JP2006073398A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2006073398A
JP2006073398A JP2004256798A JP2004256798A JP2006073398A JP 2006073398 A JP2006073398 A JP 2006073398A JP 2004256798 A JP2004256798 A JP 2004256798A JP 2004256798 A JP2004256798 A JP 2004256798A JP 2006073398 A JP2006073398 A JP 2006073398A
Authority
JP
Japan
Prior art keywords
plate
separator
fuel
partition plate
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004256798A
Other languages
Japanese (ja)
Inventor
Takashi Kuwata
尚 桑田
Yoshinori Nagai
美憲 長井
Junya Kishi
純矢 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2004256798A priority Critical patent/JP2006073398A/en
Publication of JP2006073398A publication Critical patent/JP2006073398A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell of which manufacturing cost is low and improvement of performance demanded for a separator is achieved. <P>SOLUTION: The separator 29 is constituted by overlaying a partition plate 100 composed of conductive metal plate provided with a power generation/current collecting part 2 having a plurality of formed holes 3, and longitudinal walls 7 and bottom walls 10 formed between the respective holes 3, and a receiving plate 101 composed of the conductive metal plate provided with a housing part 19 which houses the power generation/current collecting part 2 of that partition plate 100. Unit cells 37 are constituted by arranging those separators 29 respectively at both sides of an MEA 33 so that the partition plate 100 is contacted with the MEA 33, the plurality of unit cells 37 are laminated so that the receiving plates 101 of the separator 29 are mutually contacted, and by caulking-joining brim ends of the receiving plates 101 contacted with each other, all the unit cells 37 are integrally fixed at that state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性金属板からなるセパレータを備えた単位セルを複数積層して構成した燃料電池に関するものである。   The present invention relates to a fuel cell configured by stacking a plurality of unit cells each including a separator made of a conductive metal plate.

燃料電池とは、化学エネルギを直接電気エネルギに変換する電池であり、電気自動車等の車両の動力源又は電源としてや、住宅用の発電機としてなど、様々な分野において実用化が進められている。特に、固体高分子型燃料電池(PEFC)は他の燃料電池システムと比較して低温で動作し、出力密度が高いことから自動車用、可搬用の動力源などとしての適用が期待されている。   A fuel cell is a battery that directly converts chemical energy into electric energy, and is being put to practical use in various fields such as a power source or power source of a vehicle such as an electric vehicle or a generator for a house. . In particular, the polymer electrolyte fuel cell (PEFC) operates at a lower temperature than other fuel cell systems and has a high output density, so that it is expected to be applied as a power source for automobiles and portables.

係る固体高分子型燃料電池は、MEA(Membrane Electrolyte Assembly:電解質膜と電極との接合体)と、そのMEAの両側にそれぞれ配置されたセパレータとからなる「単位セル」を、必要な電圧を得るべく複数積層してスタックとしたものである。   Such a polymer electrolyte fuel cell obtains a necessary voltage from a “unit cell” composed of MEA (Membrane Electrolyte Assembly) and separators disposed on both sides of the MEA. As many as possible are stacked to form a stack.

上記セパレータは主に、MEAに燃料(水素、及び空気又は酸素(以下単に空気と言う))を供給する流路を形成する役割と、MEAと接触して、発生した電気を集電する役割とを有している。   The separator mainly has a role of forming a flow path for supplying fuel (hydrogen and air or oxygen (hereinafter simply referred to as air)) to the MEA, and a role of collecting generated electricity in contact with the MEA. have.

ここで、現在開発されている燃料電池用セパレータは、主に以下の3種類に大別できる。   Here, fuel cell separators currently being developed can be roughly divided into the following three types.

1)金属薄板セパレータ:金属板をプレス加工等により凹凸状に折り曲げて燃料流路及び集電部を形成したもの(特許文献1及び2参照)。   1) Metal thin plate separator: A metal plate is bent into a concavo-convex shape by pressing or the like to form a fuel flow path and a current collector (see Patent Documents 1 and 2).

2)樹脂セパレータ:黒鉛粉末を熱硬化性樹脂バインダ等で固めて形成した板材を切削加工することにより、燃料流路および集電部を形成したもの(特許文献3参照)。   2) Resin separator: A fuel channel and a current collecting part formed by cutting a plate material formed by solidifying graphite powder with a thermosetting resin binder or the like (see Patent Document 3).

3)カーボンセパレータ:高強度カーボン材からなる板材を切削加工することにより、燃料流路および集電部を形成したもの。   3) Carbon separator: A fuel separator and a current collector formed by cutting a plate made of a high-strength carbon material.

特開平10−302814号公報JP-A-10-302814 特開2001−325969号公報JP 2001-325969 A 特開平8−162131号公報JP-A-8-162131

しかしながら、これら各セパレータはそれぞれ、以下に示すような問題点を抱えていた。   However, each of these separators has the following problems.

1)金属薄板セパレータの問題点:集電部を形成する凸部の角(コーナ)がR形状になってしまうため、集電効率が悪い。形状が複雑であり、製造が困難である。   1) Problems of the thin metal plate separator: Since the corners of the convex portions forming the current collecting portion have an R shape, the current collecting efficiency is poor. The shape is complex and difficult to manufacture.

2)樹脂セパレータの問題点:製造コストが高い。薄板化が困難である。金属と比べて強度が低い。導電性を高めるために黒鉛の含有量を増やすと成形性が悪化してしまう。   2) Problems of resin separator: Manufacturing cost is high. Thinning is difficult. Low strength compared to metal. If the graphite content is increased in order to increase the electrical conductivity, the moldability is deteriorated.

3)カーボンセパレータの問題点:製造コストが高い。薄板化が困難である。金属と比べて強度が低い。   3) Problem of carbon separator: production cost is high. Thinning is difficult. Low strength compared to metal.

そこで本発明の目的は、上記課題を解決し、製造コストが低く、かつ集電効率の高いセパレータを備えた燃料電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems, and to provide a fuel cell including a separator with low manufacturing cost and high current collection efficiency.

上記目的を達成するために本発明は、複数形成された穴と、各穴間に形成された縦壁及び底壁とを有する発電・集電部を備えた導電性金属板からなる仕切板と、その仕切板の上記発電・集電部を収容する収容部を備えた導電性金属板からなる受け板とを重ね合わせてセパレータを構成し、そのセパレータを、上記仕切板がMEAと接触するようにしてMEAの両側にそれぞれ配置して単位セルを構成し、その単位セルを、上記セパレータの受け板同士が接触するようにして複数積層すると共に、互いに接触する受け板の縁部同士をかしめ接合し、その状態で全ての単位セルを一体的に固定して構成したものである。   In order to achieve the above object, the present invention provides a partition plate made of a conductive metal plate having a plurality of holes, and a power generation / current collection unit having a vertical wall and a bottom wall formed between the holes. A separator is formed by superimposing a receiving plate made of a conductive metal plate provided with an accommodating portion for accommodating the power generation / collecting portion of the partition plate, and the separator is brought into contact with the MEA. The unit cells are arranged on both sides of the MEA, and a plurality of unit cells are laminated so that the separator receiving plates are in contact with each other, and the edges of the receiving plates that are in contact with each other are caulked and joined together. In this state, all unit cells are integrally fixed.

ここで、上記受け板が上記仕切板側に部分的に突出した凸部を有し、上記単位セルを複数積層すると、互いに接触する受け板の上記凸部同士の間に冷却液流路が形成され、上記受け板の縁部をかしめ接合することで上記冷却液流路が止水されるようにしても良い。   Here, when the receiving plate has a protruding portion that partially protrudes toward the partition plate and a plurality of the unit cells are stacked, a coolant flow path is formed between the protruding portions of the receiving plate that are in contact with each other. In addition, the coolant flow path may be stopped by caulking and joining the edges of the backing plate.

また、上記受け板の縁部のかしめ接合部の高さを、各単位セルにおける一方のセパレータの受け板と他方のセパレータの受け板との間隔以上に設定しても良い。   The height of the caulking joint at the edge of the backing plate may be set to be equal to or greater than the distance between the backing plate of one separator and the backing plate of the other separator in each unit cell.

また、上記受け板の縁部のかしめ接合部の受け板の表面に対する起立角度を90°よりも鋭角側又は鈍角側に設定し、各単位セルを一体的に固定する際に上記かしめ接合部を弾性変形させ、その弾性力により各単位セル同士を密着させるようにしても良い。   The rising angle of the edge of the backing plate with respect to the surface of the backing plate is set at an acute angle or an obtuse angle with respect to the surface of the backing plate, and when the unit cells are integrally fixed, The unit cells may be elastically deformed and brought into close contact with each other by the elastic force.

また、上記受け板に燃料の供給又は排出用の穴を形成すると共に、互いに接触する受け板の上記穴の縁部同士をかしめ接合しても良い。   Further, a hole for supplying or discharging fuel may be formed in the receiving plate, and edges of the holes of the receiving plate that are in contact with each other may be caulked and joined.

また、上記仕切板に燃料の供給又は排出用の穴を形成すると共に、上記互いに接触する受け板の燃料の供給又は排出用の穴の縁部と併せて、いずれか一方又は両方の受け板に重ね合わされた上記仕切板の燃料の供給又は排出用の穴の縁部をかしめ接合しても良い。   In addition, a hole for supplying or discharging fuel is formed in the partition plate, and in addition to the edge of the hole for supplying or discharging fuel in the receiving plates that are in contact with each other, either or both receiving plates are provided. The edges of the overlapping holes for supplying or discharging the fuel may be joined by caulking.

本発明によれば以下に示す効果を得ることができる。   According to the present invention, the following effects can be obtained.

1)セパレータを二枚の金属板(仕切板と受け板)で構成しているため、各金属板の形状をシンプルにできる。その結果、集電部の角部をシャープにでき、高い集電効率を得られる。   1) Since the separator is composed of two metal plates (partition plate and receiving plate), the shape of each metal plate can be simplified. As a result, the corners of the current collector can be sharpened, and high current collection efficiency can be obtained.

2)導電性金属板を重ね合わせたセパレータを用いているので、樹脂セパレータやカーボンセパレータと比較して製造コストが低い。また、樹脂セパレータやカーボンセパレータと比較して薄いうえ、強度も高い。   2) Since the separator which piled up the conductive metal plate is used, the manufacturing cost is low compared with the resin separator and the carbon separator. In addition, it is thinner and stronger than resin separators and carbon separators.

3)隣接する単位セルの受け板同士をかしめ接合により固定しているため、容易かつ安価に製造できる。また、単位セル間の通電性を確保できる。   3) Since the receiving plates of adjacent unit cells are fixed by caulking and joining, they can be manufactured easily and inexpensively. Moreover, the electrical conductivity between unit cells can be ensured.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、本実施形態の前提となる燃料電池の構造を説明する。この燃料電池の基本的な構造は、本出願人が先に出願した特願2004−54719号の明細書(本願の出願時には未公開のものであり従来技術を構成するものではない)に記載されたものと同様である。   First, the structure of the fuel cell which is the premise of the present embodiment will be described. The basic structure of this fuel cell is described in the specification of Japanese Patent Application No. 2004-54719 filed earlier by the present applicant (not disclosed at the time of filing of the present application and does not constitute the prior art). It is the same as that.

本実施形態の燃料電池は固体高分子型燃料電池であり、そのセパレータが、導電性金属板からなる2つの部材(仕切板と受け板)を重ね合わせて構成される点に特徴がある。   The fuel cell of this embodiment is a polymer electrolyte fuel cell, and its separator is characterized in that it is configured by overlapping two members (partition plate and receiving plate) made of a conductive metal plate.

図1及び図2を用いて本実施形態の燃料電池に用いられるセパレータを説明する。図1がセパレータを構成する部材のうち仕切板と称される部材の正面図であり、図2が受け板と称される部材の正面図である。   The separator used for the fuel cell of this embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a front view of a member called a partition plate among members constituting the separator, and FIG. 2 is a front view of a member called a backing plate.

図1に示すように、仕切板100は導電性金属板(例えば厚さ0.2mm以下のステンレス)のプレス成形品からなり、単位セル又は燃料電池を構成するために必要な構成要素が複数(ここでは三個)間隔を隔てて形成されている。ここでは、図中左側からそれぞれ、第一構成要素100a、第二構成要素100b、第三構成要素100cという。これら構成要素100a,100b,100cは全て同一の構造を有している。   As shown in FIG. 1, the partition plate 100 is formed of a press-formed product of a conductive metal plate (for example, stainless steel having a thickness of 0.2 mm or less), and includes a plurality of components necessary for configuring a unit cell or a fuel cell ( Here, three pieces are formed at intervals. Here, they are referred to as a first component 100a, a second component 100b, and a third component 100c, respectively, from the left side in the figure. These components 100a, 100b, and 100c all have the same structure.

図2に示すように、受け板101も導電性金属板(例えば厚さ0.2mm以下のステンレス)のプレス成形品からなり、単位セル又は燃料電池を構成するために必要な構成要素が複数(ここでは三個)間隔を隔てて形成されている。ここでは、図中左側からそれぞれ、第一構成要素101a、第二構成要素101b、第三構成要素101cという。これら構成要素101a,101b,101cは全て同一の構造を有している。   As shown in FIG. 2, the receiving plate 101 is also made of a press-formed product of a conductive metal plate (for example, stainless steel having a thickness of 0.2 mm or less), and a plurality of components necessary for configuring a unit cell or a fuel cell ( Here, three pieces are formed at intervals. Here, they are referred to as the first component 101a, the second component 101b, and the third component 101c, respectively, from the left side in the figure. These constituent elements 101a, 101b, and 101c all have the same structure.

これら仕切板100と受け板101とを重ね合わせて接合することにより、仕切板100の第一構成要素100a、第二構成要素100b及び第三構成要素100cがそれぞれ、受け板101の第一構成要素101a、第二構成要素101b及び第三構成要素101cと協働して、セパレータとして必要な機能を果たす要素が三個並設されることになる。   By overlapping and joining the partition plate 100 and the receiving plate 101, the first component 100a, the second component 100b, and the third component 100c of the partition plate 100 are respectively the first component of the receiving plate 101. In cooperation with 101a, the second component 101b, and the third component 101c, three elements that perform a necessary function as a separator are arranged side by side.

図3〜図5を用いて、仕切板100の構成要素100a,100b,100cの具体的な構造を説明する。なお、以下の説明においては、構成要素100a,100b,100cの代表として第一構成要素100aのみを説明する。   A specific structure of the constituent elements 100a, 100b, and 100c of the partition plate 100 will be described with reference to FIGS. In the following description, only the first component 100a will be described as a representative of the components 100a, 100b, and 100c.

図3は第一構成要素100aの拡大正面図、図4は図3のA部拡大図、図5は図4のV−V線断面図である。なお、図4は図3のA部をほぼ90°回転させた状態で示している。   3 is an enlarged front view of the first component 100a, FIG. 4 is an enlarged view of a portion A in FIG. 3, and FIG. 5 is a sectional view taken along line VV in FIG. FIG. 4 shows a state where the portion A of FIG. 3 is rotated by approximately 90 °.

図示するように、仕切板100の第一構成要素100aのほぼ中央部に、発電・集電部2が形成される。発電・集電部2は、仕切板100の側縁1aとほぼ直交する方向に延出すると共に、仕切板100の上下縁1bとほぼ直交する方向(図3の上下方向)に所定間隔を隔てて複数並列された長穴3を備える。各長穴3の長手方向(図3の左右方向)両端部には、長穴3の幅よりも大きな直径を有する円穴5がそれぞれ形成されており、その円穴5の一側(図4中左側)には長穴3の長手方向に所定距離延出する切り欠き6が連続的に形成される。この切り欠き6は、一つの長穴3の両端部において異なる側部に形成される。つまり、図3において各長穴3の左側端部では下部に、右側端部では上部に切り欠き6が形成される。   As shown in the figure, the power generation / collection unit 2 is formed in the substantially central portion of the first component 100a of the partition plate 100. The power generation / collection unit 2 extends in a direction substantially orthogonal to the side edge 1a of the partition plate 100, and is spaced at a predetermined interval in a direction (vertical direction in FIG. 3) substantially orthogonal to the upper and lower edges 1b of the partition plate 100. A plurality of elongated holes 3 arranged in parallel. A circular hole 5 having a diameter larger than the width of the long hole 3 is formed at both ends in the longitudinal direction (left and right direction in FIG. 3) of each long hole 3, and one side of the circular hole 5 (FIG. 4). A notch 6 that extends a predetermined distance in the longitudinal direction of the long hole 3 is continuously formed in the middle left). The notches 6 are formed on different side portions at both ends of the single long hole 3. That is, in FIG. 3, a notch 6 is formed in the lower part at the left end of each elongated hole 3 and in the upper part at the right end.

図4及び図5から分かるように、各長穴3の両側には仕切板100の表面に対してほぼ90°の角度で屈曲した縦壁7がそれぞれ形成される。上述したように、長穴3の端部の一側(図4中左側)には切り欠き6が形成されているため、長穴3の両側に位置する縦壁7の端部位置k1,k2が一本おきに異なる(図4参照)。   As can be seen from FIGS. 4 and 5, the vertical walls 7 bent at an angle of approximately 90 ° with respect to the surface of the partition plate 100 are formed on both sides of each slot 3. As described above, since the notch 6 is formed on one side (left side in FIG. 4) of the end portion of the long hole 3, the end positions k1 and k2 of the vertical wall 7 located on both sides of the long hole 3. Differ every other line (see FIG. 4).

各長穴3とその長穴3の両側に位置する縦壁7とで区画された空間に溝9(図4及び図5参照)が形成される。また、隣接する二つの長穴3,3間に位置する底壁10と、その底壁10の両側に位置する二つの縦壁7とで断面ほぼコ字状の桟11が形成される。つまり、発電・集電部2は、仕切板100の上下縁1bとほぼ直交する方向(図3の上下方向)に沿って交互に形成された溝9及び桟11を備える。   A groove 9 (see FIGS. 4 and 5) is formed in a space defined by each elongated hole 3 and a vertical wall 7 positioned on both sides of the elongated hole 3. Further, a cross wall 11 having a substantially U-shaped cross section is formed by a bottom wall 10 positioned between two adjacent elongated holes 3 and 3 and two vertical walls 7 positioned on both sides of the bottom wall 10. That is, the power generation / collection unit 2 includes the grooves 9 and the crosspieces 11 that are alternately formed along a direction (vertical direction in FIG. 3) substantially orthogonal to the upper and lower edges 1 b of the partition plate 100.

溝9は、燃料(水素又は空気)をMEA(図示せず)の電極と接触させるための燃料流路として機能するものであり、発電部と言い換えることもできる。一方、桟11は、その内側部分が燃料流路として機能すると共に、底壁10がMEAと接触することで発生した電子を集電する集電部として機能する。   The groove 9 functions as a fuel flow path for bringing fuel (hydrogen or air) into contact with an electrode of an MEA (not shown), and can also be called a power generation unit. On the other hand, the crosspiece 11 functions as a fuel flow path, and functions as a current collector that collects electrons generated when the bottom wall 10 comes into contact with the MEA.

このような溝9及び桟11は、導電性金属薄板をプレス加工することにより成形できる。例えば、金属薄板に円穴5及び切り欠き6をピアス加工により打ち抜いた後、成形すべき長穴3の幅方向中央部に沿ってスリットを形成して、上下に位置する長穴5及び切り欠き6をスリットで連結する。その後、スリットの両側部に位置する部分を折り曲げて縦壁7及び長穴3を形成する。最後にリストライクを行って底壁10と縦壁7との角部Rをシャープ(エッジ)にする。このような工程により、溝9及び桟11を成形することができる。   Such grooves 9 and crosspieces 11 can be formed by pressing a conductive metal thin plate. For example, after punching the circular hole 5 and the notch 6 in a thin metal plate by piercing, a slit is formed along the center in the width direction of the elongated hole 3 to be formed, and the elongated hole 5 and the notch positioned above and below are formed. 6 is connected with a slit. Then, the part located in the both sides of a slit is bent, and the vertical wall 7 and the long hole 3 are formed. Lastly, re-striking is performed to make the corner R of the bottom wall 10 and the vertical wall 7 sharp (edge). By such a process, the groove 9 and the crosspiece 11 can be formed.

本実施形態では、溝9及び桟11の流路断面積がそれぞれ長手方向全域に亘って一定となり、かつ溝9の流路断面積と桟11内の流路断面積とが互いに等しくなるように形成される。こうすることで、溝9及び桟11内を流れる燃料の流速を全ての位置でほぼ一定にできる。ここで、縦壁7の高さ(溝9の深さ)をh、仕切板1の板厚をtとすると、溝9の幅w1は、w1=2(h−t−C)で表すことができる。なお、Cは曲げR部の材料余りを加味した係数である。そして、溝9の流路断面積(=w1×h)と桟11内の流路断面積(=(w2−2t)×(h−t))とを同一にするために必要な桟11の幅W2は、w2={h・w1/(h−t)}+2tとなる。このように、縦壁7の高さh、仕切板1の板厚t等に基づいて溝9及び桟11の幅w1,w2が決定される。   In the present embodiment, the cross-sectional area of the groove 9 and the crosspiece 11 is constant over the entire longitudinal direction, and the cross-sectional area of the groove 9 and the cross-sectional area of the crosspiece 11 are equal to each other. It is formed. By doing so, the flow velocity of the fuel flowing in the groove 9 and the crosspiece 11 can be made almost constant at all positions. Here, assuming that the height of the vertical wall 7 (depth of the groove 9) is h and the thickness of the partition plate 1 is t, the width w1 of the groove 9 is represented by w1 = 2 (ht−C). Can do. C is a coefficient that takes into account the material surplus of the bending R portion. And the cross-sectional area (= w1 × h) of the groove 9 and the cross-sectional area (= (w2-2t) × (ht)) in the crosspiece 11 of the crosspiece 11 necessary to make the same. The width W2 is w2 = {h · w1 / (ht)} + 2t. Thus, the widths w1 and w2 of the groove 9 and the crosspiece 11 are determined based on the height h of the vertical wall 7, the plate thickness t of the partition plate 1, and the like.

さて、図3に示すように、仕切板100の第一構成要素100aにおいて、発電・集電部2よりも外側の部分には、平坦状のフランジ部12が形成される。このフランジ部12は、後述する受け板101と仕切板100とが接合されたときに、発電・集電部2(溝9及び桟11)に供給された燃料が外部に漏れるのを防ぐ役割を果たす。フランジ部12には、第一〜第四燃料供給・排出穴13a,13b,15a,15bがそれぞれ形成される。第一燃料供給・排出穴13aと第二燃料供給・排出穴13b、および第三燃料供給・排出穴15aと第四燃料供給・排出穴15bとはそれぞれ、第一構成要素100aの中央部に対して対象に(発電・集電部2を挟んで斜めに対向するように)配置される。また、第一燃料供給・排出穴13a及び第三燃料供給・排出穴15aは発電・集電部2の上部に配置され、第二燃料供給・排出穴13b及び第四燃料供給・排出穴15bは発電・集電部2の下部に配置される。更に、フランジ部12には冷却液の供給・排出穴16a,16bが形成される。冷却液供給・排出穴16a,16bは発電・集電部2を図において上下方向に跨ぐように配置される。   Now, as shown in FIG. 3, in the first component 100 a of the partition plate 100, a flat flange portion 12 is formed at a portion outside the power generation / collection unit 2. The flange portion 12 serves to prevent the fuel supplied to the power generation / current collection portion 2 (the groove 9 and the crosspiece 11) from leaking to the outside when a receiving plate 101 and a partition plate 100 described later are joined. Fulfill. First to fourth fuel supply / discharge holes 13a, 13b, 15a, 15b are formed in the flange portion 12, respectively. The first fuel supply / discharge hole 13a and the second fuel supply / discharge hole 13b, and the third fuel supply / discharge hole 15a and the fourth fuel supply / discharge hole 15b are respectively located with respect to the central portion of the first component 100a. To the target (so as to face diagonally across the power generation / collection unit 2). Further, the first fuel supply / discharge hole 13a and the third fuel supply / discharge hole 15a are arranged at the upper part of the power generation / collection unit 2, and the second fuel supply / discharge hole 13b and the fourth fuel supply / discharge hole 15b are It is arranged at the lower part of the power generation / collection unit 2. Furthermore, coolant supply / discharge holes 16 a and 16 b are formed in the flange portion 12. The coolant supply / discharge holes 16a and 16b are arranged so as to straddle the power generation / collection unit 2 in the vertical direction in the drawing.

以上が第一構成要素100aの構造であり、本実施形態の仕切板100には、この第一構成要素100aと同様のものが3個並設されている。なお、図1から分かるように、各構成要素100a,100b,100cの隣接部分ではフランジ部12が共用される。こうすることで、各構成要素100a,100b,100c同士の間隔を狭めることができ、仕切板100の長さ(図1の左右方向長さ)を短くできる。   The above is the structure of the first component 100a. In the partition plate 100 of this embodiment, three components similar to the first component 100a are arranged in parallel. As can be seen from FIG. 1, the flange portion 12 is shared by adjacent portions of the constituent elements 100a, 100b, and 100c. By doing so, the interval between the constituent elements 100a, 100b, 100c can be reduced, and the length of the partition plate 100 (the length in the left-right direction in FIG. 1) can be shortened.

次に、図6及び図7を用いて受け板101の構造を説明する。なお、以下の説明においては、構成要素101a,101b,101cの代表として第一構成要素101aのみを説明する。   Next, the structure of the backing plate 101 will be described with reference to FIGS. In the following description, only the first component 101a will be described as a representative of the components 101a, 101b, and 101c.

図6は受け板101の第一構成要素101aの拡大正面図、図7(a)は図6のVIIa−VIIa線断面図、図7(b)は図6のVIIb−VIIb線断面図、図7(c)は図6のVIIc−VIIc線断面図である。なお、図6中、二点鎖線で示すラインは、受け板101の折り曲げ(屈曲)ラインを示している。   6 is an enlarged front view of the first component 101a of the backing plate 101, FIG. 7A is a sectional view taken along line VIIa-VIIa in FIG. 6, and FIG. 7B is a sectional view taken along line VIIb-VIIb in FIG. 7 (c) is a sectional view taken along line VIIc-VIIc in FIG. In FIG. 6, a line indicated by a two-dot chain line indicates a bending (bending) line of the receiving plate 101.

図示するように、受け板101の第一構成要素101aのほぼ中央部に、仕切板100の第一構成要素100aの発電・集電部2を収容するための収容部19が形成される。収容部19はほぼ矩形状であり、その外側には他のセパレータと重ね合わされたときに、互いの間に冷却液流路を形成するための凸部20が形成され、凸部20の外側には平坦状のフランジ部21が形成される。図7から分かるように、フランジ部21と収容部19とはほぼ同一平面上に位置し、凸部20はそれらフランジ部21及び収容部19の表面から突出している。図6に示すように、凸部20は収容部19を囲むように形成される。つまり、凸部20の内側の領域に収容部19が、外側の領域にフランジ部21がそれぞれ形成される。収容部19の高さd、言い換えれば、凸部20の深さd(図7(b)参照)は、仕切板1の縦壁7の高さh(図5参照)から仕切板1の板厚tを減じた寸法(h−t)とほぼ等しく設定される。   As shown in the figure, an accommodating portion 19 for accommodating the power generation / current collecting portion 2 of the first component 100a of the partition plate 100 is formed at substantially the center of the first component 101a of the receiving plate 101. The accommodating part 19 has a substantially rectangular shape, and when it is overlapped with another separator, a convex part 20 for forming a coolant flow path is formed between the accommodating part 19 and outside the convex part 20. A flat flange portion 21 is formed. As can be seen from FIG. 7, the flange portion 21 and the accommodating portion 19 are located on substantially the same plane, and the convex portion 20 protrudes from the surfaces of the flange portion 21 and the accommodating portion 19. As shown in FIG. 6, the convex portion 20 is formed so as to surround the accommodating portion 19. That is, the accommodating part 19 is formed in the area | region inside the convex part 20, and the flange part 21 is each formed in the area | region outside. The height d of the accommodating portion 19, in other words, the depth d (see FIG. 7B) of the convex portion 20 is determined from the height h (see FIG. 5) of the vertical wall 7 of the partition plate 1. It is set to be approximately equal to the dimension (ht) obtained by subtracting the thickness t.

受け板101の第一構成要素101aは更に、第一及び第二連通穴22a,22bと、第一及び第二隔離穴23a,23bとを備える。これら連通穴22a,22b及び隔離穴23a,23bは燃料の供給又は排出を行うための穴であり、仕切板100と受け板101とが重ね合わされたときに、仕切板100の第一構成要素100aの第一〜第四燃料供給・排出穴13a,13b,15a,15bと各々整合する。   The first component 101a of the receiving plate 101 further includes first and second communication holes 22a and 22b and first and second isolation holes 23a and 23b. The communication holes 22a and 22b and the isolation holes 23a and 23b are holes for supplying or discharging fuel. When the partition plate 100 and the receiving plate 101 are overlapped, the first component 100a of the partition plate 100 is used. The first to fourth fuel supply / discharge holes 13a, 13b, 15a, 15b are aligned.

受け板101の第一構成要素101aは、収容部19の一部に連続し、かつ収容部19とほぼ同一平面上に位置する張出部25を有しており、第一及び第二連通穴22a,22bはこの張出部25に形成される。従って、第一及び第二連通穴22a,22bの一方から供給される燃料(水素又は空気)は張出部25を通って収容部19へと流れ、他方の張出部25を通って第一及び第二連通穴22a,22bの他方から排出されることになる。   The first component 101a of the receiving plate 101 has a projecting portion 25 that is continuous with a part of the housing portion 19 and is located on the same plane as the housing portion 19, and has first and second communication holes. 22 a and 22 b are formed in the overhang portion 25. Accordingly, the fuel (hydrogen or air) supplied from one of the first and second communication holes 22a and 22b flows to the accommodating portion 19 through the overhang portion 25 and passes through the other overhang portion 25 to the first. And it will be discharged | emitted from the other of 2nd communicating holes 22a and 22b.

これに対して、第一及び第二隔離穴23a,23bは、収容部19とほぼ同一平面上に位置するものの、その周囲が凸部20により囲まれた隔離部26に形成される。従って、第一及び第二隔離穴23a,23bから供給される燃料(空気又は水素)は収容部19へは流れずに受け板101の厚さ方向に流出する。   On the other hand, the first and second isolation holes 23 a and 23 b are formed in the isolation part 26 surrounded by the convex part 20, although the first and second isolation holes 23 a and 23 b are located on substantially the same plane as the accommodating part 19. Therefore, the fuel (air or hydrogen) supplied from the first and second separation holes 23 a and 23 b flows out in the thickness direction of the receiving plate 101 without flowing into the accommodating portion 19.

凸部20には、冷却液の供給・排出穴27a,27bが形成される。冷却液供給・排出穴27a,27bは、仕切板100と受け板101とが重ね合わされたときに、仕切板100の第一構成要素100aの冷却液供給・排出穴16a,16bと整合する。   Cooling liquid supply / discharge holes 27 a and 27 b are formed in the convex portion 20. The coolant supply / discharge holes 27a, 27b are aligned with the coolant supply / discharge holes 16a, 16b of the first component 100a of the partition plate 100 when the partition plate 100 and the receiving plate 101 are overlapped.

以上が第一構成要素101aの構造であり、本実施形態の受け板101には、この第一構成要素101aと同様のものが3個並設されている。なお、図2から分かるように、各構成要素101a,101b,101cの隣接部分では凸部20が共用され、フランジ部21は全ての構成要素101a,101b,101cの収容部19及び凸部20を囲むように環状に形成される。こうすることで、各構成要素101a,101b,101c同士の間隔を狭めることができ、受け板101の長さ(図2の左右方向長さ)を短くできる。   The above is the structure of the first component 101a. The receiving plate 101 of the present embodiment is provided with three similar components to the first component 101a. As can be seen from FIG. 2, the convex portion 20 is shared by the adjacent portions of the constituent elements 101 a, 101 b, and 101 c, and the flange portion 21 includes the accommodating portions 19 and convex portions 20 of all the constituent elements 101 a, 101 b, and 101 c. It is formed in an annular shape so as to surround it. By doing so, the interval between the constituent elements 101a, 101b, 101c can be narrowed, and the length of the receiving plate 101 (the length in the left-right direction in FIG. 2) can be shortened.

以上説明した仕切板100及び受け板101には、酸化被膜の発生防止や、腐食防止、金属イオンの溶出防止、撥水性の付与などを目的として、金属メッキなどの表面処理を施すことが好ましい。しかしながら、現在、金属材料の開発が急ピッチで進められているため、上述したような特性を予め有する材料が開発されたならば、勿論、表面処理は不要となる。   The partition plate 100 and the receiving plate 101 described above are preferably subjected to a surface treatment such as metal plating for the purpose of preventing generation of an oxide film, preventing corrosion, preventing elution of metal ions, and imparting water repellency. However, at present, the development of metal materials is proceeding at a rapid pace. Therefore, if a material having the above-described characteristics is developed, of course, the surface treatment is unnecessary.

次に、図8及び図9を用いて、これら仕切板100と受け板101とを重ね合わせてなるセパレータを説明する。図8は、仕切板100の第一構成要素100aと受け板101の第一構成要素101aとの重ね合わせ部分を示す正面透視図であり、図9は図8のIX−IX線断面図である。   Next, a separator formed by superposing the partition plate 100 and the receiving plate 101 will be described with reference to FIGS. FIG. 8 is a front perspective view showing an overlapping portion of the first component 100a of the partition plate 100 and the first component 101a of the receiving plate 101, and FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. .

図に示すように、仕切板100の縦壁7の先端部(底壁10と反対側の端部)を受け板101側に向けた状態で、仕切板100と受け板101とを重ね合わせてセパレータ29を構成する。このとき、仕切板100の各構成要素100a,100b,100cの発電・集電部2を受け板101の各構成要素101a,101b,101cの収容部19内に収容する。上述したように、受け板101の収容部19の深さdが、仕切板100の縦壁7の高さhから板厚tを減じた寸法と等しいため、縦壁7の先端部が収容部19と当接すると、仕切板100のフランジ部12と受け板101の凸部20とが当接する(つまり受け板101の凸部20は仕切板100側に突出した状態となる)。この状態でフランジ部12と凸部20とを接合することによって、発電・集電部2(収容部19)の周囲を全域に亘ってシールでき、燃料が外部に漏れることを防止できる。また、図8に示すように、仕切板100の縦壁7における外側端部k1が収容部19の左右の側壁19aと当接する。これによって、収容部19内に各縦壁7で区画された燃料流路30が複数形成される。より具体的には、燃料流路30は、仕切板100の溝9により形成された流路30aと、桟11内に形成された流路30bとからなり、これら流路30a,30bが上下方向に交互に形成される。   As shown in the figure, the partition plate 100 and the receiving plate 101 are overlapped in a state where the front end portion (the end portion opposite to the bottom wall 10) of the vertical wall 7 of the partition plate 100 faces the receiving plate 101 side. The separator 29 is configured. At this time, the power generation / collection unit 2 of each component 100a, 100b, 100c of the partition plate 100 is received in the storage unit 19 of each component 101a, 101b, 101c of the plate 101. As described above, since the depth d of the receiving portion 19 of the receiving plate 101 is equal to the dimension obtained by subtracting the plate thickness t from the height h of the vertical wall 7 of the partition plate 100, the distal end portion of the vertical wall 7 is the receiving portion. When contacted with 19, the flange portion 12 of the partition plate 100 and the convex portion 20 of the receiving plate 101 come into contact (that is, the convex portion 20 of the receiving plate 101 protrudes toward the partition plate 100). By joining the flange part 12 and the convex part 20 in this state, the circumference | surroundings of the electric power generation and current collection part 2 (accommodating part 19) can be sealed over the whole region, and it can prevent that a fuel leaks outside. Further, as shown in FIG. 8, the outer end k <b> 1 of the vertical wall 7 of the partition plate 100 contacts the left and right side walls 19 a of the housing portion 19. As a result, a plurality of fuel flow paths 30 defined by the vertical walls 7 are formed in the accommodating portion 19. More specifically, the fuel flow path 30 includes a flow path 30a formed by the groove 9 of the partition plate 100 and a flow path 30b formed in the crosspiece 11, and these flow paths 30a and 30b are in the vertical direction. Are alternately formed.

図8及び図4から分かるように、縦壁7の内側端部k2は収容部19の側壁19aと当接しないため、収容部19の側壁19aと内側端部k2との間に隙間が形成される。この隙間により隣接する燃料流路30同士が連通される。この隙間は各燃料流路30の左右端部に交互に形成される。   As can be seen from FIG. 8 and FIG. 4, the inner end k2 of the vertical wall 7 does not come into contact with the side wall 19a of the accommodating part 19, so that a gap is formed between the side wall 19a of the accommodating part 19 and the inner end k2. The Adjacent fuel flow paths 30 communicate with each other through this gap. This gap is formed alternately at the left and right ends of each fuel flow path 30.

図8及び図9に示すように、仕切板100と受け板101とを重ね合わせると、仕切板100の第一燃料供給・排出穴13aと受け板101の第一連通穴22a、仕切板100の第二燃料供給・排出穴13bと受け板101の第二連通穴22b、仕切板100の第三燃料供給・排出穴15aと受け板101の第一隔離穴23a、仕切板100の第四燃料供給・排出穴15bと受け板101の第二隔離穴23bとがそれぞれ整合する。また、仕切板100のフランジ部12と受け板101の張出部25とで区画された空間には、第一燃料供給・排出穴13a及び第一連通穴22aと収容部19(発電・集電部2)とを連通する連通通路31と、収容部19と第二燃料供給・排出穴13b及び第二連通穴22bとを連通する連通通路32とが形成される。   As shown in FIGS. 8 and 9, when the partition plate 100 and the receiving plate 101 are overlapped, the first fuel supply / discharge hole 13 a of the partition plate 100, the first series of through holes 22 a of the receiving plate 101, and the partition plate 100. The second fuel supply / discharge hole 13b and the second communication hole 22b of the receiving plate 101, the third fuel supply / discharge hole 15a of the partition plate 100, the first isolation hole 23a of the receiving plate 101, and the fourth fuel of the partition plate 100. The supply / discharge hole 15b and the second separation hole 23b of the receiving plate 101 are aligned. Further, in the space defined by the flange portion 12 of the partition plate 100 and the overhang portion 25 of the receiving plate 101, the first fuel supply / discharge hole 13a and the first series of through holes 22a and the accommodating portion 19 (power generation / collection) are provided. A communication passage 31 that communicates with the electric part 2) and a communication passage 32 that communicates the housing part 19 with the second fuel supply / discharge hole 13b and the second communication hole 22b are formed.

このように仕切板100と受け板101とを重ね合わせることにより、発電・集電部2を複数個(ここでは3個)備えたセパレータが構成される。本実施形態では、仕切板100と受け板101とは導電性を有する接着剤により接合される。しかしながら、本発明はこの点において限定されず、溶接等、他の手段を用いても良い。   In this way, by separating the partition plate 100 and the receiving plate 101, a separator having a plurality (three in this case) of power generation / collection units 2 is formed. In this embodiment, the partition plate 100 and the receiving plate 101 are joined by an adhesive having conductivity. However, the present invention is not limited in this respect, and other means such as welding may be used.

ここで本出願人は、仕切板100の板厚を受け板101の板厚よりも厚くするなどして、仕切板100の剛性を受け板101よりも大きくすることが好ましいことを見いだした。これは、受け板101が仕切板100と比較して形状が複雑であり、成形ひずみが発生しやすいことに関係している。つまり、仕切板100の剛性を受け板101よりも大きくすることにより、仕切板100と受け板101とを重ね合わせて接合するときに、仕切板100の形状に受け板101がなじみやすくなるため、成形ひずみを吸収して適切に重ね合わせることが可能となる。なお、受け板101の成形ひずみを若干残すことによって、そのスプリング効果により燃料流路30等のシール性が向上するというメリットもある。   Here, the present applicant has found that the rigidity of the partition plate 100 is preferably larger than that of the plate 101 by making the plate thickness of the partition plate 100 larger than the plate thickness of the plate 101. This is related to the fact that the receiving plate 101 has a more complicated shape than the partition plate 100, and molding distortion is likely to occur. In other words, by making the rigidity of the partition plate 100 larger than that of the receiving plate 101, when the partition plate 100 and the receiving plate 101 are overlapped and joined, the receiving plate 101 is easily adapted to the shape of the partition plate 100. It becomes possible to absorb the molding strain and properly overlap. In addition, there is also an advantage that the sealing performance of the fuel flow path 30 and the like is improved by the spring effect by leaving a little molding distortion of the receiving plate 101.

次に、図10及び図11を用いて、上述したセパレータ29を用いて構成される並列型単位セルの構造を説明する。図10は並列型単位セルのうち一つの単位セル(仕切板100及び受け板101の第一構成要素100a,101aにより構成される単位セル)の展開図であり、図11は図10のXI−XI線に沿った断面図である。なお、図11は展開図ではなく、図10における仕切板100−1,100−2、受け板101−1,101−2及びMEA33を全て接合した状態を示している。以下の説明においても、仕切板100及び受け板101の第一構成要素100a,101aにより構成される部分のみを説明する。   Next, the structure of the parallel unit cell configured using the separator 29 described above will be described with reference to FIGS. 10 and 11. FIG. 10 is a development view of one unit cell (unit cell constituted by the first components 100a and 101a of the partition plate 100 and the receiving plate 101) among the parallel type unit cells, and FIG. It is sectional drawing along the XI line. FIG. 11 is not a development view, but shows a state where all of the partition plates 100-1 and 100-2, the receiving plates 101-1 and 101-2, and the MEA 33 in FIG. 10 are joined. Also in the following description, only the part comprised by the 1st components 100a and 101a of the partition plate 100 and the receiving plate 101 is demonstrated.

さて、図10及び図11に示すように、MEA33の両側面にセパレータ29−1,29−2を配置することで単位セル37が形成される。このとき、各セパレータ29−1,29−2はそれぞれ、仕切板100−1,100−2の底壁10がMEA33の側面の電極と接触するように配置される。   Now, as shown in FIGS. 10 and 11, unit cells 37 are formed by disposing separators 29-1 and 29-2 on both sides of the MEA 33. At this time, the separators 29-1 and 29-2 are arranged such that the bottom walls 10 of the partition plates 100-1 and 100-2 are in contact with the electrodes on the side surfaces of the MEA 33.

具体的に説明すると、図10及び図11においてMEA33の上側に位置するセパレータ29−1は、その受け板101−1が上方に、仕切板100−1が下方に位置するように、即ち、仕切板100−1の縦壁7が上方に向かって延出するように配置される。   More specifically, in FIG. 10 and FIG. 11, the separator 29-1 positioned above the MEA 33 is arranged so that the receiving plate 101-1 is positioned upward and the partition plate 100-1 is positioned downward. It arrange | positions so that the vertical wall 7 of the board 100-1 may extend toward upper direction.

一方、MEA33の下側に位置するセパレータ29−2は、上側のセパレータ29−1を図10において左右方向に反転させた状態で配置される。即ち、下側のセパレータ29−2は、その受け板101−2が下方に、仕切板100−2が上方に位置するように、即ち、仕切板100−2の縦壁7が下方に向かって延出するように配置される。   On the other hand, the separator 29-2 located on the lower side of the MEA 33 is disposed in a state where the upper separator 29-1 is reversed in the left-right direction in FIG. That is, the lower separator 29-2 is arranged such that the receiving plate 101-2 is positioned downward and the partition plate 100-2 is positioned upward, that is, the vertical wall 7 of the partition plate 100-2 is directed downward. It is arranged to extend.

このように二つのセパレータ29−1,29−2を、MEA33を挟んで仕切板100−1,100−2同士が向かい合うように配置することで、両セパレータ29−1,29−2の仕切板100−1,100−2の底壁10がMEA33の側面とそれぞれ接触する。この結果、図11に示すように、各仕切板100−1,100−2の溝9(燃料流路30a)の開口部がMEA33の側面により蓋される。   Thus, by arranging the two separators 29-1 and 29-2 so that the partition plates 100-1 and 100-2 face each other across the MEA 33, the partition plates of both separators 29-1 and 29-2. The bottom walls 10 of 100-1 and 100-2 are in contact with the side surfaces of the MEA 33, respectively. As a result, as shown in FIG. 11, the openings of the grooves 9 (fuel flow paths 30 a) of the partition plates 100-1 and 100-2 are covered with the side surfaces of the MEA 33.

二つのセパレータ29−1,29−2をMEA33の両側に配置すると、図10に示すように、一方(図中上側)のセパレータ29−1の第一連通穴22a及び第一燃料供給・排出穴13a(連通通路31により発電・集電部2と連通された穴)と、他方(図中下側)のセパレータ29−2の第四燃料供給・排出穴15b及び第二隔離穴23b(凸部20により発電・集電部2と隔離された穴)とが整合する。同様に、一方のセパレータ29−1の第二連通穴22b及び第二燃料供給・排出穴13bと他方のセパレータ29−2の第三燃料供給・排出穴15a及び第一隔離穴23aとが整合し、一方のセパレータ29−1の第一隔離穴23a及び第三燃料供給・排出穴15aと他方のセパレータ29−2の第二燃料供給・排出穴13b及び第二連通穴22bとが整合し、一方のセパレータ29−1の第二隔離穴23b及び第四燃料供給・排出穴15bと他方のセパレータ29−2の第一燃料供給・排出穴13a及び第一連通穴22aとが整合する。   When the two separators 29-1 and 29-2 are arranged on both sides of the MEA 33, as shown in FIG. 10, the first series of through holes 22a and the first fuel supply / discharge of one separator 29-1 (upper side in the figure). The hole 13a (the hole communicated with the power generation / collection unit 2 by the communication passage 31), the fourth fuel supply / discharge hole 15b and the second separation hole 23b (convex) of the other (lower side in the figure) separator 29-2. The holes separated from the power generation / collection unit 2 by the unit 20 are aligned. Similarly, the second communication hole 22b and the second fuel supply / discharge hole 13b of one separator 29-1 are aligned with the third fuel supply / discharge hole 15a and the first isolation hole 23a of the other separator 29-2. The first separation hole 23a and the third fuel supply / discharge hole 15a of one separator 29-1 are aligned with the second fuel supply / discharge hole 13b and the second communication hole 22b of the other separator 29-2. The second separation hole 23b and the fourth fuel supply / discharge hole 15b of the separator 29-1 are aligned with the first fuel supply / discharge hole 13a and the first series of through holes 22a of the other separator 29-2.

この並列型単位セル37においては、両燃料(水素及び空気)は一方のセパレータ29−1の受け板101−1の第一連通穴22a及び第一隔離穴23aから供給される。   In this parallel unit cell 37, both fuels (hydrogen and air) are supplied from the first through hole 22a and the first isolation hole 23a of the receiving plate 101-1 of one separator 29-1.

第一連通穴22aから供給された一方の燃料(ここでは水素とする)は連通通路31を通ってそのセパレータ29−1の発電・集電部2側へと流れ、各燃料流路30を流れる。水素は燃料流路30をその長手方向に流れ、その端部にて上述した隙間から隣接する燃料流路30へと流れ込み、その燃料流路30を逆向きに流れる(図4参照)。つまり、水素は溝9により形成された燃料流路30aと桟11により形成された燃料流路30bとを交互に折り返して流れる。このとき、溝9により形成された燃料流路30aを流れる水素の方向は全ての流路30aで同一となり、桟11により形成された燃料流路30bを流れる水素の方向も全ての流路30bで同一となる。   One fuel (in this case, hydrogen) supplied from the first series of through holes 22a flows through the communication passage 31 to the power generation / collection unit 2 side of the separator 29-1, and passes through each fuel passage 30. Flowing. Hydrogen flows in the longitudinal direction of the fuel flow path 30 and flows into the adjacent fuel flow path 30 from the gap described above at the end thereof, and flows in the reverse direction in the fuel flow path 30 (see FIG. 4). That is, hydrogen flows by alternately turning back the fuel flow path 30 a formed by the groove 9 and the fuel flow path 30 b formed by the crosspiece 11. At this time, the direction of hydrogen flowing in the fuel flow path 30a formed by the groove 9 is the same in all the flow paths 30a, and the direction of hydrogen flowing in the fuel flow path 30b formed by the crosspiece 11 is also in all the flow paths 30b. It will be the same.

溝9により形成された燃料流路30a内を流れる水素はMEA33の一側(負極)と接触して発電に寄与し、桟11内を流れる水素はMEA33とは接触しない。この領域は、発生した電気を桟11(底壁10)により集電するための領域だからである。燃料流路30を流れた燃料は、連通通路32を通って仕切板100−1の第二燃料供給・排出穴13bへと流れ込み、MEA33に形成された穴35、他方のセパレータ29−2の仕切板100−2の第三燃料供給・排出穴15a、受け板101−2の第一隔離穴23aを通って厚さ方向に排出される。   Hydrogen flowing in the fuel flow path 30 a formed by the groove 9 contacts one side (negative electrode) of the MEA 33 and contributes to power generation, and hydrogen flowing in the crosspiece 11 does not contact the MEA 33. This is because this region is a region for collecting generated electricity by the crosspiece 11 (bottom wall 10). The fuel that has flowed through the fuel flow path 30 flows into the second fuel supply / discharge hole 13b of the partition plate 100-1 through the communication path 32, the hole 35 formed in the MEA 33, and the partition of the other separator 29-2. It is discharged in the thickness direction through the third fuel supply / discharge hole 15a of the plate 100-2 and the first isolation hole 23a of the receiving plate 101-2.

また、セパレータ29−1の受け板101−1の第一連通穴22aから供給された水素の一部は、仕切板100−1の第一燃料供給・排出穴13a及びMEA33に形成された穴35を通って、他方のセパレータ29−2へと流れ、第四燃料供給・排出穴15b及び第二隔離穴23bから厚さ方向に流出する。   In addition, a part of the hydrogen supplied from the first through hole 22a of the receiving plate 101-1 of the separator 29-1 is a hole formed in the first fuel supply / discharge hole 13a and the MEA 33 of the partition plate 100-1. 35, flows to the other separator 29-2, and flows out from the fourth fuel supply / discharge hole 15b and the second separation hole 23b in the thickness direction.

一方、上側のセパレータ29−1の受け板101−1の第二隔離穴23aから供給された燃料(ここでは空気)はそのセパレータ29−1の発電・集電部2側へは流れずに、仕切板100−1の第三燃料供給・排出穴15a及びMEA33に形成された穴35を通って下側のセパレータ29−2の仕切板100−2の第二燃料供給・排出穴13bへと流れる。第二燃料供給・排出穴13bへと流れた空気の一部は連通通路32を通って発電・集電部2(燃料流路30)へと流れ、燃料流路30a内でMEA33の他側(正極)と接触して発電に寄与する。その後、連通通路31を通って受け板101−2の第一連通穴22aから厚さ方向に排出される。また、仕切板100−2の第二燃料供給・排出穴13bへと流れた空気の一部は受け板101−2の第二連通穴22bを通って厚さ方向に流出する。   On the other hand, the fuel (in this case, air) supplied from the second separation hole 23a of the receiving plate 101-1 of the upper separator 29-1 does not flow to the power generation / collection unit 2 side of the separator 29-1, It flows through the third fuel supply / discharge hole 15a of the partition plate 100-1 and the hole 35 formed in the MEA 33 to the second fuel supply / discharge hole 13b of the partition plate 100-2 of the lower separator 29-2. . Part of the air that has flowed into the second fuel supply / discharge hole 13b flows through the communication passage 32 to the power generation / collection unit 2 (fuel flow path 30), and the other side of the MEA 33 ( Contact the positive electrode) to contribute to power generation. After that, it is discharged in the thickness direction from the first through hole 22a of the receiving plate 101-2 through the communication passage 31. Further, part of the air that has flowed into the second fuel supply / discharge hole 13b of the partition plate 100-2 flows out in the thickness direction through the second communication hole 22b of the receiving plate 101-2.

以上が単位セルの単体構造であり、本実施形態の仕切板100と受け板101とからなるセパレータ29をMEA33の両側に配置することで、同様の構造を有する単位セルが3個並設される。   The above is the unit structure of the unit cell, and by arranging the separator 29 composed of the partition plate 100 and the receiving plate 101 of this embodiment on both sides of the MEA 33, three unit cells having the same structure are arranged side by side. .

さて、図12及び図13を用いて、上記並列型単位セルを複数積層して構成される本実施形態の燃料電池を説明する。以下の説明においても、仕切板100及び受け板101の第一構成要素100a,101aにより構成される部分のみを説明する。   Now, the fuel cell of the present embodiment configured by stacking a plurality of the parallel unit cells will be described with reference to FIGS. 12 and 13. Also in the following description, only the part comprised by the 1st components 100a and 101a of the partition plate 100 and the receiving plate 101 is demonstrated.

図12は燃料電池の部分側面断面図であり、図13は図12のB部拡大図である。   12 is a partial side cross-sectional view of the fuel cell, and FIG. 13 is an enlarged view of a portion B in FIG.

この燃料電池36は、図10及び図11に示したものと同様の単位セル37を、各単位セル37のセパレータ29の受け板101同士が接触するようにして複数積層すると共に、その積層体の上下端面に冷却液流路形成用のセパレータ29’と押さえ板39とを配置し、それら単位セル37、セパレータ29’及び押さえ板39をボルトにより一体的に固定したものである。   In this fuel cell 36, a plurality of unit cells 37 similar to those shown in FIGS. 10 and 11 are stacked such that the receiving plates 101 of the separators 29 of each unit cell 37 are in contact with each other. A separator 29 'for forming a coolant flow path and a pressing plate 39 are arranged on the upper and lower end surfaces, and the unit cell 37, the separator 29' and the pressing plate 39 are integrally fixed by bolts.

この燃料電池36において、押さえ板39及び冷却液流路形成用のセパレータ29’に形成された穴を介して、最上部に位置した単位セル37の上側セパレータ29の第一連通穴22aから供給された燃料(ここでは水素とする)はそのセパレータ29の連通通路31を通って発電・集電部2へと流れて発電に寄与し、仕切板100の第二燃料供給・排出穴13bから厚さ方向に排出される。また、第一連通穴22aから供給された水素の一部は、MEA33の穴35及び下側のセパレータ29の第三燃料供給・排出穴15b及び第二隔離穴23bを通って、隣接する(下側の)単位セル37の上側セパレータ29の第一連通穴22aへと流れる。そしてそのセパレータ29の連通通路31を通って発電・集電部2へと流れる。つまり、水素は全ての単位セル37の上側のセパレータ29(MEA33の負極側に配置されたセパレータ29)の発電・集電部2にのみ供給される。   In this fuel cell 36, the supply is made from the first series of through holes 22a of the upper separator 29 of the unit cell 37 located at the uppermost part through the holes formed in the holding plate 39 and the separator 29 'for forming the coolant flow path. The fuel (herein referred to as hydrogen) flows through the communication passage 31 of the separator 29 to the power generation / collection unit 2 and contributes to power generation, and is thickened from the second fuel supply / discharge hole 13b of the partition plate 100. It is discharged in the direction. Further, a part of the hydrogen supplied from the first series of through holes 22a is adjacent through the hole 35 of the MEA 33, the third fuel supply / discharge hole 15b of the lower separator 29, and the second isolation hole 23b ( It flows to the first series of through holes 22a of the upper separator 29 of the lower unit cell 37. Then, it flows to the power generation / collection unit 2 through the communication passage 31 of the separator 29. That is, hydrogen is supplied only to the power generation / collection unit 2 of the upper separators 29 of all the unit cells 37 (the separators 29 disposed on the negative electrode side of the MEA 33).

一方、最上部に位置した単位セル37の上側セパレータ29の第一隔離穴23aから供給された空気は、全ての単位セル33の下側のセパレータ29(MEA33の正極側に配置されたセパレータ29)の発電・集電部2にのみ供給される。   On the other hand, the air supplied from the first isolation holes 23a of the upper separators 29 of the unit cells 37 located at the top is the lower separators 29 of all the unit cells 33 (the separators 29 arranged on the positive electrode side of the MEA 33). Is supplied only to the power generation / collection unit 2.

この結果、全ての単位セル37のMEA33の負極に水素が、正極に空気が供給され、発電が遂行される。各単位セル37で発生した電気は、セパレータ29の集電部(桟11)により集電され、外部に取り出される。また、隣接する単位セル37間の電気的繋がり(結線)は、隣接する単位セル37においてセパレータ29の受け板101同士がその裏面(仕切板100と対向する側と反対の面)で接触することにより確保される。より詳しくは、図13に示すように、一方の受け板101の隔離部26と他方の受け板101の張出部25とが接触することにより確保される。   As a result, hydrogen is supplied to the negative electrodes of the MEAs 33 of all the unit cells 37 and air is supplied to the positive electrodes, and power generation is performed. The electricity generated in each unit cell 37 is collected by the current collector (crosspiece 11) of the separator 29 and taken out to the outside. Further, the electrical connection (connection) between the adjacent unit cells 37 is such that the receiving plates 101 of the separators 29 in the adjacent unit cells 37 are in contact with each other on the back surface (the surface opposite to the side facing the partition plate 100). Secured by More specifically, as shown in FIG. 13, the separation portion 26 of one receiving plate 101 and the projecting portion 25 of the other receiving plate 101 come into contact with each other.

係る燃料電池36では、上下に重ね合わせて接合された二つのセパレータ29(29’)間に冷却液流路40が形成される。この冷却液流路40は、セパレータ29(29’)の受け板101の凸部20同士の間、及び凸部20と張出部25との間に形成される。各セパレータ29の冷却液供給・排出穴27a,16a及び冷却液供給・排出穴27b,16b(図10参照)の一方から供給された冷却液は、冷却液流路40(凸部20)に沿って各セパレータ29の発電・集電部2の周囲を流れて、冷却液供給・排出穴27b,16b及び冷却液供給・排出穴27a,16aの他方から排出される。   In the fuel cell 36, the coolant flow path 40 is formed between the two separators 29 (29 ′) that are joined one above the other. The coolant channel 40 is formed between the convex portions 20 of the receiving plate 101 of the separator 29 (29 ′) and between the convex portion 20 and the overhang portion 25. The coolant supplied from one of the coolant supply / discharge holes 27a, 16a and the coolant supply / discharge holes 27b, 16b (see FIG. 10) of each separator 29 extends along the coolant channel 40 (convex portion 20). The separator 29 flows around the power generation / collection unit 2 and is discharged from the other of the coolant supply / discharge holes 27b, 16b and the coolant supply / discharge holes 27a, 16a.

図13に示すように、各セパレータ29における仕切板100の端縁(フランジ部12)と受け板101の端縁(フランジ部21)との間に、スペーサ41が介設される。このスペーサ41を設けることで、各単位セル37を一体的に締め付けるときに、セパレータ29(仕切板100及び受け板101)及びMEA33を均一な面圧で締め付けることができ、応力集中を防止できる。   As shown in FIG. 13, a spacer 41 is interposed between the end edge (flange portion 12) of the partition plate 100 and the end edge (flange portion 21) of the receiving plate 101 in each separator 29. By providing the spacer 41, when the unit cells 37 are tightened together, the separator 29 (partition plate 100 and receiving plate 101) and the MEA 33 can be tightened with a uniform surface pressure, and stress concentration can be prevented.

以上が燃料電池の単体構造であり、本実施形態の仕切板100と受け板101とからなるセパレータ29を用いた単位セルを積層することで、同様の構造を有する燃料電池が3個並設される。各燃料電池から独立して電力を取り出すことも、全ての燃料電池の電力をまとめて取り出すことも可能である。   The above is the single structure of the fuel cell, and by stacking unit cells using the separator 29 composed of the partition plate 100 and the receiving plate 101 of this embodiment, three fuel cells having the same structure are arranged side by side. The It is possible to take out the power independently from each fuel cell or to take out the power of all the fuel cells collectively.

この燃料電池を例えば車両等に搭載する際には、各セパレータ29の燃料流路30が水平方向(横方向)に延出し、かつ燃料を供給する穴が上部に位置するように配置される。従って、供給された燃料は各単位セル37のセパレータ29の燃料流路30を横方向に、かつ上段から下段へと流れることになる。   For example, when the fuel cell is mounted on a vehicle or the like, the fuel flow path 30 of each separator 29 extends in the horizontal direction (lateral direction), and the hole for supplying fuel is positioned at the top. Therefore, the supplied fuel flows in the fuel flow path 30 of the separator 29 of each unit cell 37 in the lateral direction and from the upper stage to the lower stage.

本実施形態の燃料電池によれば、次の効果を得ることができる。   According to the fuel cell of the present embodiment, the following effects can be obtained.

1)セパレータ29を仕切板100と受け板101とに分割して構成しているので、仕切板100及び受け板101の形状を従来の金属薄板セパレータよりもシンプルにできる。この結果、集電部の角部、つまり縦壁7と底壁10との角部Rをシャープにでき、高い集電効率を得られる。   1) Since the separator 29 is divided into the partition plate 100 and the receiving plate 101, the shape of the partition plate 100 and the receiving plate 101 can be made simpler than the conventional metal thin plate separator. As a result, the corner of the current collector, that is, the corner R between the vertical wall 7 and the bottom wall 10 can be sharpened, and high current collection efficiency can be obtained.

2)仕切板100及び受け板101の形状がシンプルなので製造が容易であり、製造コストも低い。   2) Since the shape of the partition plate 100 and the receiving plate 101 is simple, the manufacturing is easy and the manufacturing cost is low.

3)金属薄板のプレス成形品であるため、樹脂製及びカーボン製のセパレータと比較して薄くできる。例えば、現在開発されている樹脂セパレータでは最も厚さが薄いものでも2mm程度であるが、本実施形態のセパレータでは1mm以下にすることも容易である。   3) Since it is a press-molded product of a thin metal plate, it can be made thinner than resin and carbon separators. For example, even the thinnest resin separator currently developed is about 2 mm, but in the separator of this embodiment, it can be easily made 1 mm or less.

4)冷却液が発電・集電部2の周部を環状に流れるため、発電により生じる熱を効果的に吸収でき、温度上昇抑制効果が高い。   4) Since the coolant flows annularly around the power generation / collection unit 2, heat generated by power generation can be effectively absorbed, and the temperature rise suppression effect is high.

5)受け板101間に冷却液流路40が形成されるため、冷却液流路40を形成するための部材を別途設ける必要がなく、部品点数の削減、製造コスト低減、セパレータの薄板化が図れる。   5) Since the coolant flow path 40 is formed between the receiving plates 101, there is no need to separately provide a member for forming the coolant flow path 40, reducing the number of parts, reducing the manufacturing cost, and reducing the thickness of the separator. I can plan.

更に、本実施形態では仕切板100及び受け板101に構成要素を複数並設して、複数の燃料電池を並設できるようにしたため、以下の効果を得ることができる。   Furthermore, in the present embodiment, a plurality of components are arranged side by side on the partition plate 100 and the receiving plate 101 so that a plurality of fuel cells can be arranged side by side. Therefore, the following effects can be obtained.

1)燃料電池を複数並設することにより、同一の電力を得るために必要な積層高さ(厚さ)を小さくできる。従って、車両のボディ床下など、高さ方向のスペースが小さい箇所にも搭載することが可能となり、搭載位置の自由度が増す。   1) By arranging a plurality of fuel cells in parallel, the stack height (thickness) necessary for obtaining the same power can be reduced. Therefore, it can be mounted even in places where the space in the height direction is small, such as under the vehicle body floor, and the degree of freedom of the mounting position is increased.

2)同一の電力を得る場合、単体の燃料電池と比較して仕切板100及び受け板101の各部位(発電・集電部2、収容部19など)のサイズを小さくできる。従って、金型の各部品を小さくでき、金型製造コストを抑えることができる。   2) When the same electric power is obtained, the size of each part of the partition plate 100 and the receiving plate 101 (the power generation / current collection unit 2, the storage unit 19, etc.) can be reduced as compared with a single fuel cell. Therefore, each part of the mold can be reduced, and the mold manufacturing cost can be suppressed.

3)燃料電池の積層高さを小さくすることにより、個々の燃料電池における冷却水流路が短くなり、冷却水の排出性が向上する。   3) By reducing the stack height of the fuel cell, the cooling water flow path in each fuel cell is shortened, and the cooling water discharge performance is improved.

4)複数の燃料電池を並設することにより、ある一つの燃料電池が使用不能となった場合でも、残りの燃料電池により電力供給を確保できる。   4) By arranging a plurality of fuel cells in parallel, even when a certain fuel cell becomes unusable, power supply can be secured by the remaining fuel cells.

5)隣接する燃料電池間にも冷却水を対流させることができるため、発電時に生じる熱の冷却効率が高い。   5) Since cooling water can be convected between adjacent fuel cells, the cooling efficiency of heat generated during power generation is high.

6)燃料流路が水平方向(横方向)に延出し、かつ燃料が各燃料流路を上段から下段へと流れるため、空気極側で生成された反応水の排出性が良い。つまり、燃料流路が上下方向に延出していると、水が重力に逆らって下方から上方へと移動しなければならない燃料流路が存在することになるため、排出性が悪くなってしまう。また、燃料を下段から上段へと流すようにした場合も同様の問題が生じる。このことを考慮すると、少なくとも空気(又は酸素)が燃料流路を上段から下段へと流れるように設計することが好ましい。   6) Since the fuel flow path extends in the horizontal direction (lateral direction) and the fuel flows through each fuel flow path from the upper stage to the lower stage, the discharge performance of the reaction water generated on the air electrode side is good. That is, when the fuel flow path extends in the vertical direction, there is a fuel flow path in which water has to move from the lower side to the upper side against gravity, so that the discharge performance is deteriorated. The same problem occurs when fuel is allowed to flow from the lower stage to the upper stage. Considering this, it is preferable to design at least air (or oxygen) to flow from the upper stage to the lower stage in the fuel flow path.

ところで、本実施形態の燃料電池36では単位セル37及び冷却液流路形成用のセパレータ29’を積層した際に、互いに接触する受け板101同士を接合する必要がある。その理由は、受け板101間の通電を確保するためと、受け板101間に形成される冷却液流路40を止水するためである。   By the way, in the fuel cell 36 of this embodiment, when the unit cell 37 and the separator 29 'for forming the coolant flow path are stacked, it is necessary to join the receiving plates 101 that are in contact with each other. The reason for this is to ensure energization between the receiving plates 101 and to stop the coolant channel 40 formed between the receiving plates 101.

受け板101同士を接合する手段としては、接着剤による接合や、溶接による接合が考えられる。しかしながら、接着剤による接合は、導電性を有する特殊な接着剤が必要となるためコストが高くなるうえ、接着剤を均一に塗布することが難しく生産性が悪いという問題がある。また、溶接接合の場合、接合品質を一定に管理することが困難であるうえ、受け板101に溶接歪みが発生し性能に悪影響を及ぼすおそれがある。   As means for joining the receiving plates 101 together, joining by an adhesive or joining by welding can be considered. However, joining with an adhesive requires a special adhesive having electrical conductivity, which increases the cost, and it is difficult to uniformly apply the adhesive, resulting in poor productivity. In addition, in the case of welding joining, it is difficult to maintain the joining quality constant, and welding distortion may occur in the receiving plate 101, which may adversely affect performance.

そこで本出願人は、これらの問題点を解決すべく図14〜図16に示すような燃料電池を発明した。   Therefore, the present applicant has invented a fuel cell as shown in FIGS. 14 to 16 in order to solve these problems.

図14から分かるように、この燃料電池は、互いに接触する受け板101の縁部同士と、燃料の供給又は排出用の穴(第一及び第二連通穴22a,22b、第一及び第二隔離穴23a,23b)の縁部同士をかしめ接合したものである。具体的には、図15に示すように、図中上側に位置する受け板101の縁部(フランジ部21の端部)を受け板101の表面に対して所定角度θで起立するように折り曲げて起立部50を形成すると共に、その起立部50を包み込むように図中下側に位置する受け板101の縁部(フランジ部21の端部)を折り曲げてかしめ接合部51を形成している。   As can be seen from FIG. 14, the fuel cell includes the edges of the receiving plates 101 that are in contact with each other and the holes for supplying or discharging the fuel (first and second communication holes 22 a and 22 b, first and second isolations). The edges of the holes 23a, 23b) are caulked and joined. Specifically, as shown in FIG. 15, the edge of the receiving plate 101 (the end of the flange portion 21) located on the upper side in the drawing is bent so as to stand up at a predetermined angle θ with respect to the surface of the receiving plate 101. The rising portion 50 is formed, and the edge portion (the end portion of the flange portion 21) of the receiving plate 101 located on the lower side in the drawing is bent so as to wrap the rising portion 50 to form the caulking joint portion 51. .

また、図16に示すように、上側の受け板101における燃料の供給又は排出用の穴22a,22b,23a,23bの縁部(張出部25又は隔離部26)を受け板101の表面に対して所定角度(図例ではほぼ90°)で起立するように折り曲げて起立部52を形成すると共に、その起立部52を包み込むように下側の受け板101における燃料の供給又は排出用の穴22a,22b,23a,23bの縁部(張出部25又は隔離部26)を折り曲げてかしめ接合部53を形成している。   Further, as shown in FIG. 16, the edge (the overhanging portion 25 or the separating portion 26) of the holes 22 a, 22 b, 23 a, 23 b for supplying or discharging the fuel in the upper receiving plate 101 is formed on the surface of the receiving plate 101. On the other hand, the upright portion 52 is formed by bending so as to stand up at a predetermined angle (approximately 90 ° in the figure), and a hole for supplying or discharging fuel in the lower receiving plate 101 so as to wrap up the upright portion 52 The edge portions (the overhang portions 25 or the isolation portions 26) of 22a, 22b, 23a, and 23b are bent to form the caulking joint portion 53.

つまり、上側に位置する受け板101を下側に位置する受け板101で包み込むように折り曲げてかしめ接合したものであり、このようなかしめ接合は、プレス成形やロール成形により達成できる。   That is, the upper receiving plate 101 is folded and crimped so as to be wrapped by the lower receiving plate 101, and such caulking can be achieved by press molding or roll molding.

このように、受け板101の縁部同士及び燃料の供給又は排出用の穴22a,22b,23a,23bの縁部同士をかしめ接合することによって、冷却液流路40の外側で受け板101同士が密着するため、受け板101の接合部に要求される二つの機能、「導電性の確保」と「冷却液流路40の止水」を確保できる。その上、かしめ接合は接着剤による接合と比較して低コストで実施することができ、生産性も優れている。また、溶接による接合と比較すると、接合品質の管理(均一化)が容易であるうえ、受け板101の性能に悪影響を及ぼすおそれもない。   In this way, the edges of the receiving plates 101 and the edges of the fuel supply or discharge holes 22a, 22b, 23a, 23b are caulked and joined to each other on the outside of the coolant channel 40. Therefore, it is possible to ensure two functions required for the joint portion of the receiving plate 101, “ensure the conductivity” and “stop water of the coolant flow path 40”. In addition, the caulking bonding can be performed at a lower cost than the bonding by an adhesive, and the productivity is excellent. Further, compared with welding joining, it is easier to manage (homogenize) the joining quality and there is no possibility of adversely affecting the performance of the backing plate 101.

なお、図14から分かるように、本実施形態の燃料電池は、押さえ板39に形成される穴39a、各セパレータ29,29’の仕切板100に形成される第一〜第四燃料供給・排出穴13a,13b,15a,15b、MEA33に形成される穴35が図13に示した形態よりも拡大されているが、その理由は、受け板101の燃料の供給又は排出用の穴22a,22b,23a,23bの縁部をかしめる際の治具の挿入スペースを確保するためである。   As can be seen from FIG. 14, the fuel cell of the present embodiment includes the holes 39 a formed in the holding plate 39 and the first to fourth fuel supply / discharges formed in the partition plates 100 of the separators 29 and 29 ′. The holes 13 a, 13 b, 15 a, 15 b and the hole 35 formed in the MEA 33 are enlarged as compared with the embodiment shown in FIG. 13 because the holes 22 a and 22 b for supplying or discharging the fuel of the receiving plate 101 are used. , 23a, 23b for securing a jig insertion space when caulking the edges.

さて、図14に示すように、本実施形態の燃料電池では、受け板101の縁部のかしめ接合部51の高さh(図15参照)が最上部のかしめ接合部51’を除いて、各単位セル37における一方のセパレータ29の受け板101と他方のセパレータ29の受け板101との間隔Wと同じか、若干大きく設定される。このように、かしめ接合部51の高さhを各単位セル37の受け板101同士の間隔W以上に設定することで、かしめ接合部51にスペーサとしての機能を持たせることができる。この結果、図13に示したスペーサ41を省略でき、重量及び製造コストの低減が図れる。また、かしめ接合部51にスペーサ機能を持たせることで、各単位セル37の仕切板100及びMEA33を受け板101の外縁まで延出させる必要が無くなる。つまり、図14に示すように、仕切板100及びMEA33の輪郭を受け板101の凸部20の位置まで小型化できるので、歩留まりの向上、重量及び製造コストの低減が図れる。   Now, as shown in FIG. 14, in the fuel cell of this embodiment, the height h (see FIG. 15) of the caulking joint 51 at the edge of the backing plate 101 is not the upper caulking joint 51 ′. The distance W between the receiving plate 101 of one separator 29 and the receiving plate 101 of the other separator 29 in each unit cell 37 is set to be the same as or slightly larger. Thus, by setting the height h of the caulking joint portion 51 to be equal to or greater than the interval W between the receiving plates 101 of each unit cell 37, the caulking joint portion 51 can have a function as a spacer. As a result, the spacer 41 shown in FIG. 13 can be omitted, and the weight and manufacturing cost can be reduced. Moreover, it is not necessary to extend the partition plate 100 and MEA 33 of each unit cell 37 to the outer edge of the receiving plate 101 by providing the caulking joint portion 51 with a spacer function. That is, as shown in FIG. 14, the contours of the partition plate 100 and the MEA 33 can be downsized to the position of the convex portion 20 of the receiving plate 101, so that the yield can be improved and the weight and manufacturing cost can be reduced.

また、図14及び図15に示すように、本実施形態の燃料電池では、受け板101の縁部のかしめ接合部51,51’の起立角度θが90°よりも鋭角側に設定される。このように、かしめ接合部51,51’の起立角度θを受け板101の表面と垂直なラインに対して傾斜させることで、各単位セル37をボルトにより締め付けたときに、かしめ接合部51が若干弾性変形し、その弾性力(スプリング効果)により単位セル37同士が押し付けられるので、各単位セル37間の密着性を高めることができる。   As shown in FIGS. 14 and 15, in the fuel cell of the present embodiment, the rising angle θ of the caulking joints 51 and 51 ′ at the edge of the receiving plate 101 is set to an acute angle side from 90 °. In this way, when the unit cells 37 are tightened with bolts by tilting the rising angle θ of the caulking joints 51 and 51 ′ with respect to the line perpendicular to the surface of the plate 101, the caulking joint 51 Since the unit cells 37 are slightly elastically deformed and pressed against each other by the elastic force (spring effect), the adhesion between the unit cells 37 can be enhanced.

ところで、図14に示した形態では、各単位セル37の受け板101同士の間隔Wと、最上部に位置する冷却液流路形成用のセパレータ29’の受け板101と押さえ板39との間隔W’とが異なるため、最上部のかしめ接合部51’とそれ以外のかしめ接合部51とで高さを異ならせる必要がある。このため、二種類のかしめ治具が必要となり設備投資費用の増加につながってしまう。   By the way, in the form shown in FIG. 14, the interval W between the receiving plates 101 of each unit cell 37 and the interval between the receiving plate 101 and the pressing plate 39 of the separator 29 ′ for forming the coolant channel located at the uppermost part. Since W ′ is different, it is necessary to make the height different between the uppermost caulking joint 51 ′ and the other caulking joint 51. For this reason, two types of caulking jigs are required, leading to an increase in capital investment costs.

この問題を解決した形態を図17に示す。この形態は、全てのかしめ接合部51の高さhを冷却液流路形成用のセパレータ29’の受け板101と仕切板100との間隔W’’に合わせて統一したものである。この構成によれば、かしめ治具を一種類用意すれば良いので設備投資費用を抑えることができる。ただし、この形態では、かしめ接合部51を低くした結果生じる隙間を埋めるために、各単位セル37のMEA33及び仕切板100を受け板101の外縁に合わせて大きくすると共に、各単位セル37における上側のセパレータ29の受け板101と仕切板100との間にスペーサ41を配置する必要がある。この形態であっても、図13に示した形態と比べれば、スペーサ41の個数を半分にできるので重量及び製造コストの低減効果を得ることはできる。   The form which solved this problem is shown in FIG. In this embodiment, the height h of all the caulking joints 51 is unified according to the interval W ″ between the receiving plate 101 and the partition plate 100 of the separator 29 ′ for forming the coolant flow path. According to this configuration, it is only necessary to prepare one type of caulking jig, so that the capital investment cost can be suppressed. However, in this embodiment, the MEA 33 and the partition plate 100 of each unit cell 37 are enlarged in accordance with the outer edge of the receiving plate 101 and the upper side of each unit cell 37 is filled in order to fill a gap generated as a result of lowering the caulking joint portion 51. It is necessary to arrange the spacer 41 between the receiving plate 101 of the separator 29 and the partition plate 100. Even in this embodiment, the number of spacers 41 can be halved as compared with the embodiment shown in FIG.

次に、図18を用いて、かしめ接合部の統一化と、スペーサの完全な削除とを両立した形態を説明する。   Next, with reference to FIG. 18, a mode in which the unification of the caulking joint portion and the complete deletion of the spacer are achieved will be described.

この形態は、全てのかしめ接合部51の高さhを各単位セル37の受け板101同士の間隔Wに合わせて統一したものである。そして、上側の押さえ板39の縁部に上方に隆起した隆起部52を形成することで、最上部のかしめ接合部51の上方への突出分を吸収している。また、下側の押さえ板39の縁部にも隆起部53を形成することで、最下部のかしめ接合部51と押さえ板39との間の隙間を吸収している。この構造によれば、かしめ治具は一種類で良く、スペーサも完全に削除できる上、MEA33及び仕切板100の小型化も図れるので、重量及び製造コストの低減効果を最大限に得ることができる。   In this embodiment, the height h of all the caulking joint portions 51 is unified according to the interval W between the receiving plates 101 of each unit cell 37. Then, by forming a raised portion 52 that protrudes upward at the edge of the upper pressing plate 39, the upward protrusion of the uppermost caulking joint portion 51 is absorbed. Further, by forming the raised portion 53 at the edge of the lower pressing plate 39, the gap between the lower caulking joint portion 51 and the pressing plate 39 is absorbed. According to this structure, only one type of caulking jig is required, the spacer can be completely removed, and the MEA 33 and the partition plate 100 can be miniaturized, so that the effect of reducing the weight and manufacturing cost can be maximized. .

本発明は以上説明した実施形態に限定はされない。   The present invention is not limited to the embodiment described above.

例えば、かしめ接合部51,53の形状は一例として示したものであり、他の形状としても良い。一例を挙げると、上記実施形態ではかしめ接合部51の起立角度θを90°よりも鋭角側に設定するとしたが、本発明はこの点において限定されず、90°よりも鈍角側に設定しても良いし、90°としても良い。   For example, the shape of the caulking joint portions 51 and 53 is shown as an example, and other shapes may be used. As an example, in the above embodiment, the rising angle θ of the caulking joint 51 is set to an acute angle side from 90 °. However, the present invention is not limited in this respect, and is set to an obtuse angle side from 90 °. Or 90 °.

かしめ接合部の他の変形例を図19に示す。このかしめ接合部55は、図15及び図16に示したかしめ接合部51,53全体を更に折り曲げて、受け板101の表面とほぼ平行に位置させたものである。この形態によれば、受け板101間の密着性(通電性)及び止水性を更に向上させることができる。係るかしめ接合部55においても、その高さhを単位セル37の受け板101同士の間隔W以上に設定すれば、スペーサとしての機能を持たせることができる。   Another modification of the caulking joint is shown in FIG. The caulking joint portion 55 is formed by further bending the entire caulking joint portions 51 and 53 shown in FIGS. 15 and 16 so as to be positioned substantially parallel to the surface of the receiving plate 101. According to this embodiment, it is possible to further improve the adhesion (conductivity) between the receiving plates 101 and the water stoppage. Also in the caulking joint 55, if the height h is set to be equal to or greater than the interval W between the receiving plates 101 of the unit cell 37, it can have a function as a spacer.

更に、上記実施形態では受け板101同士のみをかしめ接合する例を示したが、本発明はこの点において限定されず、隣接する二つの受け板101と併せて、いずれか一方又は両方の受け板101に重ね合わされた仕切板100を一体的にかしめ接合しても良い。例えば、図20及び図21に示すように、隣接する二つの受け板101の上側に重ねられた仕切板100における燃料の供給又は排出用の穴(第一〜第四燃料供給・排出穴13a,13b,15a,15b)の縁部(フランジ部12)を折り曲げて起立部56を形成し、その起立部56と上側の受け板101の起立部52両方を包み込むように下側の受け板101を折り曲げてかしめ接合部57を形成しても良い。この構造によれば、仕切板100と受け板101との間も止水できるので、燃料流路30の止水性も確保できる。   Furthermore, although the example which crimps and joins only the receiving plates 101 was shown in the said embodiment, this invention is not limited in this point, Combined with the adjacent two receiving plates 101, either one or both receiving plates The partition plate 100 superimposed on 101 may be integrally caulked and joined. For example, as shown in FIGS. 20 and 21, a fuel supply or discharge hole (first to fourth fuel supply / discharge holes 13a, 13a, 13 b, 15 a, 15 b) are bent to form the standing portion 56, and the lower receiving plate 101 is wrapped so as to wrap both the standing portion 56 and the rising portion 52 of the upper receiving plate 101. The crimp joint part 57 may be formed by bending. According to this structure, the water stoppage between the partition plate 100 and the receiving plate 101 can be stopped, so that the water stoppage of the fuel flow path 30 can be secured.

また、かしめ接合部の止水性をより高めるために、各かしめ接合部51,53,55,57において受け板101間、又は受け板101と仕切板100との間に止水剤(シーラー)を介在させても良い。   Further, in order to further improve the water tightness of the caulking joints, a water stop agent (sealer) is provided between the receiving plates 101 or between the receiving plate 101 and the partition plate 100 in each of the caulking bonding portions 51, 53, 55, and 57. It may be interposed.

また、本実施形態のように矩形状の輪郭を有する受け板101の縁部同士をかしめ接合する場合、コーナー(角部)にシワが発生して止水性が低くなるおそれがあるので、角部のかしめ接合部を溶接して止水性を高めても良い。角部のみの溶接であれば溶接歪みによる悪影響も少ないと考えられるからである。   Further, when the edges of the receiving plate 101 having a rectangular outline are caulked and joined as in the present embodiment, wrinkles may occur at the corners (corners) and the water stoppage may be lowered. The caulking joint may be welded to increase the water stoppage. This is because it is considered that there is little adverse effect due to welding distortion if only corners are welded.

また、上記実施形態では3個並設型の燃料電池を例に説明したが、本発明はこの点において限定されず、単体の燃料電池や、2個あるいは4個以上並設した燃料電池にも勿論適用可能である。   Further, in the above-described embodiment, three parallel type fuel cells have been described as an example. However, the present invention is not limited in this respect, and may be applied to a single fuel cell or two or more fuel cells arranged in parallel. Of course, it is applicable.

また、各単位セル及び燃料電池において、燃料流路30の個数や長さなどは図示したものに限定されない。   In each unit cell and fuel cell, the number and length of the fuel flow paths 30 are not limited to those shown in the figure.

更に、上記実施形態では、燃料流路30を形成する縦壁7の端部位置k1,k2が交互に異なり、燃料が各燃料流路30を交互に折り返すとして説明したが、本発明はこの点において限定されず、縦壁7の端部位置を複数本おきに異ならせるようにしても良い。例えば、燃料が隣接する複数本の燃料流路を同方向に流れた後、その端部で折り返して1本又は複数本の燃料流路内に流れるようにしても良い。   Furthermore, in the above-described embodiment, the end positions k1 and k2 of the vertical wall 7 forming the fuel flow path 30 are alternately different, and the fuel is described as alternately turning back the fuel flow paths 30. However, the position of the end portion of the vertical wall 7 may be varied every plurality. For example, the fuel may flow in a plurality of adjacent fuel flow paths in the same direction, and then turn back at the end portion to flow into one or a plurality of fuel flow paths.

また、上記実施形態では、燃料流路30の流路断面積が全ての位置で同一であると説明したが、本発明はこの点において限定されない。例えば、各燃料流路30の流路断面積が長手方向において異なるようにしても良いし、溝9により形成される燃料流路30aの断面積と、桟11により形成される燃料流路30bの断面積とが異なるようにしても良い。   In the above-described embodiment, the flow path cross-sectional area of the fuel flow path 30 is the same at all positions, but the present invention is not limited in this respect. For example, the cross-sectional area of each fuel flow path 30 may be different in the longitudinal direction, or the cross-sectional area of the fuel flow path 30a formed by the groove 9 and the fuel flow path 30b formed by the crosspiece 11 The cross-sectional area may be different.

セパレータの構成部材の一つである仕切板の正面図である。It is a front view of the partition plate which is one of the structural members of a separator. セパレータの構成部材の一つである受け板の正面図である。It is a front view of the receiving plate which is one of the structural members of a separator. 図1の仕切板の第一構成要素の拡大正面図である。It is an enlarged front view of the 1st component of the partition plate of FIG. 図3のA部拡大図である。It is the A section enlarged view of FIG. 図4のV−V線断面図である。It is the VV sectional view taken on the line of FIG. 図2の受け板の第一構成要素の拡大正面図である。It is an enlarged front view of the 1st component of the receiving plate of FIG. (a)は図6のVIIa−VIIa線断面図、(b)は図6のVIIb−VIIb線断面図、(c)は図6のVIIc−VIIc線断面図である。(A) is the VIIa-VIIa sectional view taken on the line of FIG. 6, (b) is the VIIb-VIIb sectional view of FIG. 6, (c) is the VIIc-VIIc sectional view of FIG. 仕切板の第一構成要素と受け板の第一構成要素とを重ねた状態を示す正面透視図である。It is a front perspective view which shows the state which accumulated the 1st component of the partition plate and the 1st component of the receiving plate. 図8のIX−IX線断面図である。It is the IX-IX sectional view taken on the line of FIG. 並列型単位セルのうち一つの単位セルを示す展開図である。It is an expanded view which shows one unit cell among parallel type | mold unit cells. 図10のXI−XI線に沿った断面図であり、セパレータ及びMEAを接合した状態を示している。It is sectional drawing along the XI-XI line of FIG. 10, and has shown the state which joined the separator and MEA. 並列型単位セルを積層して構成した並列型燃料電池の部分側面断面図である。It is a partial side sectional view of a parallel type fuel cell configured by stacking parallel type unit cells. 図12のB部拡大図である。It is the B section enlarged view of FIG. 本発明の燃料電池の部分側面断面図である。It is a partial side sectional view of the fuel cell of the present invention. 図14のC部拡大図である。It is the C section enlarged view of FIG. 図14のD部拡大図である。It is the D section enlarged view of FIG. 本発明の他の実施形態の燃料電池の部分側面断面図である。It is a partial side sectional view of the fuel cell of other embodiments of the present invention. 本発明の他の実施形態の燃料電池の部分側面断面図である。It is a partial side sectional view of the fuel cell of other embodiments of the present invention. かしめ接合部の変形例を示す断面図である。It is sectional drawing which shows the modification of a crimping junction part. 本発明の他の実施形態の燃料電池の部分側面断面図である。It is a partial side sectional view of the fuel cell of other embodiments of the present invention. 図20のE部拡大図である。It is the E section enlarged view of FIG.

符号の説明Explanation of symbols

2 発電・集電部
3 長穴(穴)
7 縦壁
10 底壁
13a 第一燃料供給・排出穴(燃料の供給又は排出用の穴)
13b 第二燃料供給・排出穴(燃料の供給又は排出用の穴)
15a 第三燃料供給・排出穴(燃料の供給又は排出用の穴)
15b 第四燃料供給・排出穴(燃料の供給又は排出用の穴)
19 収容部
20 凸部
22a 第一連通穴(燃料の供給又は排出用の穴)
22b 第二連通穴(燃料の供給又は排出用の穴)
23a 第一隔離穴(燃料の供給又は排出用の穴)
23b 第二隔離穴(燃料の供給又は排出用の穴)
29 セパレータ
33 MEA
36 燃料電池
37 単位セル
40 冷却液流路
51 かしめ接合部
53 かしめ接合部
57 かしめ接合部
100 仕切板
101 受け板
2 Power generation / collection part 3 Slot (hole)
7 Vertical wall 10 Bottom wall 13a First fuel supply / discharge hole (fuel supply / discharge hole)
13b Second fuel supply / discharge hole (fuel supply / discharge hole)
15a Third fuel supply / discharge hole (fuel supply / discharge hole)
15b Fourth fuel supply / discharge hole (fuel supply / discharge hole)
19 accommodating part 20 convex part 22a 1st through hole (hole for fuel supply or discharge)
22b Second communication hole (fuel supply or discharge hole)
23a First isolation hole (fuel supply or discharge hole)
23b Second isolation hole (hole for fuel supply or discharge)
29 Separator 33 MEA
36 Fuel cell 37 Unit cell 40 Coolant flow path 51 Caulking joint part 53 Caulking joint part 57 Caulking joint part 100 Partition plate 101 Base plate

Claims (6)

複数形成された穴と、各穴間に形成された縦壁及び底壁とを有する発電・集電部を備えた導電性金属板からなる仕切板と、その仕切板の上記発電・集電部を収容する収容部を備えた導電性金属板からなる受け板とを重ね合わせてセパレータを構成し、そのセパレータを、上記仕切板がMEAと接触するようにしてMEAの両側にそれぞれ配置して単位セルを構成し、その単位セルを、上記セパレータの受け板同士が接触するようにして複数積層すると共に、互いに接触する受け板の縁部同士をかしめ接合し、その状態で全ての単位セルを一体的に固定して構成したことを特徴とする燃料電池。   A partition plate made of a conductive metal plate having a power generation / current collection unit having a plurality of holes and vertical walls and bottom walls formed between the holes, and the power generation / current collection unit of the partition plate A separator is formed by superimposing a receiving plate made of a conductive metal plate having an accommodating portion for accommodating the separator, and the separator is disposed on each side of the MEA so that the partition plate is in contact with the MEA. A plurality of unit cells are formed such that the separator receiving plates are in contact with each other, and the edges of the receiving plates that are in contact with each other are caulked and joined to form a unit cell. A fuel cell characterized in that it is fixedly configured. 上記受け板は上記仕切板側に部分的に突出した凸部を有し、上記単位セルを複数積層すると、互いに接触する受け板の上記凸部同士の間に冷却液流路が形成され、上記受け板の縁部をかしめ接合することで上記冷却液流路が止水される請求項1記載の燃料電池。   The backing plate has a convex portion that partially protrudes toward the partition plate, and when a plurality of the unit cells are stacked, a coolant flow path is formed between the convex portions of the backing plate that are in contact with each other. The fuel cell according to claim 1, wherein the coolant passage is stopped by caulking and joining the edges of the backing plate. 上記受け板の縁部のかしめ接合部の高さを、各単位セルにおける一方のセパレータの受け板と他方のセパレータの受け板との間隔以上に設定した請求項1又は2記載の燃料電池。   The fuel cell according to claim 1 or 2, wherein the height of the caulking joint at the edge of the backing plate is set to be equal to or greater than the distance between the backing plate of one separator and the backing plate of the other separator in each unit cell. 上記受け板の縁部のかしめ接合部の受け板の表面に対する起立角度を90°よりも鋭角側又は鈍角側に設定し、
各単位セルを一体的に固定する際に上記かしめ接合部を弾性変形させ、その弾性力により各単位セル同士を密着させるようにした請求項3記載の燃料電池。
The standing angle of the edge of the backing plate with respect to the surface of the backing plate of the caulking joint is set to an acute angle side or an obtuse angle side from 90 °,
4. The fuel cell according to claim 3, wherein when the unit cells are integrally fixed, the caulking joint is elastically deformed and the unit cells are brought into close contact with each other by the elastic force.
上記受け板に燃料の供給又は排出用の穴を形成すると共に、互いに接触する受け板の上記穴の縁部同士をかしめ接合した請求項1〜4いずれかに記載の燃料電池。   The fuel cell according to any one of claims 1 to 4, wherein a hole for supplying or discharging fuel is formed in the receiving plate, and edges of the holes of the receiving plates that are in contact with each other are caulked and joined. 上記仕切板に燃料の供給又は排出用の穴を形成すると共に、上記互いに接触する受け板の燃料の供給又は排出用の穴の縁部と併せて、いずれか一方又は両方の受け板に重ね合わされた上記仕切板の燃料の供給又は排出用の穴の縁部をかしめ接合した請求項5記載の燃料電池。
A hole for supplying or discharging the fuel is formed in the partition plate, and is overlapped with one or both of the receiving plates together with the edge of the hole for supplying or discharging the fuel of the receiving plate in contact with each other. 6. The fuel cell according to claim 5, wherein an edge of a hole for supplying or discharging fuel in the partition plate is caulked and joined.
JP2004256798A 2004-09-03 2004-09-03 Fuel cell Pending JP2006073398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256798A JP2006073398A (en) 2004-09-03 2004-09-03 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256798A JP2006073398A (en) 2004-09-03 2004-09-03 Fuel cell

Publications (1)

Publication Number Publication Date
JP2006073398A true JP2006073398A (en) 2006-03-16

Family

ID=36153783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256798A Pending JP2006073398A (en) 2004-09-03 2004-09-03 Fuel cell

Country Status (1)

Country Link
JP (1) JP2006073398A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035323A (en) * 2005-07-22 2007-02-08 Toyota Motor Corp Manufacturing method of fuel cell separator
WO2008026715A1 (en) * 2006-08-29 2008-03-06 Canon Kabushiki Kaisha Cell structure of fuel cell and fuel cell stack
JP2008147155A (en) * 2006-12-07 2008-06-26 Hyundai Motor Co Ltd Manufacturing method of fuel cell metal separator
JP2014096305A (en) * 2012-11-12 2014-05-22 Honda Motor Co Ltd Bonding method and bonding device of separator
JP2018129174A (en) * 2017-02-08 2018-08-16 本田技研工業株式会社 Metal separator for fuel cell and manufacturing method therefor, and power generation cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392360U (en) * 1990-01-10 1991-09-19
JPH06290797A (en) * 1993-03-31 1994-10-18 Toshiba Corp Layer built fuel cell
JP2005243559A (en) * 2004-02-27 2005-09-08 Press Kogyo Co Ltd Separator for fuel cell, parallel type unit cell using it, and parallel type fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392360U (en) * 1990-01-10 1991-09-19
JPH06290797A (en) * 1993-03-31 1994-10-18 Toshiba Corp Layer built fuel cell
JP2005243559A (en) * 2004-02-27 2005-09-08 Press Kogyo Co Ltd Separator for fuel cell, parallel type unit cell using it, and parallel type fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035323A (en) * 2005-07-22 2007-02-08 Toyota Motor Corp Manufacturing method of fuel cell separator
WO2008026715A1 (en) * 2006-08-29 2008-03-06 Canon Kabushiki Kaisha Cell structure of fuel cell and fuel cell stack
JP2008147155A (en) * 2006-12-07 2008-06-26 Hyundai Motor Co Ltd Manufacturing method of fuel cell metal separator
JP2014096305A (en) * 2012-11-12 2014-05-22 Honda Motor Co Ltd Bonding method and bonding device of separator
JP2018129174A (en) * 2017-02-08 2018-08-16 本田技研工業株式会社 Metal separator for fuel cell and manufacturing method therefor, and power generation cell
US10910658B2 (en) 2017-02-08 2021-02-02 Honda Motor Co., Ltd. Fuel cell metal separator, method of producing the fuel cell metal separator, and power generation cell

Similar Documents

Publication Publication Date Title
JP2007335150A (en) Power storage element
JP5011627B2 (en) Fuel cell
US10014548B2 (en) Fuel cell
JP6493549B2 (en) Fuel cell stack
JP2015118773A (en) Secondary battery module
US11735748B2 (en) Power generation cell and resin-framed membrane electrode assembly
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
JP2005310633A (en) Separator for fuel cell
JP2006073398A (en) Fuel cell
CN101083317A (en) Secondary batteries
JP5664457B2 (en) FUEL CELL SEPARATOR PLATE, FUEL CELL SEPARATOR, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR PLATE
JP2017216133A (en) Battery module
KR20200132294A (en) Elastomer cell frame for fuel cell and Manufacturing method thereof and Fuel cell stack comprising thereof
JP2010225484A (en) Fuel cell and method for manufacturing the same
JP7317729B2 (en) Separator member for fuel cell, fuel cell stack, and method for manufacturing separator member for fuel cell
JP7062730B2 (en) Fuel cell cell unit manufacturing method and manufacturing equipment
JP2015198068A (en) fuel cell
JP2007250228A (en) Fuel cell
JP2005243559A (en) Separator for fuel cell, parallel type unit cell using it, and parallel type fuel cell
JP2708500B2 (en) Stacked fuel cell
JP2007012382A (en) Separator and fuel cell equipped with separator
WO2023085068A1 (en) Bipolar storage battery
JP2008218197A (en) Fuel cell and fuel cell stack
JP2016091936A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery
KR20170077897A (en) Fuel cell stack having open flow passage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019