極(13)の
上面に設けられた金属板からなるアノード集電板てあり
、このアノード集電板(15)には多数の孔が形成され
ている。(16)は電解質マトリックス(11) 、カ
ソード電極(12)アノード電極(13) 、カソード
集電板(14)及びアノード集電板(15)からなる単
電池であり、このような積層形燃料電池ては複数個の単
電池(16)が積層されている。
In the figure, (11) is the electrolyte matrix, (12)
is a cathode electrode provided on the bottom surface of the electrolyte matrix (11), (13) is an anode electrode provided on the top surface of the electrolyte matrix (11), and 14) is a metal plate provided on the bottom surface of the cathode electrode (12). A large number of holes are formed in this cathode current collector plate (14). (15) is an anode current collector plate made of a metal plate provided on the upper surface of the anode electrode (13), and a large number of holes are formed in this anode current collector plate (15). (16) is a single cell consisting of an electrolyte matrix (11), a cathode electrode (12), an anode electrode (13), a cathode current collector plate (14), and an anode current collector plate (15), and such a stacked fuel cell In other words, a plurality of single cells (16) are stacked.

(17)は積層された各単電池り16)の間に介在する
セパレータであり、このセパレータ(17)には、カソ
ード集電板(14)に接するカソード用凸部(17a)
と、アノード集電板(15)に接するアノード用凸部(
17b)とが、それぞれ平板にプレス加工をすることに
より形成されている。(17c)はセパレータ(17)
の互いに向かい合う縁部に折り曲げ加工して断面コ字状
に形成されたガスシール部である。
(17) is a separator interposed between each of the stacked unit cells 16), and this separator (17) has a cathode convex portion (17a) in contact with the cathode current collector plate (14).
and an anode convex portion (
17b) are each formed by pressing a flat plate. (17c) is a separator (17)
This gas seal portion is formed by bending the opposing edges of the gas seal to have a U-shaped cross section.

(18)はカソード集電板(14)とセパレータ(17
)との間に酸化剤ガスが図の矢印Aの方向へ流れるよう
に形成された酸化剤ガス流路、(19)はアノード集電
板(15)とセパレータ(17)との間に燃料ガスが図
の矢印Bの方向へ流れるように形成された燃料ガス流路
であり、これらの酸化剤ガス流路(18)と燃料ガス流
路(19)とはセパレータ(18)を挟んで互いに直交
する方向へ向いている。また、カソード用凸部(17a
)及びアノード用凸部(17b)は、それぞれ燃料ガス
又は酸化剤ガスの流れ方向へ長い直方体状に交互に形成
されている。(20)はガスシール部(17c)の角部
の内側に設けられたスペーサである。
(18) is a cathode current collector plate (14) and a separator (17).
) is formed between the anode current collector plate (15) and the separator (17) so that the oxidant gas flows in the direction of arrow A in the figure. is a fuel gas flow path formed to flow in the direction of arrow B in the figure, and these oxidant gas flow path (18) and fuel gas flow path (19) are perpendicular to each other with a separator (18) in between. It's headed in the direction of. In addition, the cathode convex part (17a
) and the anode convex portions (17b) are alternately formed in the shape of a long rectangular parallelepiped in the flow direction of the fuel gas or oxidizing gas. (20) is a spacer provided inside the corner of the gas seal portion (17c).

また、この積層形燃料電池は、第1図のようにセパレー
タ(17)を介して、単電池(16)を所定の数だけ積
層し、所定の面圧で上下から加圧して構成される。
Further, this stacked fuel cell is constructed by stacking a predetermined number of unit cells (16) with separators (17) in between, and applying pressure from above and below with a predetermined surface pressure, as shown in FIG.

上記のように構成された積層形燃料電池においては、酸
化剤カス流路(18)に酸化剤ガスを、燃料ガス流路(
19)に燃料カスを、それぞれ側面から流すことにより
、発電が行われる。
In the stacked fuel cell configured as described above, the oxidant gas is supplied to the oxidant waste flow path (18), and the fuel gas flow path (
19), power generation is performed by flowing fuel scum from each side.

また、セパレータ(17)は、平板をプレス加工して形
成されるので、電気的な接触抵抗の問題もなく、製作が
簡単である。
Further, since the separator (17) is formed by pressing a flat plate, there is no problem of electrical contact resistance and manufacturing is simple.

さらに、従来必要だった波形板とセパレータ板との接ぎ
部がないので、セパレータ<17)の厚さを必要最小限
にすることがてき、全体の積層高さを従来より低くてき
る。
Furthermore, since there is no joint between the corrugated plate and the separator plate, which was required in the past, the thickness of the separator <17) can be minimized, and the overall stacking height can be lowered than in the past.

さらにまた、カソード用凸部(17a)相互の間隔及び
アノード用凸部(17c)相互の間隔は、従来の波形板
の波のピッチよりも広くなるが、金属板からなるカソー
ド集電板(14)及びアノード集電板(15)を介して
いるので、各集電板(14) 、(15)と各電極(1
2) 、(13)との間の面圧は均一になる。
Furthermore, the distance between the cathode projections (17a) and the distance between the anode projections (17c) are wider than the wave pitch of a conventional corrugated plate, but the cathode current collector plate (14) made of a metal plate is wider than the wave pitch of a conventional corrugated plate. ) and an anode current collector plate (15), each current collector plate (14), (15) and each electrode (1
2) The surface pressure between (13) and (13) becomes uniform.

また、従来の波形板に比べ、セパレータ(17)と各電
極(1,2> 、(13)との接触面積は小さくなるが
、電気的な問題はなく、従来同様の電池特性を得ること
ができる。
Also, compared to conventional corrugated plates, the contact area between the separator (17) and each electrode (1, 2>, (13) is smaller, but there is no electrical problem and the same battery characteristics as conventional ones can be obtained. can.

なお、上記実施例で示したものは、天然ガスなどを予め
改質して、水素、炭酸ガスなどに変換したものを燃料ガ
スとして供給する外部改質方式の積層形燃料電池である
が、例えばカソード用凸部(17a)の裏側の凹部に内
部改質触媒を充填することにより、直接形内部改質形方
式の積層形燃料電池にもこの発明が適用できる。この場
合、触媒が流路を妨げないため、ガスの流れに対する圧
力損失を少なくすることができる。
The example shown in the above embodiment is an external reforming type stacked fuel cell that supplies fuel gas by reforming natural gas or the like and converting it into hydrogen, carbon dioxide, etc. By filling the recess on the back side of the cathode projection (17a) with an internal reforming catalyst, the present invention can also be applied to a direct internal reforming type stacked fuel cell. In this case, since the catalyst does not obstruct the flow path, pressure loss with respect to the gas flow can be reduced.

また、上記実施例ではガスシール部(17c)を折り曲
げ加工して形成したが、ガスシール部(17c)を第3
図のような形状とすれば、プレス加工をすることもでき
、ガスシール部(17c)をカソード用凸部(17a)
のプレスと同時に形成できるため製作工程が簡略化でき
る。
Further, in the above embodiment, the gas seal portion (17c) was formed by bending, but the gas seal portion (17c) was formed by bending the gas seal portion (17c).
If the shape is as shown in the figure, it can be pressed, and the gas seal part (17c) can be connected to the cathode convex part (17a).
The manufacturing process can be simplified because it can be formed at the same time as pressing.

さらに、上記実施例ては直方体状に突出したカソード用
凸部(17a)及びアノード用凸部(17b)を示した
が、酸化剤ガス流路及び燃料ガス流路を形成できれば凸
部は他の形状であってもよい。
Furthermore, although the cathode convex part (17a) and the anode convex part (17b) which protruded in the shape of a rectangular parallelepiped were shown in the above embodiment, if the oxidizing gas flow path and the fuel gas flow path can be formed, the convex part can be It may be a shape.

[発明の効果] 以上説明したように、この発明の積層形燃料電池は、セ
パレータが一枚板からなるため、電気的な接触抵抗等の
問題もなく、セパレータの製作が簡単であるとともに、
全体の組立工程も簡単で手間がかからす、また部品点数
が減少し、コストを低減させることもできるなどの効果
がある。また、従来必要だった波形板とセパレータ板と
の接合部がないので、セパレータの厚さを必要最小限に
することがてき、これにより全体の積層高さを低くでき
、全体をコンパクト化することができるという効果もあ
る。
[Effects of the Invention] As explained above, in the stacked fuel cell of the present invention, since the separator is made of a single plate, there are no problems such as electrical contact resistance, and the separator is easy to manufacture.
The overall assembly process is simple and time-consuming, and the number of parts is reduced, resulting in lower costs. In addition, since there is no joint between the corrugated plate and the separator plate, which was required in the past, the thickness of the separator can be minimized, which reduces the overall stacking height and makes the entire structure more compact. It also has the effect of being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による積層形燃料電池を示
す酸化剤ガス入口側からみた要部断面図、第2図は第1
図のセパレータを示す斜視図、第3図はこの発明の他の
実施例によるセパレータを示す斜視図、第4図は従来の
積層形燃料電池のセパレータの一例を示す斜視図である
。 図において、(16)は単電池、(17)はセパレータ
、(17a)はカソード用凸部、(17b)はアノード
用凸部、(18〉は酸化剤ガス流路、(19)は燃料ガ
ス流路である。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view of the main parts of a stacked fuel cell according to an embodiment of the present invention, viewed from the oxidant gas inlet side, and FIG.
FIG. 3 is a perspective view showing a separator according to another embodiment of the present invention, and FIG. 4 is a perspective view showing an example of a separator for a conventional stacked fuel cell. In the figure, (16) is a cell, (17) is a separator, (17a) is a convex part for a cathode, (17b) is a convex part for an anode, (18> is an oxidizing gas flow path, and (19) is a fuel gas It is a flow path. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 複数の単電池をセパレータを介して積層した積層形燃料
電池において、前記セパレータは、一枚板からなってお
り、かつ一方の面に接する単電池との間と、他方の面に
接する単電池との間とに、互いに交差する方向へ向いた
ガス流路をそれぞれ形成するように、両面にそれぞれ突
出した複数の凸部を有することを特徴とする積層形燃料
電池。
In a stacked fuel cell in which a plurality of unit cells are stacked with a separator in between, the separator is made of a single plate, and there is a space between the unit cells in contact with one surface and a space between the unit cells in contact with the other surface. 1. A stacked fuel cell characterized by having a plurality of protrusions protruding from both surfaces so as to form gas flow paths oriented in directions intersecting with each other between the two protrusions.
JP63239749A 1988-09-27 1988-09-27 Stacked fuel cell Expired - Lifetime JP2708500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63239749A JP2708500B2 (en) 1988-09-27 1988-09-27 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63239749A JP2708500B2 (en) 1988-09-27 1988-09-27 Stacked fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9199909A Division JPH1092447A (en) 1997-07-25 1997-07-25 Layer-built fuel cell

Publications (2)

Publication Number Publication Date
JPH0290470A true JPH0290470A (en) 1990-03-29
JP2708500B2 JP2708500B2 (en) 1998-02-04

Family

ID=17049359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63239749A Expired - Lifetime JP2708500B2 (en) 1988-09-27 1988-09-27 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JP2708500B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378247A (en) * 1990-07-24 1995-01-03 Kabushiki Kaisha Toshiba Separators and method of manufacturing the same
LT3184B (en) 1991-02-12 1995-03-27 Gea Farmaceutisk Fabrik As 3-substituted 1,2,3,4-oxatriazole-5-imine compounds,a process for the preparation thereof and a pharmaceutical preparation containing said compounds
NL1001858C2 (en) * 1994-12-08 1998-08-11 Mtu Friedrichshafen Gmbh Bipolar plate for fuel cells.
US6296962B1 (en) 1999-02-23 2001-10-02 Alliedsignal Inc. Design for solid oxide fuel cell stacks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129787A (en) * 1982-01-29 1983-08-02 Toshiba Corp Fused carbonate fuel cell layer body
JPS60241674A (en) * 1984-05-15 1985-11-30 Toshiba Corp Fused carbonate type fuel cell
JPS61253768A (en) * 1985-04-30 1986-11-11 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129787A (en) * 1982-01-29 1983-08-02 Toshiba Corp Fused carbonate fuel cell layer body
JPS60241674A (en) * 1984-05-15 1985-11-30 Toshiba Corp Fused carbonate type fuel cell
JPS61253768A (en) * 1985-04-30 1986-11-11 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378247A (en) * 1990-07-24 1995-01-03 Kabushiki Kaisha Toshiba Separators and method of manufacturing the same
LT3184B (en) 1991-02-12 1995-03-27 Gea Farmaceutisk Fabrik As 3-substituted 1,2,3,4-oxatriazole-5-imine compounds,a process for the preparation thereof and a pharmaceutical preparation containing said compounds
NL1001858C2 (en) * 1994-12-08 1998-08-11 Mtu Friedrichshafen Gmbh Bipolar plate for fuel cells.
US6296962B1 (en) 1999-02-23 2001-10-02 Alliedsignal Inc. Design for solid oxide fuel cell stacks
WO2002001661A1 (en) * 1999-02-23 2002-01-03 Alliedsignal Inc. Interconnector design for solid oxide fuel cell stacks

Also Published As

Publication number Publication date
JP2708500B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
EP2360768B1 (en) Cell stack of fuel cells and method for fastening cell stack of fuel cells
CN107293767B (en) Fuel cell stack
JPH07254424A (en) Collector plate for molten carbonate fuel cell
JP2002100381A (en) Separator for fuel cell and fuel cell
US20100159345A1 (en) Cell stack of fuel cell and method of fastening cell stack of fuel cell
JP2001035514A (en) Sheet metal for current-carrying and solid electrolyte fuel cell using the same
JP3555215B2 (en) Method of manufacturing fuel cell and flow path forming member used therein
JP2008059760A (en) Fuel cell, and manufacturing method of fuel cell
JPH1092447A (en) Layer-built fuel cell
JP2708500B2 (en) Stacked fuel cell
JPS625569A (en) Molten carbonate type fuel cell stack
JPH05166523A (en) Plate-like solid electrolyte fuel cell
JP3257757B2 (en) Fuel cell separator
CN113130928B (en) Separator member for fuel cell, method for producing same, and fuel cell stack
JPH10261423A (en) Fuel cell
JP2581950Y2 (en) Fuel cell manifold plate
JPH02129857A (en) Separator of fuel cell
JP2569361Y2 (en) Fuel cell separator
CN109314264B (en) Fuel cell stack and separator for fuel cell stack
JP2006073398A (en) Fuel cell
CN112563527B (en) Separator member for fuel cell and fuel cell stack
JPH06333582A (en) Solid polyelectrolyte fuel cell
JP7379193B2 (en) Separator members for fuel cells and fuel cells
JPH02160372A (en) Separator of fuel battery
JPH08293318A (en) Fuel cell