JP2016091936A - Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery - Google Patents

Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery Download PDF

Info

Publication number
JP2016091936A
JP2016091936A JP2014228045A JP2014228045A JP2016091936A JP 2016091936 A JP2016091936 A JP 2016091936A JP 2014228045 A JP2014228045 A JP 2014228045A JP 2014228045 A JP2014228045 A JP 2014228045A JP 2016091936 A JP2016091936 A JP 2016091936A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode structure
resin frame
film member
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014228045A
Other languages
Japanese (ja)
Inventor
秀忠 小嶋
Hidetada Kojima
秀忠 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014228045A priority Critical patent/JP2016091936A/en
Publication of JP2016091936A publication Critical patent/JP2016091936A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which an electrolyte membrane-electrode structure and a resin frame member can be firmly joined together well with simple steps.SOLUTION: In a resin frame-attached electrolyte membrane-electrode structure 10, an electrolyte membrane-electrode structure 10a and a resin frame member 24 are integrated together. A method for manufacturing the resin frame-attached electrolyte membrane-electrode structure according to the present invention comprises the steps of: providing a first film member 28 on the electrolyte membrane-electrode structure 10a; providing a second film member 30 on the resin frame member 24; and combining, by welding, the first film member 28 and the second film member 30 into one.SELECTED DRAWING: Figure 3

Description

本発明は、固体高分子電解質膜を一対の電極で挟んだMEAと、前記MEAの外周を周回して前記MEAに設けられる樹脂枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法に関する。   The present invention relates to an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising: an MEA having a solid polymer electrolyte membrane sandwiched between a pair of electrodes; and a resin frame member provided on the MEA around the outer periphery of the MEA. It relates to the manufacturing method.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。燃料電池は、固体高分子電解質膜の一方にアノード電極が、前記固体高分子電解質膜の他方にカソード電極が、それぞれ配設された電解質膜・電極構造体(MEA)を備えている。アノード電極及びカソード電極は、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とを有している。   In general, a polymer electrolyte fuel cell employs a polymer electrolyte membrane made of a polymer ion exchange membrane. The fuel cell includes an electrolyte membrane / electrode structure (MEA) in which an anode electrode is disposed on one of the solid polymer electrolyte membranes and a cathode electrode is disposed on the other of the solid polymer electrolyte membranes. The anode electrode and the cathode electrode each have a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon).

電解質膜・電極構造体は、セパレータ(バイポーラ板)によって挟持されることにより、燃料電池が構成されている。この燃料電池は、所定の数だけ積層することにより、例えば、車載用燃料電池スタックとして使用されている。   The electrolyte membrane / electrode structure is sandwiched between separators (bipolar plates) to constitute a fuel cell. This fuel cell is used as, for example, an in-vehicle fuel cell stack by stacking a predetermined number of fuel cells.

電解質膜・電極構造体では、比較的高価な固体高分子電解質膜の使用量を削減させるとともに、薄膜状で強度が低い前記固体高分子電解質膜を保護するために、樹脂枠部材を組み込んだ樹脂枠付きMEAが採用されている。   In the electrolyte membrane / electrode structure, a resin frame member is incorporated in order to reduce the amount of a relatively expensive solid polymer electrolyte membrane used and to protect the solid polymer electrolyte membrane having a thin film shape and low strength. A framed MEA is employed.

樹脂枠付きMEAとして、例えば、特許文献1に開示されている電解質膜−電極接合体が知られている。この電解質膜−電極接合体では、図13に示すように、膜1の一方の面には、前記膜1と同一の外形寸法を有するアノード触媒層2aとアノードガス拡散層2bとが配置されている。膜1の他方の面には、前記膜1よりも小さな外形寸法を有するカソード触媒層3aとカソードガス拡散層3bとが配置されている。これによって、段差MEA4が構成されている。   As an MEA with a resin frame, for example, an electrolyte membrane-electrode assembly disclosed in Patent Document 1 is known. In this electrolyte membrane-electrode assembly, as shown in FIG. 13, an anode catalyst layer 2a and an anode gas diffusion layer 2b having the same outer dimensions as the membrane 1 are arranged on one surface of the membrane 1. Yes. On the other surface of the membrane 1, a cathode catalyst layer 3a and a cathode gas diffusion layer 3b having outer dimensions smaller than those of the membrane 1 are disposed. Thus, the step MEA 4 is configured.

アノードガス拡散層2bは、カソードガス拡散層3bよりも大きな面積に設定されており、前記カソードガス拡散層3b側の膜1の外周部とガスケット構造体5とは、接着部位6を介して接合されている。   The anode gas diffusion layer 2 b is set to have a larger area than the cathode gas diffusion layer 3 b, and the outer peripheral portion of the film 1 on the cathode gas diffusion layer 3 b side and the gasket structure 5 are joined via an adhesion site 6. Has been.

特開2007−66766号公報JP 2007-66766 A

ところで、上記の特許文献1では、カソードガス拡散層3b側の膜1の外周縁部(平面)とガスケット構造体5の内周薄肉部5aの平面とが、額縁平面形状の接着部位6を介して接合されている。   By the way, in the above-mentioned Patent Document 1, the outer peripheral edge (plane) of the membrane 1 on the cathode gas diffusion layer 3b side and the plane of the inner peripheral thin portion 5a of the gasket structure 5 are connected via the bonding portion 6 having a frame shape. Are joined.

しかしながら、段差MEA4とガスケット構造体5との接着工程において、接着部位6に接着剤が過剰に塗布されたり、接合荷重がばらついたりすると、前記接着部位6から前記接着剤がはみ出すおそれがある。   However, in the bonding step between the step MEA 4 and the gasket structure 5, if the adhesive is excessively applied to the bonding site 6 or the bonding load varies, the adhesive may protrude from the bonding site 6.

しかも、接着後にアノードガス拡散層2bやカソードガス拡散層3bに樹脂含浸等の加熱工程を行う際に、溶融した樹脂が接着部位6から漏れ出してしまい、接着剤が溶融するという問題がある。また、加熱工程において、伝熱により接着部位6の接着剤が溶融されてしまう可能性がある。   Moreover, when the anode gas diffusion layer 2b and the cathode gas diffusion layer 3b are subjected to a heating step such as resin impregnation after bonding, there is a problem that the molten resin leaks out from the bonding portion 6 and the adhesive melts. Further, in the heating process, the adhesive at the bonding site 6 may be melted by heat transfer.

本発明は、この種の問題を解決するものであり、簡単な工程で、電解質膜・電極構造体と樹脂枠部材とを強固且つ良好に接合することが可能な燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法を提供することを目的とする。   The present invention solves this type of problem, and can provide an electrolyte membrane with a fuel frame for a fuel cell capable of firmly and satisfactorily joining an electrolyte membrane / electrode structure and a resin frame member with a simple process. -It aims at providing the manufacturing method of an electrode structure.

本発明に係る製造方法が適用される燃料電池用樹脂枠付き電解質膜・電極構造体は、固体高分子電解質膜の両面に電極が設けられる電解質膜・電極構造体と、前記固体高分子電解質膜の外周を周回して前記電解質膜・電極構造体に設けられる樹脂枠部材とを備えている。   An electrolyte membrane / electrode structure with a resin frame for a fuel cell to which the production method according to the present invention is applied includes an electrolyte membrane / electrode structure in which electrodes are provided on both sides of the solid polymer electrolyte membrane, and the solid polymer electrolyte membrane. And a resin frame member provided on the electrolyte membrane / electrode structure.

この製造方法は、電解質膜・電極構造体の樹脂枠接合部位に第1フィルム部材を設ける工程と、前記樹脂枠部材のMEA接合部位に第2フィルム部材を設ける工程とを有している。この製造方法は、さらに第1フィルム部材及び第2フィルム部材を一体に溶着させる工程を有している。   This manufacturing method includes a step of providing a first film member at a resin frame joining portion of an electrolyte membrane / electrode structure, and a step of providing a second film member at an MEA joining portion of the resin frame member. The manufacturing method further includes a step of integrally welding the first film member and the second film member.

また、この製造方法は、第1フィルム部材及び第2フィルム部材の接合部位を覆って第3フィルム部材を一体に溶着させる工程を有することが好ましい。   Moreover, it is preferable that this manufacturing method has the process of covering the joining site | part of a 1st film member and a 2nd film member, and welding a 3rd film member integrally.

さらに、この製造方法では、第3フィルム部材は、第1フィルム部材又は第2フィルム部材と一体に設けられることが好ましい。   Furthermore, in this manufacturing method, the third film member is preferably provided integrally with the first film member or the second film member.

さらにまた、この製造方法では、電解質膜・電極構造体は、一方の電極の平面寸法が、他方の電極の平面寸法よりも大きな寸法に設定される段差MEAであることが好ましい。   Furthermore, in this manufacturing method, the electrolyte membrane / electrode structure is preferably a step MEA in which the planar dimension of one electrode is set to be larger than the planar dimension of the other electrode.

本発明によれば、電解質膜・電極構造体の樹脂枠接合部位に設けられた第1フィルム部材と、樹脂枠部材のMEA接合部位に設けられた第2フィルム部材とが、一体に溶着されている。このため、電解質膜・電極構造体と樹脂枠部材との接合は、第1フィルム部材及び第2フィルム部材同士を溶着させるだけでよく、接着剤等に比べて作業の簡素化が容易に図られる。従って、簡単な工程で、電解質膜・電極構造体と樹脂枠部材とを強固且つ良好に接合することが可能になる。   According to the present invention, the first film member provided at the resin frame joint portion of the electrolyte membrane / electrode structure and the second film member provided at the MEA joint portion of the resin frame member are integrally welded. Yes. For this reason, it is only necessary to weld the first film member and the second film member to each other to join the electrolyte membrane / electrode structure and the resin frame member, and the work can be simplified more easily than an adhesive or the like. . Therefore, it is possible to join the electrolyte membrane / electrode structure and the resin frame member firmly and satisfactorily by a simple process.

本発明の第1の実施形態に係る製造方法により製造される樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of a polymer electrolyte fuel cell in which an electrolyte membrane / electrode structure with a resin frame manufactured by the manufacturing method according to the first embodiment of the present invention is incorporated. 前記燃料電池の、図1中、II−II線断面説明図である。FIG. 2 is a sectional view of the fuel cell taken along line II-II in FIG. 1. 前記樹脂枠付き電解質膜・電極構造体の要部断面説明図である。It is principal part cross-sectional explanatory drawing of the said electrolyte membrane and electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を構成する樹脂枠部材の一部断面斜視説明図である。It is a partial cross section perspective explanatory drawing of the resin frame member which comprises the said electrolyte membrane with a resin frame and electrode structure. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 本発明の第2の実施形態に係る製造方法により製造される樹脂枠付き電解質膜・電極構造体の要部断面説明図である。It is principal part cross-sectional explanatory drawing of the electrolyte membrane and electrode structure with a resin frame manufactured by the manufacturing method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る製造方法により製造される樹脂枠付き電解質膜・電極構造体の要部断面説明図である。It is principal part cross-sectional explanatory drawing of the electrolyte membrane and electrode structure with a resin frame manufactured by the manufacturing method which concerns on the 3rd Embodiment of this invention. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame. 特許文献1に開示されている電解質膜−電極接合体の説明図である。6 is an explanatory diagram of an electrolyte membrane-electrode assembly disclosed in Patent Document 1. FIG.

図1及び図2に示すように、本発明の第1の実施形態に係る製造方法により製造される樹脂枠付き電解質膜・電極構造体10は、横長(又は縦長)の長方形状を有し、固体高分子型燃料電池12に組み込まれる。複数の燃料電池12は、例えば、矢印A方向(水平方向)又は矢印C方向(重力方向)に積層されて燃料電池スタックが構成される。燃料電池スタックは、例えば、車載用燃料電池スタックとして燃料電池電気自動車(図示せず)に搭載される。   As shown in FIGS. 1 and 2, the electrolyte membrane / electrode structure 10 with a resin frame manufactured by the manufacturing method according to the first embodiment of the present invention has a horizontally long (or vertically long) rectangular shape, It is incorporated in the polymer electrolyte fuel cell 12. The plurality of fuel cells 12 are stacked in, for example, an arrow A direction (horizontal direction) or an arrow C direction (gravity direction) to form a fuel cell stack. The fuel cell stack is mounted on, for example, a fuel cell electric vehicle (not shown) as an in-vehicle fuel cell stack.

燃料電池12は、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、横長(又は縦長)の長方形状を有する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成される。   In the fuel cell 12, the electrolyte membrane / electrode structure 10 with a resin frame is sandwiched between the first separator 14 and the second separator 16. The first separator 14 and the second separator 16 have a horizontally long (or vertically long) rectangular shape. The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plating-treated steel plate, a metal plate whose surface is subjected to anticorrosion treatment, a carbon member, or the like.

樹脂枠付き電解質膜・電極構造体10は、図1〜図3に示すように、段差MEAである電解質膜・電極構造体10aを備える。電解質膜・電極構造体10aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜(陽イオン交換膜)18と、前記固体高分子電解質膜18を挟持するアノード電極20及びカソード電極22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質を使用してもよい。   As shown in FIGS. 1 to 3, the resin membrane-attached electrolyte membrane / electrode structure 10 includes an electrolyte membrane / electrode structure 10 a that is a step MEA. The electrolyte membrane / electrode structure 10a includes, for example, a solid polymer electrolyte membrane (cation exchange membrane) 18 in which a perfluorosulfonic acid thin film is impregnated with water, and an anode electrode 20 sandwiching the solid polymer electrolyte membrane 18. And a cathode electrode 22. The solid polymer electrolyte membrane 18 may use an HC (hydrocarbon) based electrolyte in addition to the fluorine based electrolyte.

カソード電極22は、固体高分子電解質膜18及びアノード電極20よりも小さな平面寸法(外形寸法)を有する。なお、上記の構成に代えて、アノード電極20は、固体高分子電解質膜18及びカソード電極22よりも小さな平面寸法を有するように構成してもよい。また、段差MEAに代えて、固体高分子電解質膜18、アノード電極20及びカソード電極22は、全て同一の平面寸法に設定されてもよい。   The cathode electrode 22 has a smaller planar dimension (outer dimension) than the solid polymer electrolyte membrane 18 and the anode electrode 20. Instead of the above configuration, the anode electrode 20 may be configured to have a smaller planar dimension than the solid polymer electrolyte membrane 18 and the cathode electrode 22. Further, instead of the step MEA, the solid polymer electrolyte membrane 18, the anode electrode 20, and the cathode electrode 22 may all be set to the same planar dimension.

アノード電極20は、固体高分子電解質膜18の一方の面18aに接合される第1電極触媒層20aと、前記第1電極触媒層20aに積層される第1ガス拡散層20bとを設ける。第1電極触媒層20a及び第1ガス拡散層20bは、同一の平面寸法を有するとともに、固体高分子電解質膜18と同一(又は同一未満)の平面寸法に設定される。第1ガス拡散層20bの外周縁部には、枠形状に周回して薄肉状の凹部20brが形成される。   The anode electrode 20 includes a first electrode catalyst layer 20a joined to one surface 18a of the solid polymer electrolyte membrane 18, and a first gas diffusion layer 20b laminated on the first electrode catalyst layer 20a. The first electrode catalyst layer 20a and the first gas diffusion layer 20b have the same planar dimensions and are set to the same (or less than) the same planar dimensions as the solid polymer electrolyte membrane 18. A thin-walled recess 20br is formed around the outer peripheral edge of the first gas diffusion layer 20b in a frame shape.

カソード電極22は、固体高分子電解質膜18の面18bに接合される第2電極触媒層22aと、前記第2電極触媒層22aに積層される第2ガス拡散層22bとを設ける。第2電極触媒層22a及び第2ガス拡散層22bは、同一の平面寸法を有するとともに、固体高分子電解質膜18の平面寸法よりも小さな平面寸法に設定される。なお、第2電極触媒層22aと第2ガス拡散層22bとは、互いに異なる平面寸法に設定されてもよい。   The cathode electrode 22 includes a second electrode catalyst layer 22a bonded to the surface 18b of the solid polymer electrolyte membrane 18, and a second gas diffusion layer 22b stacked on the second electrode catalyst layer 22a. The second electrode catalyst layer 22 a and the second gas diffusion layer 22 b have the same planar dimension and are set to a planar dimension smaller than the planar dimension of the solid polymer electrolyte membrane 18. The second electrode catalyst layer 22a and the second gas diffusion layer 22b may be set to different plane dimensions.

第1電極触媒層20aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が第1ガス拡散層20bの表面に一様に塗布されて形成される。第2電極触媒層22aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が第2ガス拡散層22bの表面に一様に塗布されて形成される。第1ガス拡散層20b及び第2ガス拡散層22bは、カーボンペーパ、カーボンクロス等からなるとともに、前記第2ガス拡散層22bの平面寸法は、前記第1ガス拡散層20bの平面寸法よりも小さく設定される。第1電極触媒層20a及び第2電極触媒層22aは、固体高分子電解質膜18の両面に形成される。   The first electrode catalyst layer 20a is formed, for example, by uniformly applying porous carbon particles having a platinum alloy supported on the surface thereof to the surface of the first gas diffusion layer 20b. The second electrode catalyst layer 22a is formed, for example, by uniformly applying porous carbon particles carrying a platinum alloy on the surface thereof to the surface of the second gas diffusion layer 22b. The first gas diffusion layer 20b and the second gas diffusion layer 22b are made of carbon paper, carbon cloth, or the like, and the planar dimension of the second gas diffusion layer 22b is smaller than the planar dimension of the first gas diffusion layer 20b. Is set. The first electrode catalyst layer 20 a and the second electrode catalyst layer 22 a are formed on both surfaces of the solid polymer electrolyte membrane 18.

樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、アノード電極20及びカソード電極22に接合される樹脂枠部材24を備える。樹脂枠部材24は、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーンゴム、フッ素ゴム、EPDM(エチレンプロピレンゴム)又はm−PPE(変性ポリフェニレンエーテル樹脂)等で構成される。樹脂枠部材24は、さらにPET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)又は変性ポリオレフィン等で構成される。   The resin membrane-attached electrolyte membrane / electrode structure 10 includes a resin frame member 24 that circulates around the outer periphery of the solid polymer electrolyte membrane 18 and is joined to the anode electrode 20 and the cathode electrode 22. The resin frame member 24 includes, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyethersulfone), LCP (liquid crystal polymer), PVDF (polyvinylidene fluoride), It is composed of silicone rubber, fluorine rubber, EPDM (ethylene propylene rubber), m-PPE (modified polyphenylene ether resin), or the like. The resin frame member 24 is further made of PET (polyethylene terephthalate), PBT (polybutylene terephthalate), modified polyolefin, or the like.

図1〜図4に示すように、樹脂枠部材24は、枠形状の厚肉部24aを有する。樹脂枠部材24は、図2〜図4に示すように、厚肉部24aの内周に内周基端部24sを介してカソード電極22側に膨出する薄肉状に形成された内側膨出部24bを有する。内側膨出部24bは、内周基端部24sから内方に所定の長さを有して延在し、固体高分子電解質膜18の外周縁部(カソード電極22の外周から外方に露呈する膜部分)18beを覆って配置される。   As shown in FIGS. 1-4, the resin frame member 24 has the frame-shaped thick part 24a. As shown in FIGS. 2 to 4, the resin frame member 24 has an inner bulging portion 24 b formed in a thin shape that bulges toward the cathode electrode 22 via an inner peripheral base end portion 24 s on the inner circumference of the thick portion 24 a. Have The inner bulging portion 24b extends inward from the inner peripheral base end portion 24s with a predetermined length, and is an outer peripheral edge portion of the solid polymer electrolyte membrane 18 (a film exposed outward from the outer periphery of the cathode electrode 22). (Part) It is arranged covering 18be.

厚肉部24aの内周部には、内周基端部24sに連なって薄肉状の凹部24rが枠形状を有して形成される。厚肉部24aの凹部24rと第1ガス拡散層20bの凹部20brとは、同一の深さdを有し且つ互いに連通し全体として所定の幅寸法S1を有する枠状凹部を構成する(図3参照)。   A thin-walled concave portion 24r is formed on the inner peripheral portion of the thick portion 24a so as to be continuous with the inner peripheral base end portion 24s so as to have a frame shape. The concave portion 24r of the thick portion 24a and the concave portion 20br of the first gas diffusion layer 20b have the same depth d and communicate with each other to form a frame-shaped concave portion having a predetermined width dimension S1 as a whole (FIG. 3). reference).

図2及び図3に示すように、電解質膜・電極構造体10aの外周部と樹脂枠部材24の内周部とは、フィルム接合部26により接合される。フィルム接合部26は、電解質膜・電極構造体10aに設けられる樹脂製第1フィルム部材28、樹脂枠部材24に設けられる樹脂製第2フィルム部材30、及び樹脂製第3フィルム部材32を備える。   As shown in FIGS. 2 and 3, the outer peripheral part of the electrolyte membrane / electrode structure 10 a and the inner peripheral part of the resin frame member 24 are joined by a film joining part 26. The film joining portion 26 includes a first resin film member 28 provided on the electrolyte membrane / electrode structure 10 a, a second resin film member 30 provided on the resin frame member 24, and a third resin film film 32.

第1フィルム部材28は、電解質膜・電極構造体10aの外周部、すなわち、カソード電極22の先端に接合される内側端部28aを有する。第1フィルム部材28は、内側端部28aから90゜だけ屈曲し、固体高分子電解質膜18の外周縁部18beに接合される平坦部28bを有する。第1フィルム部材28は、平坦部28bから90゜だけ屈曲し、固体高分子電解質膜18及びアノード電極20の先端に接合される外側端部28cを有する。内側端部28a、平坦部28b及び外側端部28cは、一体成形されるとともに、断面略Z字状を有する。   The first film member 28 has an inner end portion 28 a bonded to the outer peripheral portion of the electrolyte membrane / electrode structure 10 a, that is, the tip of the cathode electrode 22. The first film member 28 has a flat portion 28 b that is bent by 90 ° from the inner end portion 28 a and joined to the outer peripheral edge portion 18 be of the solid polymer electrolyte membrane 18. The first film member 28 is bent by 90 ° from the flat portion 28 b and has an outer end portion 28 c joined to the tips of the solid polymer electrolyte membrane 18 and the anode electrode 20. The inner end portion 28a, the flat portion 28b, and the outer end portion 28c are integrally formed and have a substantially Z-shaped cross section.

第2フィルム部材30は、樹脂枠部材24の内側膨出部24bに接合される平坦部30aと、前記平坦部30aから90゜だけ屈曲し、内周基端部24sに接合される外側端部30bとを有する。第3フィルム部材32は、第2フィルム部材30に一体成形され、凹部20brに配置される平坦部32aと、凹部24rに配置される平坦部32bとを有する。   The second film member 30 includes a flat portion 30a joined to the inner bulging portion 24b of the resin frame member 24, and an outer end portion 30b bent by 90 ° from the flat portion 30a and joined to the inner peripheral base end portion 24s. Have The third film member 32 is integrally formed with the second film member 30, and has a flat portion 32a disposed in the recess 20br and a flat portion 32b disposed in the recess 24r.

図1に示すように、燃料電池12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス入口連通孔34a、冷却媒体入口連通孔36a及び燃料ガス出口連通孔38bが設けられる。酸化剤ガス入口連通孔34aは、酸化剤ガス、例えば、酸素含有ガスを供給する一方、冷却媒体入口連通孔36aは、冷却媒体を供給する。燃料ガス出口連通孔38bは、燃料ガス、例えば、水素含有ガスを排出する。酸化剤ガス入口連通孔34a、冷却媒体入口連通孔36a及び燃料ガス出口連通孔38bは、矢印C方向(鉛直方向)に配列して設けられる。   As shown in FIG. 1, one end edge of the fuel cell 12 in the direction of arrow B (horizontal direction in FIG. 1) communicates with each other in the direction of arrow A, which is the stacking direction, A cooling medium inlet communication hole 36a and a fuel gas outlet communication hole 38b are provided. The oxidant gas inlet communication hole 34a supplies an oxidant gas, for example, an oxygen-containing gas, while the cooling medium inlet communication hole 36a supplies a cooling medium. The fuel gas outlet communication hole 38b discharges fuel gas, for example, hydrogen-containing gas. The oxidant gas inlet communication hole 34a, the cooling medium inlet communication hole 36a, and the fuel gas outlet communication hole 38b are arranged in an arrow C direction (vertical direction).

燃料電池12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給する燃料ガス入口連通孔38a、冷却媒体を排出する冷却媒体出口連通孔36b、及び酸化剤ガスを排出する酸化剤ガス出口連通孔34bが設けられる。燃料ガス入口連通孔38a、冷却媒体出口連通孔36b及び酸化剤ガス出口連通孔34bは、矢印C方向に配列して設けられる。   The other end edge of the fuel cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, the fuel gas inlet communication hole 38a for supplying fuel gas, the cooling medium outlet communication hole 36b for discharging the cooling medium, and the oxidation An oxidant gas outlet communication hole 34b for discharging the oxidant gas is provided. The fuel gas inlet communication hole 38a, the coolant outlet communication hole 36b, and the oxidant gas outlet communication hole 34b are arranged in the direction of arrow C.

第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔34aと酸化剤ガス出口連通孔34bとに連通する酸化剤ガス流路40が設けられる。酸化剤ガス流路40は、酸化剤ガスを矢印B方向に流通させる。   An oxidant gas flow path 40 communicating with the oxidant gas inlet communication hole 34a and the oxidant gas outlet communication hole 34b is provided on the surface 16a of the second separator 16 facing the electrolyte membrane / electrode structure 10 with a resin frame. . The oxidant gas flow path 40 circulates the oxidant gas in the arrow B direction.

第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔38aと燃料ガス出口連通孔38bとに連通する燃料ガス流路42が形成される。燃料ガス流路42は、燃料ガスを矢印B方向に流通させる。互いに隣接する第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔36aと冷却媒体出口連通孔36bとに連通する冷却媒体流路44が形成される。冷却媒体流路44は、冷却媒体を矢印B方向に流通させる。   A fuel gas passage 42 communicating with the fuel gas inlet communication hole 38a and the fuel gas outlet communication hole 38b is formed on the surface 14a of the first separator 14 facing the electrolyte membrane / electrode structure 10 with a resin frame. The fuel gas channel 42 circulates the fuel gas in the direction of arrow B. A cooling medium flow path 44 communicating with the cooling medium inlet communication hole 36a and the cooling medium outlet communication hole 36b is formed between the surface 14b of the first separator 14 and the surface 16b of the second separator 16 adjacent to each other. . The cooling medium flow path 44 causes the cooling medium to flow in the direction of arrow B.

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材46が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材48が一体化される。   As shown in FIGS. 1 and 2, the first seal member 46 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14. The second seal member 48 is integrated with the surfaces 16 a and 16 b of the second separator 16 around the outer peripheral end of the second separator 16.

図2に示すように、第1シール部材46は、樹脂枠付き電解質膜・電極構造体10を構成する樹脂枠部材24に当接する第1凸状シール46aと、第2セパレータ16の第2シール部材48に当接する第2凸状シール46bとを有する。第2シール部材48は、第2凸状シール46bに当接する面がセパレータ面に沿って平面状に延在する平面シールを構成する。なお、第2凸状シール46bに代えて、第2シール部材48に凸状シール(図示せず)を設けてもよい。   As shown in FIG. 2, the first seal member 46 includes a first convex seal 46 a that contacts the resin frame member 24 constituting the electrolyte membrane / electrode structure 10 with a resin frame, and a second seal of the second separator 16. And a second convex seal 46b in contact with the member 48. The second seal member 48 constitutes a flat seal in which the surface that contacts the second convex seal 46b extends in a flat shape along the separator surface. Note that a convex seal (not shown) may be provided on the second seal member 48 instead of the second convex seal 46b.

第1シール部材46及び第2シール部材48には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材が用いられる。   For the first seal member 46 and the second seal member 48, for example, EPDM, NBR, fluorine rubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber or the like, cushion material Alternatively, an elastic seal member such as a packing material is used.

次いで、樹脂枠付き電解質膜・電極構造体10を製造する第1の製法方法について、以下に説明する。   Next, a first manufacturing method for manufacturing the electrolyte membrane / electrode structure 10 with a resin frame will be described below.

先ず、段差MEAである電解質膜・電極構造体10aが作製される一方、樹脂枠部材24は、金型(図示せず)を用いて射出成形される。図4に示すように、樹脂枠部材24は、厚肉部24aと肉薄形状の内側膨出部24bとを一体に有する。厚肉部24aの内周部には、凹部24rが設けられる。電解質膜・電極構造体10aでは、凹部24rに連通する凹部20brが第1ガス拡散層20bの外周縁部に形成される。   First, the electrolyte membrane / electrode structure 10a that is the step MEA is manufactured, while the resin frame member 24 is injection-molded using a mold (not shown). As shown in FIG. 4, the resin frame member 24 integrally includes a thick portion 24a and a thin inner bulge portion 24b. A concave portion 24r is provided on the inner peripheral portion of the thick portion 24a. In the electrolyte membrane / electrode structure 10a, a recess 20br communicating with the recess 24r is formed at the outer peripheral edge of the first gas diffusion layer 20b.

次に、図5に示すように、電解質膜・電極構造体10aの樹脂枠接合部位には、第1フィルム部材28が、例えば、接着されて一体化される。第1フィルム部材28は、断面略Z字状を有し、内側端部28aと平坦部28bと外側端部28cは、カソード電極22の先端と固体高分子電解質膜18の外周縁部18beと前記固体高分子電解質膜18及びアノード電極20の先端に接着される。   Next, as shown in FIG. 5, the first film member 28 is bonded and integrated, for example, at the resin frame bonding portion of the electrolyte membrane / electrode structure 10 a. The first film member 28 has a substantially Z-shaped cross section, and the inner end portion 28a, the flat portion 28b, and the outer end portion 28c are the tip of the cathode electrode 22, the outer peripheral edge portion 18be of the solid polymer electrolyte membrane 18, and It is bonded to the tips of the solid polymer electrolyte membrane 18 and the anode electrode 20.

一方、樹脂枠部材24のMEA接合部位には、第2フィルム部材30が、例えば、溶着されて一体化される。第2フィルム部材30は、第3フィルム部材32を一体に設けるとともに、断面略L字状を有する。第2フィルム部材30の平坦部30aと外側端部30bは、樹脂枠部材24の内側膨出部24bと内周基端部24sに溶着される。第3フィルム部材32は、平坦部32a、32b同士が重なり合って外側端部30bに沿って直線状に延在する。具体的には、第3フィルム部材32は、切れ目32kが所定の長さに亘って形成されることにより、平坦部32a、32bが設けられる。   On the other hand, the second film member 30 is, for example, welded and integrated with the MEA joint portion of the resin frame member 24. The second film member 30 is provided with the third film member 32 integrally and has a substantially L-shaped cross section. The flat portion 30a and the outer end portion 30b of the second film member 30 are welded to the inner bulging portion 24b and the inner peripheral base end portion 24s of the resin frame member 24. The third film member 32 extends in a straight line along the outer end 30b with the flat portions 32a and 32b overlapping each other. Specifically, the third film member 32 is provided with flat portions 32a and 32b by forming a cut 32k over a predetermined length.

そして、電解質膜・電極構造体10aの外周部と樹脂枠部材24の内周部とが、位置合わせされる。具体的には、図6に示すように、第1フィルム部材28の平坦部28bに第2フィルム部材30の平坦部30aが重ねられるとともに、前記第1フィルム部材28の内側端部28aが前記平坦部30aの端面に当接する。さらに、第1フィルム部材28の外側端部28cが第2フィルム部材30の外側端部30bの内面に当接する。この状態で、第1フィルム部材28と第2フィルム部材30とは、溶着されることにより一体化される。   Then, the outer peripheral part of the electrolyte membrane / electrode structure 10a and the inner peripheral part of the resin frame member 24 are aligned. Specifically, as shown in FIG. 6, the flat portion 30 a of the second film member 30 is superimposed on the flat portion 28 b of the first film member 28, and the inner end portion 28 a of the first film member 28 is flat. It abuts on the end face of the portion 30a. Further, the outer end portion 28 c of the first film member 28 contacts the inner surface of the outer end portion 30 b of the second film member 30. In this state, the first film member 28 and the second film member 30 are integrated by welding.

次いで、図7に示すように、第3フィルム部材32では、切れ目32kに沿って分離させることにより、平坦部32a、32bが互いに離間する方向に屈曲される。平坦部32aは、第1ガス拡散層20bの凹部20brに配置される一方、平坦部32bは、樹脂枠部材24の凹部24rに配置される。平坦部32a、32bは、第1フィルム部材28及び第2フィルム部材30の接合部位を覆って一体に溶着される。なお、平坦部32a、32bの厚さは、凹部20br、24rの深さと同一寸法に設定されることが好ましい。   Next, as shown in FIG. 7, in the third film member 32, the flat portions 32a and 32b are bent in a direction away from each other by being separated along the cut line 32k. The flat portion 32a is disposed in the concave portion 20br of the first gas diffusion layer 20b, while the flat portion 32b is disposed in the concave portion 24r of the resin frame member 24. The flat portions 32a and 32b are integrally welded so as to cover the joint portion of the first film member 28 and the second film member 30. In addition, it is preferable that the thickness of the flat parts 32a and 32b is set to the same dimension as the depth of the recessed parts 20br and 24r.

従って、樹脂枠部材24と電解質膜・電極構造体10aとは、フィルム接合部26により一体に接合され、樹脂枠付き電解質膜・電極構造体10が製造される。   Therefore, the resin frame member 24 and the electrolyte membrane / electrode structure 10a are integrally joined by the film joining portion 26, and the electrolyte membrane / electrode structure 10 with a resin frame is manufactured.

樹脂枠付き電解質膜・電極構造体10は、図2に示すように、第1セパレータ14及び第2セパレータ16により挟持される。第2セパレータ16は、樹脂枠部材24の内側膨出部24bに当接し、第1セパレータ14とともに樹脂枠付き電解質膜・電極構造体10に荷重を付与する。さらに、燃料電池12は、所定数だけ積層されて燃料電池スタックが構成されるとともに、図示しないエンドプレート間に締め付け荷重が付与される。   As shown in FIG. 2, the resin membrane-attached electrolyte membrane / electrode structure 10 is sandwiched between the first separator 14 and the second separator 16. The second separator 16 abuts on the inner bulging portion 24 b of the resin frame member 24 and applies a load to the electrolyte membrane / electrode structure 10 with a resin frame together with the first separator 14. Furthermore, a predetermined number of fuel cells 12 are stacked to form a fuel cell stack, and a clamping load is applied between end plates (not shown).

このように構成される燃料電池12の動作について、以下に説明する。   The operation of the fuel cell 12 configured as described above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔34aには、酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔38aには、水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔36aには、純水やエチレングリコール、オイル等の冷却媒体が供給される。   First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 34a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 38a. Supplied. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 36a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔34aから第2セパレータ16の酸化剤ガス流路40に導入され、矢印B方向に移動して電解質膜・電極構造体10aのカソード電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔38aから第1セパレータ14の燃料ガス流路42に導入される。燃料ガスは、燃料ガス流路42に沿って矢印B方向に移動し、電解質膜・電極構造体10aのアノード電極20に供給される。   For this reason, the oxidant gas is introduced into the oxidant gas flow path 40 of the second separator 16 from the oxidant gas inlet communication hole 34a, and moves in the direction of arrow B to the cathode electrode 22 of the electrolyte membrane / electrode structure 10a. Supplied. On the other hand, the fuel gas is introduced into the fuel gas flow path 42 of the first separator 14 from the fuel gas inlet communication hole 38a. The fuel gas moves in the direction of arrow B along the fuel gas flow path 42 and is supplied to the anode electrode 20 of the electrolyte membrane / electrode structure 10a.

従って、各電解質膜・電極構造体10aでは、カソード電極22に供給される酸化剤ガスと、アノード電極20に供給される燃料ガスとが、第2電極触媒層22a及び第1電極触媒層20a内で電気化学反応により消費されて、発電が行われる。   Therefore, in each electrolyte membrane / electrode structure 10a, the oxidant gas supplied to the cathode electrode 22 and the fuel gas supplied to the anode electrode 20 are in the second electrode catalyst layer 22a and the first electrode catalyst layer 20a. Then, it is consumed by an electrochemical reaction to generate electricity.

次いで、カソード電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔34bに沿って矢印A方向に排出される。同様に、アノード電極20に供給されて消費された燃料ガスは、燃料ガス出口連通孔38bに沿って矢印A方向に排出される。   Next, the oxidant gas consumed by being supplied to the cathode electrode 22 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 34b. Similarly, the fuel gas consumed by being supplied to the anode electrode 20 is discharged in the direction of arrow A along the fuel gas outlet communication hole 38b.

また、冷却媒体入口連通孔36aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路44に導入された後、矢印B方向に流通する。この冷却媒体は、電解質膜・電極構造体10aを冷却した後、冷却媒体出口連通孔36bから排出される。   The cooling medium supplied to the cooling medium inlet communication hole 36 a is introduced into the cooling medium flow path 44 between the first separator 14 and the second separator 16 and then flows in the direction of arrow B. The cooling medium is discharged from the cooling medium outlet communication hole 36b after the electrolyte membrane / electrode structure 10a is cooled.

この場合、第1の実施形態では、図2及び図3に示すように、電解質膜・電極構造体10aに設けられた第1フィルム部材28と、樹脂枠部材24に設けられた第2フィルム部材30とが、一体に溶着されている。   In this case, in the first embodiment, as shown in FIGS. 2 and 3, the first film member 28 provided on the electrolyte membrane / electrode structure 10 a and the second film member provided on the resin frame member 24. 30 are welded together.

このため、電解質膜・電極構造体10aと樹脂枠部材24との接合は、第1フィルム部材28及び第2フィルム部材30同士を溶着させるだけでよく、接着剤等に比べて作業の簡素化が容易に図られる。従って、簡単な工程で、電解質膜・電極構造体10aと樹脂枠部材24とを強固且つ良好に接合することが可能になり、樹脂枠付き電解質膜・電極構造体10を効率的に製造することができるという効果が得られる。   For this reason, the joining of the electrolyte membrane / electrode structure 10a and the resin frame member 24 is only to weld the first film member 28 and the second film member 30 to each other. Easy to plan. Therefore, the electrolyte membrane / electrode structure 10a and the resin frame member 24 can be firmly and satisfactorily joined in a simple process, and the electrolyte membrane / electrode structure 10 with a resin frame can be efficiently manufactured. The effect of being able to be obtained.

図8は、本発明の第2の実施形態に係る製造方法により製造される樹脂枠付き電解質膜・電極構造体50の要部断面説明図である。なお、第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10と同一の構成要素には、同一の参照符号を付してその詳細な説明は省略する。また、以下に説明する第3の実施形態においても同様に、その詳細な説明は省略する。   FIG. 8 is an explanatory cross-sectional view of a main part of an electrolyte membrane / electrode structure 50 with a resin frame manufactured by the manufacturing method according to the second embodiment of the present invention. The same components as those in the resin frame-attached electrolyte membrane / electrode structure 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Similarly, in the third embodiment described below, detailed description thereof is omitted.

樹脂枠付き電解質膜・電極構造体50は、フィルム接合部52を備えるとともに、前記フィルム接合部52は、第2フィルム部材30に代えて第2フィルム部材54を有する。第2フィルム部材54は、2枚のフィルム54a、54bを備え、前記フィルム54a、54b同士を所定の長さまで接合させており、互いに離間した部分を第3フィルム部材32として構成する。樹脂枠付き電解質膜・電極構造体50は、第1の製造方法と同様に製造される。   The resin membrane-attached electrolyte membrane / electrode structure 50 includes a film bonding portion 52, and the film bonding portion 52 includes a second film member 54 instead of the second film member 30. The second film member 54 includes two films 54 a and 54 b, the films 54 a and 54 b are joined to a predetermined length, and a portion separated from each other is configured as the third film member 32. The electrolyte membrane / electrode structure 50 with a resin frame is manufactured in the same manner as in the first manufacturing method.

このように構成される第2の実施形態では、電解質膜・電極構造体10aに設けられた第1フィルム部材28と、樹脂枠部材24に設けられた第2フィルム部材54とが、一体に溶着されている。しかも、第2フィルム部材54には、先端側を離間させることにより、第3フィルム部材32が設けられている。従って、樹脂枠付き電解質膜・電極構造体50を効率的に製造することができる等、上記の第1の実施形態と同様の効果が得られる。   In the second embodiment configured as described above, the first film member 28 provided on the electrolyte membrane / electrode structure 10a and the second film member 54 provided on the resin frame member 24 are integrally welded. Has been. Moreover, the second film member 54 is provided with the third film member 32 by separating the front end side. Therefore, the same effects as those of the first embodiment can be obtained, for example, the resin membrane-attached electrolyte membrane / electrode structure 50 can be efficiently manufactured.

図9は、本発明の第3の実施形態に係る製造方法により製造される樹脂枠付き電解質膜・電極構造体60の要部断面説明図である。   FIG. 9 is an explanatory cross-sectional view of a main part of an electrolyte membrane / electrode structure 60 with a resin frame manufactured by the manufacturing method according to the third embodiment of the present invention.

樹脂枠付き電解質膜・電極構造体60は、フィルム接合部62を備えるとともに、前記フィルム接合部62は、第1フィルム部材28、第2フィルム部材64及び第3フィルム部材66をそれぞれ個別に有する。第2フィルム部材64は、断面略L字状を有し、第3フィルム部材66は、断面I字状の額縁形状を有する。   The resin membrane-attached electrolyte membrane / electrode structure 60 includes a film bonding portion 62, and the film bonding portion 62 has a first film member 28, a second film member 64, and a third film member 66, respectively. The second film member 64 has a substantially L-shaped cross section, and the third film member 66 has a frame shape having an I-shaped cross section.

次いで、樹脂枠付き電解質膜・電極構造体60を製造する第3の製法方法について、以下に説明する。   Next, a third manufacturing method for manufacturing the electrolyte membrane / electrode structure 60 with a resin frame will be described below.

図10に示すように、電解質膜・電極構造体10aの樹脂枠接合部位には、第1フィルム部材28が、例えば、接着される。一方、樹脂枠部材24のMEA接合部位には、第2フィルム部材64が、例えば、溶着される。   As shown in FIG. 10, the 1st film member 28 is adhere | attached on the resin frame joining site | part of the electrolyte membrane and electrode structure 10a, for example. On the other hand, the second film member 64 is welded to the MEA joint portion of the resin frame member 24, for example.

そして、図11に示すように、第1フィルム部材28に第2フィルム部材64が重ねられるとともに、前記第1フィルム部材28と前記第2フィルム部材64とは、溶着されることにより一体化される。   And as shown in FIG. 11, while the 2nd film member 64 is piled up on the 1st film member 28, the said 1st film member 28 and the said 2nd film member 64 are integrated by welding. .

次に、第3フィルム部材66が、第1ガス拡散層20bの凹部20brと樹脂枠部材24の凹部24rとに一体に配置される。図12に示すように、第3フィルム部材66は、第1フィルム部材28及び第2フィルム部材64の接合部位を覆って一体に溶着される。従って、樹脂枠部材24と電解質膜・電極構造体10aとは、フィルム接合部62により一体に接合され、樹脂枠付き電解質膜・電極構造体60が製造される。   Next, the third film member 66 is integrally disposed in the recess 20br of the first gas diffusion layer 20b and the recess 24r of the resin frame member 24. As shown in FIG. 12, the third film member 66 is integrally welded so as to cover the joint portion of the first film member 28 and the second film member 64. Therefore, the resin frame member 24 and the electrolyte membrane / electrode structure 10a are integrally joined by the film joining portion 62, and the electrolyte membrane / electrode structure 60 with a resin frame is manufactured.

これにより、第3の実施形態では、上記の第1及び第2の実施形態と同様の効果が得られる。   Thereby, in 3rd Embodiment, the effect similar to said 1st and 2nd embodiment is acquired.

なお、第1〜第3の実施形態では、燃料電池12は、1枚のMEAを一対のセパレータにより挟持して構成されているが、これに限定されるものではない。例えば、第1セパレータ、第1MEA、第2セパレータ、第2MEA及び第3セパレータの順に積層された発電ユニットを有し、各発電ユニット間に冷却媒体流路が形成される、所謂、間引き冷却構造の燃料電池を採用してもよい。   In the first to third embodiments, the fuel cell 12 is configured by sandwiching one MEA with a pair of separators, but is not limited thereto. For example, it has a power generation unit in which a first separator, a first MEA, a second separator, a second MEA, and a third separator are stacked in this order, and a cooling medium flow path is formed between the power generation units. A fuel cell may be employed.

10、50、60…樹脂枠付き電解質膜・電極構造体
10a…電解質膜・電極構造体 12…燃料電池
14、16…セパレータ 18…固体高分子電解質膜
20…アノード電極 20a、22a…電極触媒層
20b、22b…ガス拡散層 20br、24r…凹部
22…カソード電極 24…樹脂枠部材
24a…厚肉部 24b…内側膨出部
24s…内周基端部 26、52、62…フィルム接合部
28、30、32、54、64、66…フィルム部材
34a…酸化剤ガス入口連通孔 34b…酸化剤ガス出口連通孔
36a…冷却媒体入口連通孔 36b…冷却媒体出口連通孔
38a…燃料ガス入口連通孔 38b…燃料ガス出口連通孔
40…酸化剤ガス流路 42…燃料ガス流路
44…冷却媒体流路 46、48…シール部材
54a、54b…フィルム
DESCRIPTION OF SYMBOLS 10, 50, 60 ... Electrolyte membrane / electrode structure 10a with resin frame ... Electrolyte membrane / electrode structure 12 ... Fuel cell 14, 16 ... Separator 18 ... Solid polymer electrolyte membrane 20 ... Anode electrode 20a, 22a ... Electrode catalyst layer 20b, 22b ... Gas diffusion layer 20br, 24r ... Recess 22 ... Cathode electrode 24 ... Resin frame member 24a ... Thick part 24b ... Inner bulging part 24s ... Inner peripheral base end part 26, 52, 62 ... Film joint part 28, 30, 32, 54, 64, 66 ... film member 34a ... oxidant gas inlet communication hole 34b ... oxidant gas outlet communication hole 36a ... cooling medium inlet communication hole 36b ... cooling medium outlet communication hole 38a ... fuel gas inlet communication hole 38b ... fuel Gas outlet communication hole 40 ... Oxidant gas passage 42 ... Fuel gas passage 44 ... Cooling medium passage 46, 48 ... Seal members 54a, 54b ... Film

Claims (4)

固体高分子電解質膜の両面に電極が設けられる電解質膜・電極構造体と、
前記固体高分子電解質膜の外周を周回して前記電解質膜・電極構造体に設けられる樹脂枠部材と、
を備える燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法であって、
前記電解質膜・電極構造体の樹脂枠接合部位に第1フィルム部材を設ける工程と、
前記樹脂枠部材のMEA接合部位に第2フィルム部材を設ける工程と、
前記第1フィルム部材及び前記第2フィルム部材を一体に溶着させる工程と、
を有することを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法。
An electrolyte membrane / electrode structure in which electrodes are provided on both sides of the solid polymer electrolyte membrane;
A resin frame member provided around the electrolyte membrane / electrode structure around the outer periphery of the solid polymer electrolyte membrane;
A method for producing an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising:
Providing a first film member at a resin frame joining portion of the electrolyte membrane / electrode structure;
Providing a second film member at the MEA bonding site of the resin frame member;
A step of integrally welding the first film member and the second film member;
A method for producing an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising:
請求項1記載の製造方法において、前記第1フィルム部材及び前記第2フィルム部材の接合部位を覆って第3フィルム部材を一体に溶着させる工程を有することを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法。   2. The manufacturing method according to claim 1, further comprising a step of integrally welding a third film member so as to cover a joint portion between the first film member and the second film member. Manufacturing method of membrane / electrode structure. 請求項2記載の製造方法において、前記第3フィルム部材は、前記第1フィルム部材又は前記第2フィルム部材と一体に設けられることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法。   3. The manufacturing method according to claim 2, wherein the third film member is provided integrally with the first film member or the second film member. Production method. 請求項1〜3のいずれか1項に記載の製造方法において、前記電解質膜・電極構造体は、一方の前記電極の平面寸法が、他方の前記電極の平面寸法よりも大きな寸法に設定される段差MEAであることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法。   In the manufacturing method according to any one of claims 1 to 3, in the electrolyte membrane / electrode structure, a planar dimension of one of the electrodes is set to a dimension larger than a planar dimension of the other electrode. A method for producing an electrolyte membrane / electrode structure with a resin frame for a fuel cell, which is a step MEA.
JP2014228045A 2014-11-10 2014-11-10 Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery Pending JP2016091936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014228045A JP2016091936A (en) 2014-11-10 2014-11-10 Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014228045A JP2016091936A (en) 2014-11-10 2014-11-10 Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery

Publications (1)

Publication Number Publication Date
JP2016091936A true JP2016091936A (en) 2016-05-23

Family

ID=56016329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228045A Pending JP2016091936A (en) 2014-11-10 2014-11-10 Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery

Country Status (1)

Country Link
JP (1) JP2016091936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119885A (en) * 2019-01-18 2020-08-06 本田技研工業株式会社 Method of producing frame equipped electrolyte membrane/electrode assembly, frame equipped electrolyte membrane/electrode assembly, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119885A (en) * 2019-01-18 2020-08-06 本田技研工業株式会社 Method of producing frame equipped electrolyte membrane/electrode assembly, frame equipped electrolyte membrane/electrode assembly, and fuel cell
JP7050038B2 (en) 2019-01-18 2022-04-07 本田技研工業株式会社 Manufacturing method of electrolyte membrane / electrode structure with frame, electrolyte membrane / electrode structure with frame and fuel cell

Similar Documents

Publication Publication Date Title
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5683433B2 (en) Fuel cell stack
JP2018097917A (en) Resin frame-attached electrolyte membrane-electrode structure and method of manufacturing the same
JP2019153585A (en) Electrolyte membrane-electrode structure with frame and method of manufacturing the same, and fuel cell
JP5778044B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2017168364A (en) Step difference mea with resin frame for fuel cell and manufacturing method of the same
JP6618762B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP6100225B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6090791B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2017068956A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP6092053B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2016058161A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6144650B2 (en) Manufacturing method of fuel cell
JP2013258097A (en) Electrolyte membrane/electrode structure and manufacturing method thereof
JP2017147101A (en) Fuel battery
JP6158758B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6666665B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6170868B2 (en) Fuel cell
JP2016091936A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP2017016758A (en) Fuel cell
JP6559969B2 (en) Fuel cell
JP2016012435A (en) Manufacturing method of fuel cell
JP6621605B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6090799B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells