JP6618762B2 - Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof - Google Patents

Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof Download PDF

Info

Publication number
JP6618762B2
JP6618762B2 JP2015207259A JP2015207259A JP6618762B2 JP 6618762 B2 JP6618762 B2 JP 6618762B2 JP 2015207259 A JP2015207259 A JP 2015207259A JP 2015207259 A JP2015207259 A JP 2015207259A JP 6618762 B2 JP6618762 B2 JP 6618762B2
Authority
JP
Japan
Prior art keywords
resin
resin frame
electrolyte membrane
frame member
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015207259A
Other languages
Japanese (ja)
Other versions
JP2017079170A (en
Inventor
優 大森
優 大森
之人 田中
之人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015207259A priority Critical patent/JP6618762B2/en
Priority to CN201910652989.7A priority patent/CN110380080B/en
Priority to CN201610902948.5A priority patent/CN106611864B/en
Priority to US15/296,618 priority patent/US10665873B2/en
Publication of JP2017079170A publication Critical patent/JP2017079170A/en
Application granted granted Critical
Publication of JP6618762B2 publication Critical patent/JP6618762B2/en
Priority to US16/849,331 priority patent/US11094947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子電解質膜を平面寸法の異なる第1電極及び第2電極で挟んだ段差MEAと、前記段差MEAの外周を周回する樹脂枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法に関する。   The present invention provides an electrolyte membrane with a resin frame for a fuel cell, comprising: a step MEA sandwiching a solid polymer electrolyte membrane between a first electrode and a second electrode having different planar dimensions; and a resin frame member that goes around the outer periphery of the step MEA. -It is related with an electrode structure and its manufacturing method.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。燃料電池は、固体高分子電解質膜の一方の面にアノード電極が、前記固体高分子電解質膜の他方の面にカソード電極が、それぞれ配設された電解質膜・電極構造体(MEA)を備えている。アノード電極及びカソード電極は、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とを有している。   In general, a polymer electrolyte fuel cell employs a polymer electrolyte membrane made of a polymer ion exchange membrane. The fuel cell includes an electrolyte membrane / electrode structure (MEA) in which an anode electrode is disposed on one surface of a solid polymer electrolyte membrane and a cathode electrode is disposed on the other surface of the solid polymer electrolyte membrane. Yes. The anode electrode and the cathode electrode each have a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon).

電解質膜・電極構造体は、セパレータ(バイポーラ板)によって挟持されることにより、発電セル(単位燃料電池)が構成されている。発電セルは、所定の数だけ積層することにより、例えば、車載用燃料電池スタックとして使用されている。   The electrolyte membrane / electrode structure is sandwiched between separators (bipolar plates) to form a power generation cell (unit fuel cell). The power generation cells are used as, for example, an in-vehicle fuel cell stack by stacking a predetermined number of power generation cells.

電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな平面寸法に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と同一の平面寸法に設定される、所謂、段差MEAを構成する場合がある。その際、比較的高価な固体高分子電解質膜の使用量を削減させるとともに、薄膜状で強度が低い前記固体高分子電解質膜を保護するために、外周に樹脂枠部材を組み込んだ樹脂枠付きMEAが採用されている。   In the electrolyte membrane / electrode structure, one gas diffusion layer is set to a plane size smaller than that of the solid polymer electrolyte membrane, and the other gas diffusion layer is set to the same plane size as the solid polymer electrolyte membrane. In other words, a so-called step MEA may be formed. At that time, in order to reduce the amount of use of a relatively expensive solid polymer electrolyte membrane and to protect the solid polymer electrolyte membrane having a thin film shape and low strength, an MEA with a resin frame incorporating a resin frame member on the outer periphery Is adopted.

樹脂枠付きMEAとして、例えば、特許文献1に開示されている燃料電池用電解質膜・電極構造体及びその製造方法が知られている。この電解質膜・電極構造体では、固体高分子電解質膜の外周を周回して樹脂製枠部材が設けられるとともに、前記樹脂製枠部材と、少なくとも第1電極の外周縁部又は前記第2電極の外周縁部のいずれか一方とを一体に接合させる含浸部を有している。   As an MEA with a resin frame, for example, an electrolyte membrane / electrode structure for a fuel cell and a method for producing the same disclosed in Patent Document 1 are known. In this electrolyte membrane / electrode structure, a resin frame member is provided around the outer periphery of the solid polymer electrolyte membrane, and the resin frame member and at least the outer peripheral edge of the first electrode or the second electrode It has an impregnation part which joins any one of an outer peripheral part integrally.

国際公開第2012/137609号パンフレットInternational Publication No. 2012/137609 Pamphlet

ところで、樹脂製枠部材を溶融して含浸部を設ける場合、前記樹脂製枠部材には、高温の熱が入力されている。このため、樹脂製枠部材には、熱による変形や溶融等が発生し易く、表面に凹凸が形成されるおそれがある。その際、樹脂製枠部材の外周縁部には、セパレータのシール部材が接触する場合がある。従って、樹脂製枠部材の表面に凹凸が存在すると、前記樹脂製枠部材とシール部材との接触面(シール面)に隙間が惹起され、反応ガスや冷却媒体の漏れが発生するという問題がある。   By the way, when the resin frame member is melted to provide the impregnation portion, high temperature heat is input to the resin frame member. For this reason, the resin frame member is likely to be deformed or melted by heat, and there is a risk that irregularities are formed on the surface. At this time, the seal member of the separator may come into contact with the outer peripheral edge of the resin frame member. Therefore, if there are irregularities on the surface of the resin frame member, there is a problem that a clearance is caused on the contact surface (seal surface) between the resin frame member and the seal member, and leakage of the reaction gas and the cooling medium occurs. .

本発明は、この種の問題を解決するものであり、樹脂溶融部を設ける際に、樹脂枠部材の外周表面が熱に影響されることがなく、前記樹脂枠部材上に良好なシール面を確保することが可能な燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法を提供することを目的とする。   The present invention solves this type of problem, and when the resin melting portion is provided, the outer peripheral surface of the resin frame member is not affected by heat, and a good sealing surface is formed on the resin frame member. It is an object of the present invention to provide an electrolyte membrane / electrode structure with a resin frame for a fuel cell and a method for producing the same.

本発明に係る燃料電池用樹脂枠付き電解質膜・電極構造体は、段差MEAと樹脂枠部材とを備えている。段差MEAでは、固体高分子電解質膜の一方の面には、第1電極触媒層及び第1ガス拡散層を有する第1電極が設けられ、前記固体高分子電解質膜の他方の面には、第2電極触媒層及び第2ガス拡散層を有する第2電極が設けられている。第1電極の平面寸法は、第2電極の平面寸法よりも大きな寸法に設定されている。樹脂枠部材は、固体高分子電解質膜の外周を周回して設けられている。   An electrolyte membrane / electrode structure with a resin frame for a fuel cell according to the present invention includes a step MEA and a resin frame member. In the step MEA, a first electrode having a first electrode catalyst layer and a first gas diffusion layer is provided on one surface of the solid polymer electrolyte membrane, and the other surface of the solid polymer electrolyte membrane is provided with a first electrode. A second electrode having a two-electrode catalyst layer and a second gas diffusion layer is provided. The planar dimension of the first electrode is set to be larger than the planar dimension of the second electrode. The resin frame member is provided around the outer periphery of the solid polymer electrolyte membrane.

そして、樹脂枠部材には、一部が第1ガス拡散層の内部に含浸された樹脂含浸部を有する樹脂溶融部が設けられるとともに、前記樹脂枠部材の最外周には、前記樹脂溶融部の最外周に、段差部を介して厚さ方向に該樹脂溶融部よりも薄い薄肉部が設けられ、前記樹脂溶融部は、前記樹脂枠部材の一方の面側に位置して前記樹脂含浸部に対して外周側に隣接する第1部位と、前記第1部位に対して前記樹脂枠部材の他方の面側に隣接する第2部位と、を含み、前記薄肉部は、前記第2部位に対して外周側に隣接し、前記第1部位は、前記薄肉部に対して前記段差部の高さ分だけ前記厚さ方向に突出しており、前記第1ガス拡散層は、傾斜面を介して前記樹脂含浸部に向かって傾斜するとともに薄肉状に形成された傾斜薄肉部を有している。
また、前記樹脂枠部材は、前記固体高分子電解質膜の他方の面に接触するとともに前記樹脂溶融部から前記傾斜薄肉部に対応する位置まで延出した延出部を有することが好ましい。
Then, the resin frame member, together with part of the resin melt portion having a resin-impregnated part immersed including within the first gas diffusion layer is provided, in the outermost periphery of the resin frame member, the resin melting portion A thin-walled portion thinner than the resin melt portion is provided in the thickness direction through a step portion on the outermost periphery of the resin frame, and the resin melt portion is located on one surface side of the resin frame member. A first portion adjacent to the outer peripheral side with respect to the first portion, and a second portion adjacent to the other surface side of the resin frame member with respect to the first portion. On the other hand, adjacent to the outer peripheral side, the first portion protrudes in the thickness direction by the height of the stepped portion with respect to the thin portion, and the first gas diffusion layer passes through an inclined surface. It has an inclined thin portion that is inclined toward the resin impregnated portion and is formed in a thin shape.
Moreover, it is preferable that the said resin frame member has the extension part extended to the position corresponding to the said inclination thin part from the said resin fusion | melting part while contacting the other surface of the said solid polymer electrolyte membrane.

また、本発明に係る燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法では、第1ガス拡散層の外周よりも外方に位置し、厚さ方向に突出する突起部が設けられた樹脂枠部材が作製される。さらに、樹脂枠部材の内周側に段差MEAが配置された後、可動金型の加熱面により突起部を溶融させる溶融工程を有する。これにより、一部が第1ガス拡散層の内部に含浸された樹脂含浸部と、前記樹脂枠部材の一方の面側に位置して前記樹脂含浸部に対して外周側に隣接する第1部位と、前記第1部位に対して前記樹脂枠部材の他方の面側に隣接する第2部位とを有する樹脂溶融部を設けるとともに、樹脂枠部材の最外周には、前記樹脂溶融部の最外周に、段差部を介して厚さ方向に該樹脂溶融部よりも薄い薄肉部が設けられる。前記溶融工程では、前記第1部位が、前記薄肉部に対して前記段差部の高さ分だけ前記厚さ方向に突出するように設けられ、傾斜面を介して前記樹脂含浸部に向かって傾斜するとともに薄肉状に形成された傾斜薄肉部が前記第1ガス拡散層に形成される。
Further, in the method for manufacturing an electrolyte membrane / electrode structure with a resin frame for a fuel cell according to the present invention, a protrusion is provided which is located outward from the outer periphery of the first gas diffusion layer and protrudes in the thickness direction. A resin frame member is produced. Further, after the step MEA is arranged on the inner peripheral side of the resin frame member, there is a melting step of melting the protrusion by the heating surface of the movable mold. Accordingly, a resin-impregnated part partially impregnated inside the first gas diffusion layer, and a first part located on one surface side of the resin frame member and adjacent to the outer peripheral side with respect to the resin-impregnated part And a resin melt part having a second part adjacent to the other surface side of the resin frame member with respect to the first part, and an outermost periphery of the resin melt part at an outermost periphery of the resin frame member In addition, a thin part thinner than the resin melt part is provided in the thickness direction through the step part. In the melting step, the first portion is provided to protrude in the thickness direction by the height of the stepped portion with respect to the thin portion, and is inclined toward the resin-impregnated portion through an inclined surface. In addition, an inclined thin part formed in a thin shape is formed in the first gas diffusion layer.

さらにまた、この製造方法では、樹脂枠部材には、突起部よりも外方に位置し、該突起部よりも厚さ方向に薄く且つ樹脂溶融部に埋設される土手部が設けられ、前記土手部は、前記樹脂枠部材の最外周よりも前記突起部の突出方向に突出していることが好ましい。
Furthermore, in this manufacturing method, the resin frame member is located outward from the protrusion, the bank portion is provided to be embedded in thin and resin melting portion in the thickness direction than the protrusion portion, the bank parts are Rukoto protrude in the protruding direction of the protruding portion than the outermost periphery of the resin frame member is preferred.

本発明によれば、樹脂枠部材の最外周には、樹脂溶融部の最外周に、段差部を介して厚さ方向に該樹脂溶融部よりも薄い薄肉部が設けられている。このため、樹脂溶融部が形成される際、入熱による熱が樹脂枠部材の最外周に伝わり難くなり、該熱による変形や溶融等が発生することを阻止することができる。従って、樹脂溶融部を設ける際に、樹脂枠部材の外周表面が熱に影響されることがなく、前記樹脂枠部材上に良好なシール面を確保することが可能になる。   According to the present invention, the outermost periphery of the resin frame member is provided with a thin portion thinner than the resin melted portion in the thickness direction via the stepped portion on the outermost periphery of the resin melted portion. For this reason, when the resin melted portion is formed, heat due to heat input is hardly transmitted to the outermost periphery of the resin frame member, and it is possible to prevent deformation or melting due to the heat. Therefore, when the resin melted portion is provided, the outer peripheral surface of the resin frame member is not affected by heat, and a good seal surface can be secured on the resin frame member.

本発明の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型発電セルの要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of a polymer electrolyte power generation cell in which an electrolyte membrane / electrode structure with a resin frame according to an embodiment of the present invention is incorporated. 前記発電セルの、図1中、II−II線断面説明図である。It is II-II sectional view explanatory drawing in FIG. 1 of the said electric power generation cell. 前記樹脂枠付き電解質膜・電極構造体の要部断面説明図である。It is principal part cross-sectional explanatory drawing of the said electrolyte membrane and electrode structure with a resin frame. 前記樹脂枠付き電解質膜・電極構造体を構成する樹脂枠部材の一部断面斜視説明図である。It is a partial cross section perspective explanatory drawing of the resin frame member which comprises the said electrolyte membrane with a resin frame and electrode structure. 樹脂突起部を溶融して樹脂溶融部を形成する接合装置の説明図である。It is explanatory drawing of the joining apparatus which fuse | melts a resin projection part and forms a resin fusion | melting part. 前記接合装置による動作説明図である。It is operation | movement explanatory drawing by the said joining apparatus.

図1及び図2に示すように、本発明の実施形態に係る樹脂枠付き電解質膜・電極構造体10は、横長(又は縦長)の長方形状の固体高分子型発電セル12に組み込まれる。複数の発電セル12は、例えば、矢印A方向(水平方向)又は矢印C方向(重力方向)に積層されて燃料電池スタックが構成される。燃料電池スタックは、例えば、車載用燃料電池スタックとして燃料電池電気自動車(図示せず)に搭載される。   As shown in FIGS. 1 and 2, an electrolyte membrane / electrode structure 10 with a resin frame according to an embodiment of the present invention is incorporated into a horizontally long (or vertically long) rectangular solid polymer power generation cell 12. The plurality of power generation cells 12 are stacked in, for example, an arrow A direction (horizontal direction) or an arrow C direction (gravity direction) to form a fuel cell stack. The fuel cell stack is mounted on, for example, a fuel cell electric vehicle (not shown) as an in-vehicle fuel cell stack.

発電セル12は、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、横長(又は縦長)の長方形状を有する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成される。   The power generation cell 12 sandwiches the electrolyte membrane / electrode structure 10 with a resin frame between the first separator 14 and the second separator 16. The first separator 14 and the second separator 16 have a horizontally long (or vertically long) rectangular shape. The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plating-treated steel plate, a metal plate whose surface is subjected to anticorrosion treatment, a carbon member, or the like.

長方形状の樹脂枠付き電解質膜・電極構造体10は、図1〜図3に示すように、段差MEA10aを備える。段差MEA10aは、例えば、水分を含んだパーフルオロスルホン酸の薄膜である固体高分子電解質膜(陽イオン交換膜)18を有する。固体高分子電解質膜18は、アノード電極(第1電極)20及びカソード電極(第2電極)22に挟持される。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質を使用することができる。   The electrolyte membrane / electrode structure 10 with a rectangular resin frame includes a step MEA 10a as shown in FIGS. The step MEA 10a includes, for example, a solid polymer electrolyte membrane (cation exchange membrane) 18 that is a thin film of perfluorosulfonic acid containing moisture. The solid polymer electrolyte membrane 18 is sandwiched between an anode electrode (first electrode) 20 and a cathode electrode (second electrode) 22. The solid polymer electrolyte membrane 18 can use an HC (hydrocarbon) electrolyte in addition to the fluorine electrolyte.

カソード電極22は、固体高分子電解質膜18及びアノード電極20よりも小さな平面寸法(外形寸法)を有する。なお、上記の構成に代えて、アノード電極20は、固体高分子電解質膜18及びカソード電極22よりも小さな平面寸法を有するように構成してもよい。その際、アノード電極20は、第2電極となり、カソード電極22は、第1電極となる。   The cathode electrode 22 has a smaller planar dimension (outer dimension) than the solid polymer electrolyte membrane 18 and the anode electrode 20. Instead of the above configuration, the anode electrode 20 may be configured to have a smaller planar dimension than the solid polymer electrolyte membrane 18 and the cathode electrode 22. At that time, the anode electrode 20 becomes the second electrode, and the cathode electrode 22 becomes the first electrode.

図2及び図3に示すように、アノード電極20は、固体高分子電解質膜18の一方の面18aに接合される第1電極触媒層20aと、前記第1電極触媒層20aに積層される第1ガス拡散層20bとを設ける。第1電極触媒層20a及び第1ガス拡散層20bは、同一の平面寸法を有するとともに、固体高分子電解質膜18と同一(又は同一未満)の平面寸法に設定される。   As shown in FIGS. 2 and 3, the anode electrode 20 includes a first electrode catalyst layer 20a bonded to one surface 18a of the solid polymer electrolyte membrane 18, and a first electrode catalyst layer 20a laminated on the first electrode catalyst layer 20a. 1 gas diffusion layer 20b is provided. The first electrode catalyst layer 20a and the first gas diffusion layer 20b have the same planar dimensions and are set to the same (or less than) the same planar dimensions as the solid polymer electrolyte membrane 18.

カソード電極22は、固体高分子電解質膜18の面18bに接合される第2電極触媒層22aと、前記第2電極触媒層22aに積層される第2ガス拡散層22bとを設ける。第2電極触媒層22aは、第2ガス拡散層22bの外周端面22beから外方に突出しており、前記第2ガス拡散層22bよりも大きな平面寸法を有するとともに、固体高分子電解質膜18よりも小さな平面寸法に設定される。   The cathode electrode 22 includes a second electrode catalyst layer 22a bonded to the surface 18b of the solid polymer electrolyte membrane 18, and a second gas diffusion layer 22b stacked on the second electrode catalyst layer 22a. The second electrode catalyst layer 22a protrudes outward from the outer peripheral end face 22be of the second gas diffusion layer 22b, has a larger planar dimension than the second gas diffusion layer 22b, and is larger than the solid polymer electrolyte membrane 18. Set to small planar dimensions.

なお、第2電極触媒層22aと第2ガス拡散層22bとは、同一の平面寸法に設定されてもよく、前記第2電極触媒層22aは、前記第2ガス拡散層22bよりも小さな平面寸法を有してもよい。   The second electrode catalyst layer 22a and the second gas diffusion layer 22b may be set to the same plane dimension, and the second electrode catalyst layer 22a is smaller in plane dimension than the second gas diffusion layer 22b. You may have.

第1電極触媒層20aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第1ガス拡散層20bの表面に一様に塗布されて形成される。第2電極触媒層22aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第2ガス拡散層22bの表面に一様に塗布されて形成される。   The first electrode catalyst layer 20a is formed, for example, by uniformly applying porous carbon particles having a platinum alloy supported on the surface thereof to the surface of the first gas diffusion layer 20b together with an ion conductive polymer binder. The second electrode catalyst layer 22a is formed, for example, by applying porous carbon particles having a platinum alloy supported on the surface thereof to the surface of the second gas diffusion layer 22b together with an ion conductive polymer binder.

第1ガス拡散層20b及び第2ガス拡散層22bは、カーボンペーパ又はカーボンクロス等から形成される。第2ガス拡散層22bの平面寸法は、第1ガス拡散層20bの平面寸法よりも小さく設定される。第1電極触媒層20a及び第2電極触媒層22aは、固体高分子電解質膜18の両面に形成される。   The first gas diffusion layer 20b and the second gas diffusion layer 22b are formed of carbon paper, carbon cloth, or the like. The planar dimension of the second gas diffusion layer 22b is set smaller than the planar dimension of the first gas diffusion layer 20b. The first electrode catalyst layer 20 a and the second electrode catalyst layer 22 a are formed on both surfaces of the solid polymer electrolyte membrane 18.

樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、アノード電極20及びカソード電極22に接合される樹脂枠部材(樹脂フィルムも含む)24を備える。   The electrolyte membrane / electrode structure 10 with a resin frame includes a resin frame member (including a resin film) 24 that circulates around the outer periphery of the solid polymer electrolyte membrane 18 and is bonded to the anode electrode 20 and the cathode electrode 22.

樹脂枠部材24は、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーン樹脂、フッ素樹脂、m−PPE(変性ポリフェニレンエーテル樹脂)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)又は変性ポリオレフィン等で構成される。   The resin frame member 24 includes, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyethersulfone), LCP (liquid crystal polymer), PVDF (polyvinylidene fluoride), Silicone resin, fluororesin, m-PPE (modified polyphenylene ether resin), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), modified polyolefin, or the like.

樹脂枠部材24は、枠形状を有するとともに、図3に示すように、外周端部から内方に所定の長さに亘って厚さt1を有する薄肉部24aを有する。樹脂枠部材24には、内側段差24sを介してカソード電極22側に膨出する薄肉状に形成された内側膨出部24bが設けられる。内側膨出部24bは、内側角部にR(湾曲面)が設けられる内周端面24beを有する。   The resin frame member 24 has a frame shape and, as shown in FIG. 3, a thin portion 24a having a thickness t1 extending inward from the outer peripheral end portion over a predetermined length. The resin frame member 24 is provided with an inner bulging portion 24b formed in a thin shape that bulges toward the cathode electrode 22 through the inner step 24s. The inner bulging portion 24b has an inner peripheral end surface 24be provided with an R (curved surface) at the inner corner.

図3に示すように、薄肉部24aの外周シール面24fに連なる面には、後述するように、樹脂突起部24tを溶融させることにより、額縁状の樹脂溶融部26が形成される。樹脂溶融部26は、一部がアノード電極20を構成する第1ガス拡散層20bの外周縁部に含浸された額縁状の樹脂含浸部26aを有し、前記樹脂溶融部26は、最外周から樹脂含浸部26aに亘って段差のない平坦面を構成する。樹脂枠部材24には、樹脂突起部24tよりも外方に位置し、前記樹脂突起部24tよりも厚さ方向に薄く且つ該樹脂突起部24tを溶融させることにより樹脂溶融部26に埋設される枠状の土手部24dが設けられる。樹脂枠部材24の最外周には、樹脂溶融部26の最外周に段差部26sを介して厚さ方向に前記樹脂溶融部26よりも薄い薄肉部24aが設けられる。   As shown in FIG. 3, a frame-shaped resin melted portion 26 is formed on the surface of the thin-walled portion 24a connected to the outer peripheral seal surface 24f by melting the resin protrusion 24t, as will be described later. The resin melting part 26 has a frame-shaped resin impregnated part 26a partially impregnated in the outer peripheral edge part of the first gas diffusion layer 20b constituting the anode electrode 20, and the resin melting part 26 is formed from the outermost periphery. A flat surface having no step is formed across the resin-impregnated portion 26a. The resin frame member 24 is located outside the resin projection 24t, is thinner in the thickness direction than the resin projection 24t, and is embedded in the resin melting portion 26 by melting the resin projection 24t. A frame-shaped bank portion 24d is provided. On the outermost periphery of the resin frame member 24, a thin-walled portion 24a thinner than the resin melted portion 26 in the thickness direction is provided on the outermost periphery of the resin melted portion 26 via a step portion 26s.

薄肉部24aは、厚さt1を有する一方、樹脂溶融部26は、前記薄肉部24aの表面である外周シール面24fから厚さt2だけ肉厚となり、全体として厚さt3に設定される。樹脂溶融部26の表面は、第1ガス拡散層20bの表面から厚さt4だけ薄肉に形成される。第1ガス拡散層20bは、傾斜面20brを介して樹脂含浸部26aに向かって内方に傾斜し、薄肉状に形成される。   The thin portion 24a has a thickness t1, while the resin melted portion 26 has a thickness t2 from the outer peripheral seal surface 24f, which is the surface of the thin portion 24a, and is set to a thickness t3 as a whole. The surface of the resin melted portion 26 is formed thin from the surface of the first gas diffusion layer 20b by a thickness t4. The first gas diffusion layer 20b is inclined inward toward the resin-impregnated portion 26a via the inclined surface 20br and is formed in a thin shape.

樹脂突起部24tの溶融起点Pから樹脂溶融部26(樹脂含浸部26a)の内周端部までの距離S1、前記溶融起点Pから第1ガス拡散層20bの薄肉状起点までの距離S2及び前記溶融起点Pから内側段差24sまでの距離S3が設定される。具体的には、距離S1<距離S2<距離S3の関係に設定される。   The distance S1 from the melting starting point P of the resin protrusion 24t to the inner peripheral end of the resin melting part 26 (resin impregnating part 26a), the distance S2 from the melting starting point P to the thin-walled starting point of the first gas diffusion layer 20b, and the above A distance S3 from the melting starting point P to the inner step 24s is set. Specifically, the relationship of distance S1 <distance S2 <distance S3 is set.

図2及び図3に示すように、内側膨出部24bと段差MEA10aとの間には、充填室27が設けられるとともに、前記充填室27には、接着剤層28が形成される。接着剤層28には、接着剤として、例えば、液状シールやホットメルト剤が設けられる。なお、接着剤としては、液体や固体、熱可塑性や熱硬化性等に制限されない。   As shown in FIGS. 2 and 3, a filling chamber 27 is provided between the inner bulging portion 24 b and the step MEA 10 a, and an adhesive layer 28 is formed in the filling chamber 27. For example, a liquid seal or a hot melt agent is provided on the adhesive layer 28 as an adhesive. In addition, as an adhesive agent, it is not restrict | limited to liquid, solid, thermoplasticity, thermosetting, etc.

図1に示すように、発電セル12の矢印B方向(水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bが設けられる。酸化剤ガス入口連通孔30aは、酸化剤ガス、例えば、酸素含有ガスを供給する一方、冷却媒体入口連通孔32aは、冷却媒体を供給する。燃料ガス出口連通孔34bは、燃料ガス、例えば、水素含有ガスを排出する。酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bは、矢印C方向(鉛直方向)に配列して設けられる。   As shown in FIG. 1, one end edge of the power generation cell 12 in the direction of arrow B (horizontal direction) communicates with each other in the direction of arrow A, which is the stacking direction. A hole 32a and a fuel gas outlet communication hole 34b are provided. The oxidant gas inlet communication hole 30a supplies an oxidant gas, for example, an oxygen-containing gas, while the cooling medium inlet communication hole 32a supplies a cooling medium. The fuel gas outlet communication hole 34b discharges fuel gas, for example, hydrogen-containing gas. The oxidant gas inlet communication hole 30a, the cooling medium inlet communication hole 32a, and the fuel gas outlet communication hole 34b are arranged in the direction of arrow C (vertical direction).

発電セル12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給する燃料ガス入口連通孔34a、冷却媒体を排出する冷却媒体出口連通孔32b、及び酸化剤ガスを排出する酸化剤ガス出口連通孔30bが設けられる。燃料ガス入口連通孔34a、冷却媒体出口連通孔32b及び酸化剤ガス出口連通孔30bは、矢印C方向に配列して設けられる。   The other end edge of the power generation cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, the fuel gas inlet communication hole 34a for supplying fuel gas, the cooling medium outlet communication hole 32b for discharging the cooling medium, and the oxidation An oxidant gas outlet communication hole 30b for discharging the oxidant gas is provided. The fuel gas inlet communication hole 34a, the cooling medium outlet communication hole 32b, and the oxidant gas outlet communication hole 30b are arranged in the direction of arrow C.

第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。酸化剤ガス流路36は、矢印B方向に延在する複数本の直線状流路溝(又は波状流路溝)を有する。   An oxidant gas flow path 36 communicating with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b is provided on the surface 16a of the second separator 16 facing the electrolyte membrane / electrode structure 10 with a resin frame. . The oxidant gas flow channel 36 has a plurality of linear flow channel grooves (or wavy flow channel grooves) extending in the arrow B direction.

第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が設けられる。燃料ガス流路38は、矢印B方向に延在する複数本の直線状流路溝(又は波状流路溝)を有する。   A fuel gas flow path 38 communicating with the fuel gas inlet communication hole 34a and the fuel gas outlet communication hole 34b is provided on the surface 14a of the first separator 14 facing the electrolyte membrane / electrode structure 10 with a resin frame. The fuel gas flow path 38 has a plurality of straight flow path grooves (or wavy flow path grooves) extending in the direction of arrow B.

互いに隣接する第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が、矢印B方向に延在して形成される。   Between the surface 14b of the first separator 14 and the surface 16b of the second separator 16 adjacent to each other, a cooling medium flow path 40 communicating with the cooling medium inlet communication hole 32a and the cooling medium outlet communication hole 32b is indicated by an arrow B. It is formed extending in the direction.

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。   As shown in FIGS. 1 and 2, the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14. The second seal member 44 is integrated with the surfaces 16 a and 16 b of the second separator 16 around the outer peripheral end portion of the second separator 16.

図2に示すように、第1シール部材42は、樹脂枠付き電解質膜・電極構造体10を構成する樹脂枠部材24の外周シール面24fに当接する第1凸状シール42aを有する。第1シール部材42は、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bを有する。第2シール部材44は、第2凸状シール42bに当接する面がセパレータ面に沿って均一な厚さを有して延在する平面シール部44fを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設ける一方、第1シール部材42に平面シール部を構成してもよい。   As shown in FIG. 2, the first seal member 42 has a first convex seal 42 a that abuts on the outer peripheral seal surface 24 f of the resin frame member 24 constituting the electrolyte membrane / electrode structure 10 with resin frame. The first seal member 42 has a second convex seal 42 b that contacts the second seal member 44 of the second separator 16. The second seal member 44 constitutes a flat seal portion 44f whose surface abutting on the second convex seal 42b extends with a uniform thickness along the separator surface. Instead of the second convex seal 42b, the second seal member 44 may be provided with a convex seal (not shown), while the first seal member 42 may be configured with a flat seal portion.

第1シール部材42及び第2シール部材44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材が用いられる。   For the first seal member 42 and the second seal member 44, for example, EPDM, NBR, fluororubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber or the like, cushion material Alternatively, an elastic seal member such as a packing material is used.

次いで、本実施形態に係る樹脂枠付き電解質膜・電極構造体10の製造方法について、以下に説明する。   Next, a manufacturing method of the resin membrane-attached electrolyte membrane / electrode structure 10 according to the present embodiment will be described below.

先ず、段差MEA10aが作製される一方、樹脂枠部材24は、金型(図示せず)を用いて射出成形される。樹脂枠部材24は、図4に示すように、外周端部に厚さt1を有する薄肉部24aを設けるとともに、前記薄肉部24aより内方の内側部24gは、厚さt5に設定される。なお、厚さt1と厚さt5とは、同一の寸法であってもよく、又は、異なる寸法であってもよい。内側部24gには、樹脂突起部24t及び土手部24dが厚さ方向に突出して一体に設けられる。樹脂突起部24t及び土手部24dは、枠形状を有する。内側部24gの内周端部には、内側段差24sを介して薄肉状の内側膨出部24bが一体成形される。   First, the step MEA 10a is manufactured, while the resin frame member 24 is injection-molded using a mold (not shown). As shown in FIG. 4, the resin frame member 24 is provided with a thin portion 24a having a thickness t1 at the outer peripheral end portion, and an inner portion 24g inside the thin portion 24a is set to a thickness t5. Note that the thickness t1 and the thickness t5 may be the same dimension or different dimensions. A resin projecting portion 24t and a bank portion 24d are provided integrally with the inner portion 24g so as to protrude in the thickness direction. The resin protrusion 24t and the bank 24d have a frame shape. A thin-walled inner bulging portion 24b is integrally formed at the inner peripheral end of the inner portion 24g via an inner step 24s.

そこで、固体高分子電解質膜18の外周面部18be上に、接着剤が、例えば、図示しないディスペンサーを介して塗布される。固体高分子電解質膜18の外周面部18beと樹脂枠部材24の内側膨出部24bとの接合部位は、接着剤が塗布された状態で、加熱及び加圧処理される。このため、接着剤が硬化して接着剤層28が得られる。   Therefore, an adhesive is applied onto the outer peripheral surface portion 18be of the solid polymer electrolyte membrane 18 through, for example, a dispenser (not shown). The joint portion between the outer peripheral surface portion 18be of the solid polymer electrolyte membrane 18 and the inner bulging portion 24b of the resin frame member 24 is heated and pressurized in a state where an adhesive is applied. For this reason, an adhesive agent hardens | cures and the adhesive bond layer 28 is obtained.

次に、図5に示すように、接合装置50により樹脂突起部24tを溶融して樹脂溶融部26が形成される。接合装置50は、樹脂枠部材24を載置する基台(金型)52と前記基台52に対して進退自在な可動金型54とを備える。可動金型54は、枠形状を有し、内側端部54inと外側端部54outとの幅寸法H1は、樹脂溶融部26の幅寸法H2よりも僅かに大きな寸法を有する(図6参照)。   Next, as shown in FIG. 5, the resin protrusion 24 t is melted by the joining device 50 to form the resin melted portion 26. The joining device 50 includes a base (mold) 52 on which the resin frame member 24 is placed and a movable mold 54 that can be moved forward and backward with respect to the base 52. The movable mold 54 has a frame shape, and the width dimension H1 between the inner end part 54in and the outer end part 54out is slightly larger than the width dimension H2 of the resin melting part 26 (see FIG. 6).

基台52上には、接着剤層28により固定された樹脂枠部材24と段差MEA10aとが載置される。樹脂枠部材24は、樹脂突起部24tが上方に、すなわち、可動金型54側に向かって配置される。そして、可動金型54は、所定の温度に加熱された状態で下降することにより、樹脂突起部24tを加熱及び加圧する。   On the base 52, the resin frame member 24 fixed by the adhesive layer 28 and the step MEA 10a are placed. In the resin frame member 24, the resin protrusion 24t is arranged upward, that is, toward the movable mold 54 side. Then, the movable mold 54 is lowered while being heated to a predetermined temperature, thereby heating and pressurizing the resin protrusion 24t.

このため、樹脂枠部材24の樹脂突起部24tは、可動金型54により加熱及び加圧されて溶融される。樹脂突起部24tは、可動金型54の加熱面に沿って幅方向(矢印C方向)に広がるように溶融される。溶融樹脂は、内側に流動した一部が第1ガス拡散層20bの外周縁部に含浸される一方、外側に流動して土手部24dを乗り越えて薄肉部24aの端部に至る。   For this reason, the resin protrusion 24t of the resin frame member 24 is heated and pressurized by the movable mold 54 and melted. The resin protrusion 24t is melted so as to spread in the width direction (arrow C direction) along the heating surface of the movable mold 54. A part of the molten resin that flows inward is impregnated in the outer peripheral edge of the first gas diffusion layer 20b, while it flows outward and passes over the bank portion 24d to reach the end of the thin portion 24a.

図6に示すように、可動金型54は、樹脂枠部材24の外周シール面24fより厚さt2に相当する距離だけ離間した位置に停止される。従って、樹脂突起部24tが溶融されて樹脂溶融部26が形成される。その際、第1ガス拡散層20bに含浸された樹脂含浸部26aが形成されるとともに、第1ガス拡散層20bの外周縁部は、前記樹脂含浸部26aの厚さまで圧縮される。これにより、段差MEA10aと樹脂枠部材24が接合され、これらが接合装置50から一体に取り出されることによって、樹脂枠付き電解質膜・電極構造体10が得られる(図3参照)。   As shown in FIG. 6, the movable mold 54 is stopped at a position separated from the outer peripheral seal surface 24f of the resin frame member 24 by a distance corresponding to the thickness t2. Accordingly, the resin protrusion 24t is melted to form the resin melted portion 26. At that time, the resin-impregnated portion 26a impregnated in the first gas diffusion layer 20b is formed, and the outer peripheral edge portion of the first gas diffusion layer 20b is compressed to the thickness of the resin-impregnated portion 26a. Thereby, the step MEA 10a and the resin frame member 24 are joined together, and these are integrally taken out from the joining device 50, whereby the electrolyte membrane / electrode structure 10 with a resin frame is obtained (see FIG. 3).

樹脂枠付き電解質膜・電極構造体10は、図2に示すように、第1セパレータ14及び第2セパレータ16により挟持される。第2セパレータ16は、樹脂枠部材24の内側膨出部24bに当接し、第1セパレータ14とともに樹脂枠付き電解質膜・電極構造体10に、積層方向に荷重を付与する。さらに、発電セル12は、所定数だけ積層されて燃料電池スタックが構成されるとともに、図示しないエンドプレート間に締め付け荷重が付与される。   As shown in FIG. 2, the resin membrane-attached electrolyte membrane / electrode structure 10 is sandwiched between the first separator 14 and the second separator 16. The second separator 16 abuts on the inner bulging portion 24 b of the resin frame member 24, and applies a load in the stacking direction to the electrolyte membrane / electrode structure 10 with a resin frame together with the first separator 14. Furthermore, a predetermined number of power generation cells 12 are stacked to form a fuel cell stack, and a tightening load is applied between end plates (not shown).

このように構成される発電セル12の動作について、以下に説明する。   The operation of the power generation cell 12 configured as described above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔30aには、酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aには、水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aには、純水やエチレングリコール、オイル等の冷却媒体が供給される。   First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. Supplied. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して段差MEA10aのカソード電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、段差MEA10aのアノード電極20に供給される。   Therefore, the oxidant gas is introduced into the oxidant gas flow path 36 of the second separator 16 from the oxidant gas inlet communication hole 30a, moves in the direction of arrow B, and is supplied to the cathode electrode 22 of the step MEA 10a. On the other hand, the fuel gas is introduced into the fuel gas flow path 38 of the first separator 14 from the fuel gas inlet communication hole 34a. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode electrode 20 of the step MEA 10a.

従って、段差MEA10aでは、カソード電極22に供給される酸化剤ガスと、アノード電極20に供給される燃料ガスとが、第2電極触媒層22a及び第1電極触媒層20a内で電気化学反応により消費されて、発電が行われる。   Therefore, in the step MEA 10a, the oxidant gas supplied to the cathode electrode 22 and the fuel gas supplied to the anode electrode 20 are consumed by the electrochemical reaction in the second electrode catalyst layer 22a and the first electrode catalyst layer 20a. Then, power generation is performed.

次いで、カソード電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極20に供給されて消費された燃料ガスは、燃料ガス出口連通孔34bに沿って矢印A方向に排出される。   Next, the oxidant gas consumed by being supplied to the cathode electrode 22 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b. Similarly, the fuel gas consumed by being supplied to the anode electrode 20 is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.

また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、段差MEA10aを冷却した後、冷却媒体出口連通孔32bから排出される。   The cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow path 40 between the first separator 14 and the second separator 16, and then flows in the direction of arrow B. The cooling medium is discharged from the cooling medium outlet communication hole 32b after cooling the step MEA 10a.

この場合、本実施形態では、図2及び図3に示すように、樹脂枠部材24の最外周には、樹脂溶融部26の最外周に段差部26sを介して厚さ方向に前記樹脂溶融部26よりも薄い薄肉部24aが設けられている。このため、図5及び図6に示すように、接合装置50により樹脂突起部24tが溶融されて樹脂溶融部26が形成される際、入熱による熱が樹脂枠部材24の最外周に伝わり難くなる。   In this case, in this embodiment, as shown in FIGS. 2 and 3, the resin melting member is formed on the outermost periphery of the resin frame member 24 in the thickness direction via a step portion 26 s on the outermost periphery of the resin melting portion 26. A thin portion 24 a thinner than 26 is provided. For this reason, as shown in FIGS. 5 and 6, when the resin protrusion 24 t is melted by the joining device 50 to form the resin melted portion 26, heat due to heat input is hardly transmitted to the outermost periphery of the resin frame member 24. Become.

従って、樹脂枠部材24の薄肉部24aには、入熱による変形や溶融等が発生することを阻止することができる。これにより、樹脂溶融部26を設ける際に、樹脂枠部材24の外周表面、特に薄肉部24aの外周シール面24fが熱に影響されることがなく、前記樹脂枠部材24上に良好なシール面を確保することが可能になるという効果が得られる。   Therefore, it is possible to prevent the thin portion 24a of the resin frame member 24 from being deformed or melted by heat input. Thereby, when the resin melted portion 26 is provided, the outer peripheral surface of the resin frame member 24, particularly the outer peripheral seal surface 24f of the thin portion 24a is not affected by heat, and a good sealing surface is formed on the resin frame member 24. The effect that it becomes possible to ensure is obtained.

さらに、本実施形態では、図3及び図5に示すように、樹脂枠部材24には、樹脂突起部24tよりも外方に位置し、前記樹脂突起部24tよりも厚さ方向に薄く且つ該樹脂突起部24tを溶融させることにより樹脂溶融部26に埋設される土手部24dが設けられている。このため、可動金型54により樹脂突起部24tが溶融され、溶融樹脂が樹脂枠部材24の外周側(外周シール面24f側)に流動する際、土手部24dが前記溶融樹脂の障害(抵抗)として機能する。   Further, in the present embodiment, as shown in FIGS. 3 and 5, the resin frame member 24 is positioned outward from the resin protrusion 24t, is thinner in the thickness direction than the resin protrusion 24t, and A bank portion 24d embedded in the resin melting portion 26 is provided by melting the resin protrusion 24t. For this reason, when the resin protrusion 24t is melted by the movable mold 54 and the molten resin flows to the outer peripheral side (the outer peripheral seal surface 24f side) of the resin frame member 24, the bank portion 24d becomes an obstacle (resistance) of the molten resin. Function as.

従って、溶融樹脂は、樹脂枠部材24の外周側に必要以上に流動することがなく、所望の幅寸法を有する平滑な外周シール面24fを確実に維持することができる。これにより、外周シール面24fは、一層確実に変形や凹凸の発生等を抑制することが可能になる。   Accordingly, the molten resin does not flow more than necessary on the outer peripheral side of the resin frame member 24, and the smooth outer peripheral seal surface 24f having a desired width dimension can be reliably maintained. As a result, the outer peripheral seal surface 24f can be more reliably suppressed from being deformed or uneven.

10…樹脂枠付き電解質膜・電極構造体 10a…段差MEA
12…発電セル 14、16…セパレータ
18…固体高分子電解質膜 18be…外周面部
20…アノード電極 20a、22a…電極触媒層
20b、22b…ガス拡散層 22…カソード電極
22be…外周端面 24…樹脂枠部材
24a…薄肉部 24b…内側膨出部
24be…内周端面 24d…土手部
24s…内側段差 24t…樹脂突起部
26…樹脂溶融部 26a…樹脂含浸部
28…接着剤層 30a…酸化剤ガス入口連通孔
30b…酸化剤ガス出口連通孔 32a…冷却媒体入口連通孔
32b…冷却媒体出口連通孔 34a…燃料ガス入口連通孔
34b…燃料ガス出口連通孔 36…酸化剤ガス流路
38…燃料ガス流路 40…冷却媒体流路
42、44…シール部材 50…接合装置
10 ... Electrolyte membrane / electrode structure with resin frame 10a ... Step MEA
DESCRIPTION OF SYMBOLS 12 ... Power generation cell 14, 16 ... Separator 18 ... Solid polymer electrolyte membrane 18be ... Outer peripheral surface part 20 ... Anode electrode 20a, 22a ... Electrode catalyst layer 20b, 22b ... Gas diffusion layer 22 ... Cathode electrode 22be ... Outer peripheral end surface 24 ... Resin frame Member 24a ... Thin-walled portion 24b ... Inner bulging portion 24be ... Inner peripheral end surface 24d ... Bank portion 24s ... Inner step 24t ... Resin protrusion 26 ... Resin melted portion 26a ... Resin impregnated portion 28 ... Adhesive layer 30a ... Oxidant gas inlet Communication hole 30b ... Oxidant gas outlet communication hole 32a ... Cooling medium inlet communication hole 32b ... Cooling medium outlet communication hole 34a ... Fuel gas inlet communication hole 34b ... Fuel gas outlet communication hole 36 ... Oxidant gas flow path 38 ... Fuel gas flow Channel 40: Cooling medium channels 42, 44 ... Sealing member 50 ... Joining device

Claims (4)

固体高分子電解質膜の一方の面には、第1電極触媒層及び第1ガス拡散層を有する第1電極が設けられ、前記固体高分子電解質膜の他方の面には、第2電極触媒層及び第2ガス拡散層を有する第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差MEAと、
前記固体高分子電解質膜の外周を周回して設けられる樹脂枠部材と、
を備える燃料電池用樹脂枠付き電解質膜・電極構造体であって、
前記樹脂枠部材には、一部が前記第1ガス拡散層の内部に含浸された樹脂含浸部を有する樹脂溶融部が設けられるとともに、
前記樹脂枠部材の最外周には、前記樹脂溶融部の最外周に、段差部を介して厚さ方向に該樹脂溶融部よりも薄い薄肉部が設けられ、
前記樹脂溶融部は、
前記樹脂枠部材の一方の面側に位置して前記樹脂含浸部に対して外周側に隣接する第1部位と、
前記第1部位に対して前記樹脂枠部材の他方の面側に隣接する第2部位と、を含み、
前記薄肉部は、前記第2部位に対して外周側に隣接し、
前記第1部位は、前記薄肉部に対して前記段差部の高さ分だけ前記厚さ方向に突出しており、
前記第1ガス拡散層は、傾斜面を介して前記樹脂含浸部に向かって傾斜するとともに薄肉状に形成された傾斜薄肉部を有することを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
A first electrode having a first electrode catalyst layer and a first gas diffusion layer is provided on one surface of the solid polymer electrolyte membrane, and a second electrode catalyst layer is provided on the other surface of the solid polymer electrolyte membrane. And a second electrode having a second gas diffusion layer, and the planar dimension of the first electrode is a step MEA set to be larger than the planar dimension of the second electrode;
A resin frame member provided around the outer periphery of the solid polymer electrolyte membrane;
An electrolyte membrane / electrode structure with a resin frame for a fuel cell comprising:
The resin frame member, together with the resin melting portion is provided with a resin-impregnated part immersed including within a portion said first gas diffusion layer,
On the outermost periphery of the resin frame member, a thin-walled portion thinner than the resin melted portion is provided in the thickness direction via a stepped portion on the outermost periphery of the resin melted portion,
The resin melting part is
A first portion located on one surface side of the resin frame member and adjacent to the outer peripheral side with respect to the resin impregnated portion;
A second part adjacent to the other surface side of the resin frame member with respect to the first part,
The thin portion is adjacent to the outer peripheral side with respect to the second portion,
The first portion protrudes in the thickness direction by the height of the step portion with respect to the thin portion,
The first gas diffusion layer has an inclined thin-walled portion that is inclined toward the resin-impregnated portion through an inclined surface and is formed into a thin-walled shape. body.
請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体であって、
前記樹脂枠部材は、前記固体高分子電解質膜の他方の面に接触するとともに前記樹脂溶融部から前記傾斜薄肉部に対応する位置まで延出した延出部を有することを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
An electrolyte membrane / electrode structure with a resin frame for a fuel cell according to claim 1,
The resin frame member has an extending part that contacts the other surface of the solid polymer electrolyte membrane and extends from the resin melting part to a position corresponding to the inclined thin part. Electrolyte membrane / electrode structure with resin frame.
固体高分子電解質膜の一方の面には、第1電極触媒層及び第1ガス拡散層を有する第1電極が設けられ、前記固体高分子電解質膜の他方の面には、第2電極触媒層及び第2ガス拡散層を有する第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差MEAと、
前記固体高分子電解質膜の外周を周回して設けられる樹脂枠部材と、
を備える燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法であって、
前記第1ガス拡散層の外周よりも外方に位置し、厚さ方向に突出する突起部が設けられた前記樹脂枠部材を作製する工程と、
前記樹脂枠部材の内周側に前記段差MEAを配置する工程と、
可動金型の加熱面により前記突起部を溶融させることにより、一部が前記第1ガス拡散層の内部に含浸された樹脂含浸部と、前記樹脂枠部材の一方の面側に位置して前記樹脂含浸部に対して外周側に隣接する第1部位と、前記第1部位に対して前記樹脂枠部材の他方の面側に隣接する第2部位とを有する樹脂溶融部を設けるとともに、前記樹脂枠部材の最外周には、前記樹脂溶融部の最外周に、段差部を介して厚さ方向に該樹脂溶融部よりも薄い薄肉部を設ける溶融工程と、
を有し、
前記溶融工程では、前記第1部位が、前記薄肉部に対して前記段差部の高さ分だけ前記厚さ方向に突出するように設けられ、傾斜面を介して前記樹脂含浸部に向かって傾斜するとともに薄肉状に形成された傾斜薄肉部が前記第1ガス拡散層に形成されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法。
A first electrode having a first electrode catalyst layer and a first gas diffusion layer is provided on one surface of the solid polymer electrolyte membrane, and a second electrode catalyst layer is provided on the other surface of the solid polymer electrolyte membrane. And a second electrode having a second gas diffusion layer, and the planar dimension of the first electrode is a step MEA set to be larger than the planar dimension of the second electrode;
A resin frame member provided around the outer periphery of the solid polymer electrolyte membrane;
A method for producing an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising:
A step of producing the resin frame member provided with a protrusion that is located outward from the outer periphery of the first gas diffusion layer and protrudes in the thickness direction;
Arranging the step MEA on the inner peripheral side of the resin frame member;
By melting the protrusion by the heating surface of the movable mold, a resin impregnated part partially impregnated inside the first gas diffusion layer and the one side of the resin frame member are positioned on the one side. A resin melt portion having a first portion adjacent to the outer peripheral side with respect to the resin impregnated portion and a second portion adjacent to the other surface side of the resin frame member with respect to the first portion; On the outermost periphery of the frame member, a melting step of providing a thin-walled portion thinner than the resin melted portion in the thickness direction through a stepped portion on the outermost periphery of the resin melted portion,
Have
In the melting step, the first portion is provided to protrude in the thickness direction by the height of the stepped portion with respect to the thin portion, and is inclined toward the resin-impregnated portion through an inclined surface. In addition, a method for producing an electrolyte membrane / electrode structure with a resin frame for a fuel cell, wherein an inclined thin portion formed in a thin shape is formed in the first gas diffusion layer.
請求項3記載の製造方法であって、前記樹脂枠部材には、前記突起部よりも外方に位置し、該突起部よりも厚さ方向に薄く且つ前記樹脂溶融部に埋設される土手部が設けられ、
前記土手部は、前記樹脂枠部材の最外周よりも前記突起部の突出方向に突出していることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法。
The manufacturing method according to claim 3, wherein the resin frame member is located on the outer side of the protruding portion, is thinner in the thickness direction than the protruding portion, and is embedded in the resin melting portion. Is provided,
The method for producing an electrolyte membrane / electrode structure with a resin frame for a fuel cell, wherein the bank portion protrudes in a protruding direction of the protruding portion from the outermost periphery of the resin frame member.
JP2015207259A 2015-10-21 2015-10-21 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof Active JP6618762B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015207259A JP6618762B2 (en) 2015-10-21 2015-10-21 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
CN201910652989.7A CN110380080B (en) 2015-10-21 2016-10-17 Resin frame-equipped electrolyte membrane-electrode assembly for fuel cell
CN201610902948.5A CN106611864B (en) 2015-10-21 2016-10-17 The electrolyte membrane-electrode tectosome of fuel cell resin frame
US15/296,618 US10665873B2 (en) 2015-10-21 2016-10-18 Resin frame equipped membrane electrode assembly for fuel cell and method of producing the same
US16/849,331 US11094947B2 (en) 2015-10-21 2020-04-15 Resin frame equipped membrane electrode assembly for fuel cell and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207259A JP6618762B2 (en) 2015-10-21 2015-10-21 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof

Publications (2)

Publication Number Publication Date
JP2017079170A JP2017079170A (en) 2017-04-27
JP6618762B2 true JP6618762B2 (en) 2019-12-11

Family

ID=58667027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207259A Active JP6618762B2 (en) 2015-10-21 2015-10-21 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof

Country Status (1)

Country Link
JP (1) JP6618762B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10637077B2 (en) 2018-03-02 2020-04-28 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly and fuel cell
JP6659771B2 (en) * 2018-06-15 2020-03-04 本田技研工業株式会社 Fuel cell stack
US11018366B2 (en) 2019-01-18 2021-05-25 Honda Motor Co., Ltd. Method of producing frame equipped membrane electrode assembly, the frame equipped membrane electrode and fuel cell
US11121384B2 (en) 2019-07-30 2021-09-14 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly and fuel cell
US11196058B2 (en) 2019-07-30 2021-12-07 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly, method of producing the frame equipped membrane electrode assembly, and fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089746A1 (en) * 2003-10-23 2005-04-28 Ballard Power Systems Inc. Prevention of membrane contamination in electrochemical fuel cells
JP2010123491A (en) * 2008-11-21 2010-06-03 Nissan Motor Co Ltd Apparatus for manufacturing membrane electrode assembly
JP6059079B2 (en) * 2013-05-09 2017-01-11 本田技研工業株式会社 Joining method and apparatus
JP6125903B2 (en) * 2013-05-20 2017-05-10 本田技研工業株式会社 Fuel cell
JP6118225B2 (en) * 2013-10-09 2017-04-19 本田技研工業株式会社 Electrolyte membrane / electrode structure with resin frame for fuel cells

Also Published As

Publication number Publication date
JP2017079170A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6104050B2 (en) Electrolyte membrane / electrode structure for fuel cells
JP6722574B2 (en) Electrolyte membrane with resin frame/electrode structure and method for manufacturing the same
CN109980244B (en) Resin frame-equipped membrane-electrode assembly for fuel cell
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5855540B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6618762B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP5683433B2 (en) Fuel cell stack
JP5855442B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
JP6014548B2 (en) Manufacturing method of fuel cell
JP5778044B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6709053B2 (en) Method and apparatus for manufacturing step MEA with resin frame
JP6100225B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6090791B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6594809B2 (en) Step MEA with resin frame for fuel cell and manufacturing method thereof
JP6092053B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
CN110380080B (en) Resin frame-equipped electrolyte membrane-electrode assembly for fuel cell
JP6145082B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP6602244B2 (en) Step MEA with resin frame for fuel cell and manufacturing method thereof
JP6666664B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6144650B2 (en) Manufacturing method of fuel cell
JP2013157093A (en) Fuel cell
JP6158758B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2016076372A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP6666665B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6618762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150