JP2017068956A - Resin frame-attached electrolyte membrane-electrode structure for fuel cell - Google Patents

Resin frame-attached electrolyte membrane-electrode structure for fuel cell Download PDF

Info

Publication number
JP2017068956A
JP2017068956A JP2015191023A JP2015191023A JP2017068956A JP 2017068956 A JP2017068956 A JP 2017068956A JP 2015191023 A JP2015191023 A JP 2015191023A JP 2015191023 A JP2015191023 A JP 2015191023A JP 2017068956 A JP2017068956 A JP 2017068956A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
resin frame
electrode
adhesive
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015191023A
Other languages
Japanese (ja)
Inventor
洋平 片岡
Yohei Kataoka
洋平 片岡
真弘 福田
Masahiro Fukuda
真弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015191023A priority Critical patent/JP2017068956A/en
Publication of JP2017068956A publication Critical patent/JP2017068956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To make it possible to keep the thickness of an adhesive layer constant in operation and suppress the effusion of an adhesive by a simple structure.SOLUTION: A resin frame-attached electrolyte membrane-electrode structure 10 comprises: a stepped MEA 10a; and a resin frame member 24. The stepped MEA 10a has a cathode electrode 20 and an anode electrode 22 which is smaller than the cathode electrode 20 in plane dimension. The resin frame-attached electrolyte membrane-electrode structure further comprises an adhesive sheet 26 disposed between an exposed surface 18be of a solid polymer electrolyte film 18, which is exposed outwardly from the anode electrode 22, and a joint face 24as of the resin frame member 24. The adhesive sheet 26 has a mesh member 26m impregnated with a thermoplastic adhesive 26s.SELECTED DRAWING: Figure 2

Description

本発明は、固体高分子電解質膜を第1電極及び第2電極で挟んだ段差MEAと、前記段差MEAの外周を周回する樹脂枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体に関する。   The present invention relates to an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising: a step MEA having a solid polymer electrolyte membrane sandwiched between a first electrode and a second electrode; and a resin frame member that goes around the outer periphery of the step MEA. About.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。燃料電池は、固体高分子電解質膜の一方の面にアノード電極が、前記固体高分子電解質膜の他方の面にカソード電極が、それぞれ配設された電解質膜・電極構造体(MEA)を備えている。アノード電極及びカソード電極は、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とを有している。   In general, a polymer electrolyte fuel cell employs a polymer electrolyte membrane made of a polymer ion exchange membrane. The fuel cell includes an electrolyte membrane / electrode structure (MEA) in which an anode electrode is disposed on one surface of a solid polymer electrolyte membrane and a cathode electrode is disposed on the other surface of the solid polymer electrolyte membrane. Yes. The anode electrode and the cathode electrode each have a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon).

電解質膜・電極構造体は、セパレータ(バイポーラ板)によって挟持されることにより、発電セル(単位燃料電池)を構成している。この発電セルは、所定の数だけ積層されることにより、例えば、車載用燃料電池スタックとして使用されている。   The electrolyte membrane / electrode structure constitutes a power generation cell (unit fuel cell) by being sandwiched between separators (bipolar plates). The power generation cells are used as, for example, an in-vehicle fuel cell stack by being stacked in a predetermined number.

電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな平面寸法に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と略同一の平面寸法に設定される、所謂、段差MEAを構成する場合がある。その際、比較的高価な固体高分子電解質膜の使用量を削減させるとともに、薄膜状で強度が低い前記固体高分子電解質膜を保護するために、樹脂枠部材を組み込んだ樹脂枠付きMEAが採用されている。   In the electrolyte membrane / electrode structure, one gas diffusion layer is set to a plane size smaller than that of the solid polymer electrolyte membrane, and the other gas diffusion layer is set to substantially the same plane size as the solid polymer electrolyte membrane. The so-called step MEA may be configured. At that time, in order to reduce the amount of the relatively expensive solid polymer electrolyte membrane used and to protect the solid polymer electrolyte membrane having a thin film shape and low strength, an MEA with a resin frame incorporating a resin frame member is adopted. Has been.

樹脂枠付きMEAでは、樹脂枠部材が固体高分子電解質膜の一方のガス拡散層の外方に露呈する露出面に対向する接合面を有するとともに、前記露出面と前記接合面とは、接着剤層により接合されている。その際、接着部位には、熱及び圧力が付与されるため、接着剤層の厚さを有効に保持することができない場合がある。   In the MEA with a resin frame, the resin frame member has a joint surface facing the exposed surface exposed to the outside of one gas diffusion layer of the solid polymer electrolyte membrane, and the exposed surface and the joint surface are made of an adhesive. Joined by layers. At that time, since heat and pressure are applied to the bonded portion, the thickness of the adhesive layer may not be effectively maintained.

そこで、例えば、特許文献1に開示されているように、樹脂ビーズ入りの接着剤を使用することが考えられている。この接着剤は、燃料電池を積層する際に加える荷重により接着剤層の厚さが樹脂ビーズの径より薄くなる荷重圧縮特性を有している。   Therefore, for example, as disclosed in Patent Document 1, it is considered to use an adhesive containing resin beads. This adhesive has a load compression characteristic in which the thickness of the adhesive layer becomes thinner than the diameter of the resin beads due to the load applied when the fuel cells are stacked.

特開2002−352845号公報JP 2002-352845 A

ところが、上記の樹脂ビーズ入りの接着剤では、該接着剤として熱可塑性接着剤が用いられる際、燃料電池の運転温度域が、前記熱可塑性接着剤のガラス転移点を上回る場合がある。従って、熱可塑性接着剤は、運転圧力に耐えることができず、ゲル化して接着剤層の厚さを保持することができないという問題がある。しかも、樹脂ビーズ入りの接着剤では、熱可塑性接着剤の流出を抑制することができないという問題がある。   However, in the above adhesive containing resin beads, when a thermoplastic adhesive is used as the adhesive, the operating temperature range of the fuel cell may exceed the glass transition point of the thermoplastic adhesive. Therefore, the thermoplastic adhesive cannot withstand the operating pressure, and has a problem that it cannot gel and maintain the thickness of the adhesive layer. Moreover, the adhesive containing resin beads has a problem in that the outflow of the thermoplastic adhesive cannot be suppressed.

本発明は、この種の問題を解決するものであり、簡単な構成で、運転時の接着剤層の厚さを一定に保持することができ、しかも接着剤の流れ出しを確実に抑制することが可能な燃料電池用樹脂枠付き電解質膜・電極構造体を提供することを目的とする。   The present invention solves this type of problem, and with a simple configuration, the thickness of the adhesive layer during operation can be kept constant, and the flow of the adhesive can be reliably suppressed. An object of the present invention is to provide an electrolyte membrane / electrode structure with a resin frame for a fuel cell.

本発明に係る燃料電池用樹脂枠付き電解質膜・電極構造体では、段差MEAと樹脂枠部材とを備えている。段差MEAは、固体高分子電解質膜の一方の面には、第1電極が設けられ、前記固体高分子電解質膜の他方の面には、第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定されている。   The electrolyte membrane / electrode structure with a resin frame for a fuel cell according to the present invention includes a step MEA and a resin frame member. In the step MEA, a first electrode is provided on one surface of the solid polymer electrolyte membrane, a second electrode is provided on the other surface of the solid polymer electrolyte membrane, and a plane of the first electrode is provided. The dimension is set to be larger than the planar dimension of the second electrode.

そして、固体高分子電解質膜の他方の面の中、第2電極の外方に露呈する露出面と前記露出面に対向する樹脂枠部材の接合面との間には、メッシュ部材に熱可塑性接着剤が含浸されてなる接着剤シートが設けられている。   And, between the other surface of the solid polymer electrolyte membrane and between the exposed surface exposed to the outside of the second electrode and the joint surface of the resin frame member facing the exposed surface, thermoplastic adhesion to the mesh member An adhesive sheet impregnated with the agent is provided.

また、この燃料電池用樹脂枠付き電解質膜・電極構造体では、メッシュ部材は、格子状の膜を複数枚積層して構成されることが好ましい。   In the electrolyte membrane / electrode structure with a resin frame for a fuel cell, the mesh member is preferably configured by laminating a plurality of lattice-like membranes.

本発明によれば、メッシュ部材に熱可塑性接着剤が含浸されてなる接着剤シートが設けられている。このため、燃料電池の運転時の温度域が、熱可塑性接着剤のガラス転移点を上回っても、メッシュ部材は、運転圧力を確実に受けることができ、接着剤シートの厚さを一定に保持することが可能になる。しかも、メッシュ部材は、接着剤の流出を良好に抑制することができる。ここで、流出とは、接着剤が溶融してメッシュ部材の外部に流れ出ることをいう。   According to the present invention, an adhesive sheet is provided in which a mesh member is impregnated with a thermoplastic adhesive. For this reason, even if the temperature range during operation of the fuel cell exceeds the glass transition point of the thermoplastic adhesive, the mesh member can reliably receive the operating pressure and keep the thickness of the adhesive sheet constant. It becomes possible to do. Moreover, the mesh member can favorably suppress the outflow of the adhesive. Here, the outflow means that the adhesive melts and flows out of the mesh member.

本発明に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型発電セルの要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of the polymer electrolyte power generation cell in which the electrolyte membrane / electrode structure with a resin frame according to the present invention is incorporated. 前記発電セルの、図1中、II−II線断面説明図である。It is II-II sectional view explanatory drawing in FIG. 1 of the said electric power generation cell. 前記樹脂枠付き電解質膜・電極構造体を構成する樹脂枠部材の斜視説明図である。It is a perspective explanatory view of the resin frame member which constitutes the resin membrane-attached electrolyte membrane electrode structure. 熱可塑性接着剤とメッシュ部材との斜視説明図である。It is a perspective explanatory view of a thermoplastic adhesive and a mesh member. 前記熱可塑性接着剤が前記メッシュ部材に含浸された接着剤シート体の斜視説明図である。FIG. 3 is a perspective explanatory view of an adhesive sheet body in which the mesh adhesive is impregnated with the thermoplastic adhesive. 接着剤シートと段差MEAとの斜視説明図である。It is a perspective explanatory view of an adhesive sheet and level difference MEA. 前記接着剤シートが配置された前記段差MEAと樹脂枠部材との斜視説明図である。It is a perspective explanatory view of the level difference MEA in which the adhesive sheet is arranged and a resin frame member.

図1及び図2に示すように、本発明の実施形態に係る樹脂枠付き電解質膜・電極構造体10は、横長(又は縦長)の長方形状の固体高分子型発電セル(燃料電池)12に組み込まれる。複数の発電セル12は、例えば、矢印A方向(水平方向)又は矢印C方向(重力方向)に積層されて燃料電池スタックが構成される。燃料電池スタックは、例えば、車載用燃料電池スタックとして燃料電池電気自動車(図示せず)に搭載される。   As shown in FIGS. 1 and 2, an electrolyte membrane / electrode structure 10 with a resin frame according to an embodiment of the present invention is applied to a horizontally long (or vertically long) rectangular polymer electrolyte power generation cell (fuel cell) 12. Incorporated. The plurality of power generation cells 12 are stacked in, for example, an arrow A direction (horizontal direction) or an arrow C direction (gravity direction) to form a fuel cell stack. The fuel cell stack is mounted on, for example, a fuel cell electric vehicle (not shown) as an in-vehicle fuel cell stack.

発電セル12は、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、横長(又は縦長)の長方形状を有する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成される。   The power generation cell 12 sandwiches the electrolyte membrane / electrode structure 10 with a resin frame between the first separator 14 and the second separator 16. The first separator 14 and the second separator 16 have a horizontally long (or vertically long) rectangular shape. The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plating-treated steel plate, a metal plate whose surface is subjected to anticorrosion treatment, a carbon member, or the like.

長方形状の樹脂枠付き電解質膜・電極構造体10は、図2に示すように、段差MEA10aを備える。段差MEA10aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜(陽イオン交換膜)18と、前記固体高分子電解質膜18を挟持するカソード電極(第1電極)20及びアノード電極(第2電極)22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質を使用してもよい。   The electrolyte membrane / electrode structure 10 with a rectangular resin frame includes a step MEA 10a as shown in FIG. The step MEA 10a includes, for example, a solid polymer electrolyte membrane (cation exchange membrane) 18 in which a perfluorosulfonic acid thin film is impregnated with water, and a cathode electrode (first electrode) 20 sandwiching the solid polymer electrolyte membrane 18. And an anode electrode (second electrode) 22. The solid polymer electrolyte membrane 18 may use an HC (hydrocarbon) based electrolyte in addition to the fluorine based electrolyte.

アノード電極22は、固体高分子電解質膜18及びカソード電極20よりも小さな平面寸法(外形寸法)を有する。なお、上記の構成に代えて、カソード電極20は、固体高分子電解質膜18及びアノード電極22よりも小さな平面寸法を有するように構成してもよい。その際、カソード電極20は、第2電極となり、アノード電極22は、第1電極となる。   The anode electrode 22 has a smaller planar dimension (outer dimension) than the solid polymer electrolyte membrane 18 and the cathode electrode 20. Instead of the above configuration, the cathode electrode 20 may be configured to have a smaller planar dimension than the solid polymer electrolyte membrane 18 and the anode electrode 22. At that time, the cathode electrode 20 becomes the second electrode, and the anode electrode 22 becomes the first electrode.

カソード電極20は、固体高分子電解質膜18の一方の面18aに接合される第1電極触媒層20aと、前記第1電極触媒層20aに積層される第1ガス拡散層20bとを設ける。第1電極触媒層20a及び第1ガス拡散層20bは、同一の平面寸法を有するとともに、固体高分子電解質膜18と同一(又は同一未満)の平面寸法に設定される。   The cathode electrode 20 is provided with a first electrode catalyst layer 20a joined to one surface 18a of the solid polymer electrolyte membrane 18, and a first gas diffusion layer 20b laminated on the first electrode catalyst layer 20a. The first electrode catalyst layer 20a and the first gas diffusion layer 20b have the same planar dimensions and are set to the same (or less than) the same planar dimensions as the solid polymer electrolyte membrane 18.

アノード電極22は、固体高分子電解質膜18の面18bに接合される第2電極触媒層22aと、前記第2電極触媒層22aに積層される第2ガス拡散層22bとを設ける。第2電極触媒層22a及び第2ガス拡散層22bは、固体高分子電解質膜18の平面寸法よりも小さな平面寸法に設定されるとともに、前記第2電極触媒層22aは、前記第2ガス拡散層22bよりも大きな平面寸法を有する。固体高分子電解質膜18の面18b側の外周縁部には、アノード電極22の外方に露呈する露出面18beが設けられる。   The anode electrode 22 includes a second electrode catalyst layer 22a joined to the surface 18b of the solid polymer electrolyte membrane 18, and a second gas diffusion layer 22b laminated on the second electrode catalyst layer 22a. The second electrode catalyst layer 22a and the second gas diffusion layer 22b are set to have a plane size smaller than the plane size of the solid polymer electrolyte membrane 18, and the second electrode catalyst layer 22a is formed of the second gas diffusion layer. It has a larger planar dimension than 22b. An exposed surface 18be exposed to the outside of the anode electrode 22 is provided on the outer peripheral edge of the solid polymer electrolyte membrane 18 on the surface 18b side.

なお、第2電極触媒層22aは、第2ガス拡散層22bよりも大きな平面寸法に設定されているが、前記第2電極触媒層22aは、前記第2ガス拡散層22bと同一の平面寸法(又は小さな寸法)に設定されてもよい。   The second electrode catalyst layer 22a is set to have a larger planar dimension than the second gas diffusion layer 22b. However, the second electrode catalyst layer 22a has the same planar dimension as the second gas diffusion layer 22b ( Or a small dimension).

第1電極触媒層20aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が第1ガス拡散層20bの表面に一様に塗布されて形成される。第2電極触媒層22aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が第2ガス拡散層22bの表面に一様に塗布されて形成される。第1電極触媒層20aと第2電極触媒層22aとは、固体高分子電解質膜18の面18aと面18bとに形成される。   The first electrode catalyst layer 20a is formed, for example, by uniformly applying porous carbon particles having a platinum alloy supported on the surface thereof to the surface of the first gas diffusion layer 20b. The second electrode catalyst layer 22a is formed, for example, by uniformly applying porous carbon particles carrying a platinum alloy on the surface thereof to the surface of the second gas diffusion layer 22b. The first electrode catalyst layer 20a and the second electrode catalyst layer 22a are formed on the surface 18a and the surface 18b of the solid polymer electrolyte membrane 18.

樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の露出面18beに接合されるフィルム状の樹脂枠部材(樹脂フィルム)24を備える。なお、樹脂枠部材24は、段差MEA10aの厚さと略同一の厚さを有する比較的肉厚な枠形状に形成されてもよい。   The electrolyte membrane / electrode structure 10 with a resin frame includes a film-like resin frame member (resin film) 24 bonded to the exposed surface 18be of the solid polymer electrolyte membrane 18. The resin frame member 24 may be formed in a relatively thick frame shape having substantially the same thickness as the thickness of the step MEA 10a.

樹脂枠部材24は、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーン樹脂、フッ素樹脂、又はm−PPE(変性ポリフェニレンエーテル樹脂)等で構成される。樹脂枠部材24は、さらにPET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)又は変性ポリオレフィン等で構成される。   The resin frame member 24 includes, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyethersulfone), LCP (liquid crystal polymer), PVDF (polyvinylidene fluoride), A silicone resin, a fluororesin, or m-PPE (modified polyphenylene ether resin) is used. The resin frame member 24 is further made of PET (polyethylene terephthalate), PBT (polybutylene terephthalate), modified polyolefin, or the like.

図2及び図3に示すように、樹脂枠部材24は、段部24sを介して薄肉状に形成され、カソード電極20側に延在する内側肉薄部24aを有する。段部24sは、固体高分子電解質膜18の露出面18beの外周端部よりも内側に距離S1だけ離間した位置に設定される。内側肉薄部24aには、固体高分子電解質膜18の露出面18beに対向する接合面24asが設けられる。   As shown in FIGS. 2 and 3, the resin frame member 24 has an inner thin portion 24 a that is formed in a thin shape via a step portion 24 s and extends toward the cathode electrode 20. The step portion 24s is set at a position separated by a distance S1 inside the outer peripheral end portion of the exposed surface 18be of the solid polymer electrolyte membrane 18. The inner thin portion 24 a is provided with a bonding surface 24 as opposed to the exposed surface 18 be of the solid polymer electrolyte membrane 18.

内側肉薄部24aの内周端面24aeは、アノード電極22を構成する第2ガス拡散層22bの外周端面22beから距離S2だけ離間して終端する。樹脂枠部材24は、段部24sの外周側に外周肉厚部24bを有し、前記外周肉厚部24bの内周側の一部は、固体高分子電解質膜18の露出面18beの先端側に当接する。   The inner peripheral end face 24ae of the inner thin portion 24a terminates with a distance S2 away from the outer peripheral end face 22be of the second gas diffusion layer 22b constituting the anode electrode 22. The resin frame member 24 has an outer peripheral thick portion 24b on the outer peripheral side of the step portion 24s, and a part of the inner peripheral side of the outer peripheral thick portion 24b is on the tip side of the exposed surface 18be of the solid polymer electrolyte membrane 18 Abut.

固体高分子電解質膜18の露出面18beと樹脂枠部材24の接合面24asとの間には、接着剤シート26が設けられる。接着剤シート26は、メッシュ部材26mに熱可塑性接着剤26sが含浸されて構成される。メッシュ部材26mは、例えば、延伸加工されたPTFE(ポリテトラフルオロエチレン)製の格子状の膜(メンブレン)を複数枚積層することにより形成される。メッシュ部材26mの内周端部は、第2電極触媒層22aの外周端部に重なって第2ガス拡散層22bの外周端面22beに接する位置、又は前記外周端面22beから僅かに離間する位置に配置される。第2電極触媒層22aは、樹脂枠部材24の内周端面24aeと外周端面22beとの間から外部に露呈する。なお、メッシュ部材26mは、樹脂枠部材24の段部24sと第2ガス拡散層22bの外周端面22beとの間の全領域に設けられていなくてもよい。   An adhesive sheet 26 is provided between the exposed surface 18be of the solid polymer electrolyte membrane 18 and the bonding surface 24as of the resin frame member 24. The adhesive sheet 26 is configured by impregnating a mesh member 26m with a thermoplastic adhesive 26s. The mesh member 26m is formed by laminating a plurality of stretched PTFE (polytetrafluoroethylene) lattice films (membranes), for example. The inner peripheral end portion of the mesh member 26m is disposed at a position that overlaps with the outer peripheral end portion of the second electrode catalyst layer 22a and is in contact with the outer peripheral end surface 22be of the second gas diffusion layer 22b or slightly spaced from the outer peripheral end surface 22be. Is done. The second electrode catalyst layer 22a is exposed to the outside from between the inner peripheral end surface 24ae and the outer peripheral end surface 22be of the resin frame member 24. Note that the mesh member 26m may not be provided in the entire region between the step portion 24s of the resin frame member 24 and the outer peripheral end face 22be of the second gas diffusion layer 22b.

なお、第2電極触媒層22aが、第2ガス拡散層22bと同一の平面寸法(又は小さな寸法)に設定される際には、メッシュ部材26mの内周端部は、第2電極触媒層22aに重なることがなく、前記第2電極触媒層22aは、樹脂枠部材24の内周端面24aeと外周端面22beとの間から外部に露呈しない。   In addition, when the 2nd electrode catalyst layer 22a is set to the same planar dimension (or small dimension) as the 2nd gas diffusion layer 22b, the inner peripheral edge part of the mesh member 26m is 2nd electrode catalyst layer 22a. The second electrode catalyst layer 22a is not exposed to the outside from between the inner peripheral end face 24ae and the outer peripheral end face 22be of the resin frame member 24.

熱可塑性接着剤26sは、常温で固体である一方、加熱溶融することにより液状化する性質を有し、冷却固化させることによって接合状態を形成するホットメルト接着剤である。ホットメルト接着剤としては、アクリル系、ウレタン系、エポキシ系又は、エステル系等の接着剤が採用される。   The thermoplastic adhesive 26 s is a hot melt adhesive that is solid at room temperature but has a property of being liquefied by being heated and melted and forming a joined state by being cooled and solidified. As the hot melt adhesive, an acrylic, urethane, epoxy or ester adhesive is employed.

図1に示すように、発電セル12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bが設けられる。酸化剤ガス入口連通孔30aは、酸化剤ガス、例えば、酸素含有ガスを供給する一方、冷却媒体入口連通孔32aは、冷却媒体を供給する。燃料ガス出口連通孔34bは、燃料ガス、例えば、水素含有ガスを排出する。   As shown in FIG. 1, one end edge portion of the power generation cell 12 in the arrow B direction (horizontal direction in FIG. 1) communicates with each other in the arrow A direction that is the stacking direction, and the oxidant gas inlet communication hole 30 a. A cooling medium inlet communication hole 32a and a fuel gas outlet communication hole 34b are provided. The oxidant gas inlet communication hole 30a supplies an oxidant gas, for example, an oxygen-containing gas, while the cooling medium inlet communication hole 32a supplies a cooling medium. The fuel gas outlet communication hole 34b discharges fuel gas, for example, hydrogen-containing gas.

酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bは、実際上、第1セパレータ14及び第2セパレータ16に、矢印C方向(鉛直方向)に配列して設けられる。   The oxidant gas inlet communication hole 30a, the cooling medium inlet communication hole 32a, and the fuel gas outlet communication hole 34b are actually arranged in the first separator 14 and the second separator 16 in the direction of arrow C (vertical direction). .

発電セル12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給する燃料ガス入口連通孔34a、冷却媒体を排出する冷却媒体出口連通孔32b、及び酸化剤ガスを排出する酸化剤ガス出口連通孔30bが設けられる。燃料ガス入口連通孔34a、冷却媒体出口連通孔32b及び酸化剤ガス出口連通孔30bは、実際上、第1セパレータ14及び第2セパレータ16に、矢印C方向に配列して設けられる。   The other end edge of the power generation cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, the fuel gas inlet communication hole 34a for supplying fuel gas, the cooling medium outlet communication hole 32b for discharging the cooling medium, and the oxidation An oxidant gas outlet communication hole 30b for discharging the oxidant gas is provided. The fuel gas inlet communication hole 34a, the cooling medium outlet communication hole 32b, and the oxidant gas outlet communication hole 30b are actually arranged in the first separator 14 and the second separator 16 in the direction of arrow C.

第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通して矢印B方向に延在する複数本の酸化剤ガス流路36が設けられる。   The surface 14a of the first separator 14 facing the electrolyte membrane / electrode structure 10 with a resin frame communicates with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b and extends in the direction of arrow B. An oxidant gas flow path 36 is provided.

第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通して矢印B方向に延在する複数本の燃料ガス流路38が形成される。互いに隣接する第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通して矢印B方向に延在する複数本の冷却媒体流路40が形成される。   The surface 16a of the second separator 16 facing the electrolyte membrane / electrode structure 10 with a resin frame communicates with the fuel gas inlet communication hole 34a and the fuel gas outlet communication hole 34b and extends in the direction of arrow B. A fuel gas flow path 38 is formed. Between the surface 14b of the 1st separator 14 and the surface 16b of the 2nd separator 16 which adjoin each other, it communicates with the cooling-medium inlet communication hole 32a and the cooling-medium outlet communication hole 32b, and is extended in the arrow B direction. A cooling medium flow path 40 is formed.

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。   As shown in FIGS. 1 and 2, the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14. The second seal member 44 is integrated with the surfaces 16 a and 16 b of the second separator 16 around the outer peripheral end portion of the second separator 16.

図2に示すように、第1シール部材42は、樹脂枠付き電解質膜・電極構造体10を構成する樹脂枠部材24に当接する第1凸状シール42aと、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bとを有する。第2シール部材44は、第2凸状シール42bに当接する面がセパレータ面に沿って平面状に延在する平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。   As shown in FIG. 2, the first seal member 42 includes a first convex seal 42 a that contacts the resin frame member 24 constituting the electrolyte membrane / electrode structure 10 with a resin frame, and a second seal of the second separator 16. And a second convex seal 42b in contact with the member 44. The second seal member 44 constitutes a flat seal in which the surface that contacts the second convex seal 42b extends in a flat shape along the separator surface. Instead of the second convex seal 42b, the second seal member 44 may be provided with a convex seal (not shown).

第1シール部材42及び第2シール部材44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材が用いられる。   For the first seal member 42 and the second seal member 44, for example, EPDM, NBR, fluororubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber or the like, cushion material Alternatively, an elastic seal member such as a packing material is used.

次いで、樹脂枠付き電解質膜・電極構造体10を製造する方法について、以下に説明する。   Next, a method for producing the resin frame-attached electrolyte membrane / electrode structure 10 will be described below.

先ず、接着剤シート26が作製される。具体的には、図4に示すように、シート状又は液体状の熱可塑性接着剤26sが用意される一方、多孔質メッシュ状のメッシュ部材26mが用意される。熱可塑性接着剤26sがメッシュ部材26mに含浸されることにより、平板状の接着剤シート体26Aが形成される(図5参照)。接着剤シート体26Aは、樹脂枠付き電解質膜・電極構造体10に適用されるように、所定の形状、すなわち、枠形状にカットされ、接着剤シート26が作製される。   First, the adhesive sheet 26 is produced. Specifically, as shown in FIG. 4, a sheet-like or liquid thermoplastic adhesive 26s is prepared, while a porous mesh-like mesh member 26m is prepared. A flat adhesive sheet 26A is formed by impregnating the mesh member 26m with the thermoplastic adhesive 26s (see FIG. 5). The adhesive sheet body 26A is cut into a predetermined shape, that is, a frame shape so as to be applied to the electrolyte membrane / electrode structure 10 with a resin frame, and the adhesive sheet 26 is produced.

一方、段差MEA10aが作製されるとともに、樹脂枠部材24は、金型(図示せず)を用いて射出成形される。図3に示すように、樹脂枠部材24は、肉薄形状の内側肉薄部24aを有する。   On the other hand, the step MEA 10a is manufactured, and the resin frame member 24 is injection-molded using a mold (not shown). As shown in FIG. 3, the resin frame member 24 has a thin inner thin portion 24a.

次に、図6に示すように、段差MEA10aを構成する固体高分子電解質膜18の露出面18be上に、接着剤シート26が配置される。なお、接着剤シート26は、露出面18beに仮接着することも可能である。   Next, as shown in FIG. 6, the adhesive sheet 26 is disposed on the exposed surface 18be of the solid polymer electrolyte membrane 18 constituting the step MEA 10a. The adhesive sheet 26 can be temporarily bonded to the exposed surface 18be.

そして、図7に示すように、段差MEA10aは、接着剤シート26が配置された状態で、樹脂枠部材24に積層される。このため、固体高分子電解質膜18の露出面18beと樹脂枠部材24の接合面24asとの間には、接着剤シート26が配置される。   And as shown in FIG. 7, level | step difference MEA10a is laminated | stacked on the resin frame member 24 in the state by which the adhesive sheet 26 is arrange | positioned. Therefore, the adhesive sheet 26 is disposed between the exposed surface 18be of the solid polymer electrolyte membrane 18 and the bonding surface 24as of the resin frame member 24.

この状態で、固体高分子電解質膜18の露出面18beと樹脂枠部材24の接合面24asとには、接着剤シート26を所定の温度に加熱させる加熱処理と、所定の荷重を付与する加圧処理とが同時に施される。従って、接着剤シート26に含有する熱可塑性接着剤26sが加熱溶融され、露出面18beと接合面24asとが接着される。これにより、樹脂枠付き電解質膜・電極構造体10が製造される。   In this state, the exposed surface 18be of the solid polymer electrolyte membrane 18 and the bonding surface 24as of the resin frame member 24 are subjected to heat treatment for heating the adhesive sheet 26 to a predetermined temperature, and pressure for applying a predetermined load. Processing is performed at the same time. Accordingly, the thermoplastic adhesive 26s contained in the adhesive sheet 26 is heated and melted, and the exposed surface 18be and the bonding surface 24as are bonded. Thereby, the electrolyte membrane and electrode structure 10 with a resin frame is manufactured.

なお、図6では、接着剤シート26が段差MEA10aに配置されているが、これに代えて、前記接着剤シート26を樹脂枠部材24に配置してもよい。次いで、接着剤シート26が配置された樹脂枠部材24は、段差MEA10aに配置された状態で、前記接着剤シート26により前記樹脂枠部材24と前記段差MEA10aとを接合してもよい。   In FIG. 6, the adhesive sheet 26 is disposed on the step MEA 10 a, but instead, the adhesive sheet 26 may be disposed on the resin frame member 24. Next, the resin frame member 24 on which the adhesive sheet 26 is disposed may be joined to the step MEA 10a by the adhesive sheet 26 in a state of being disposed on the step MEA 10a.

樹脂枠付き電解質膜・電極構造体10は、図2に示すように、第1セパレータ14及び第2セパレータ16により挟持される。第2セパレータ16は、樹脂枠部材24の内側肉薄部24aに当接し、第1セパレータ14とともに樹脂枠付き電解質膜・電極構造体10に荷重を付与する。さらに、発電セル12は、所定数だけ積層されて燃料電池スタックが構成されるとともに、図示しないエンドプレート間に締め付け荷重が付与される。   As shown in FIG. 2, the resin membrane-attached electrolyte membrane / electrode structure 10 is sandwiched between the first separator 14 and the second separator 16. The second separator 16 contacts the inner thin portion 24 a of the resin frame member 24 and applies a load to the electrolyte membrane / electrode structure 10 with a resin frame together with the first separator 14. Furthermore, a predetermined number of power generation cells 12 are stacked to form a fuel cell stack, and a tightening load is applied between end plates (not shown).

このように構成される発電セル12の動作について、以下に説明する。   The operation of the power generation cell 12 configured as described above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔30aには、酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aには、水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aには、純水やエチレングリコール、オイル等の冷却媒体が供給される。   First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. Supplied. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第1セパレータ14の酸化剤ガス流路36に導入され、矢印B方向に移動して段差MEA10aのカソード電極20に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから第2セパレータ16の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、段差MEA10aのアノード電極22に供給される。   Therefore, the oxidant gas is introduced from the oxidant gas inlet communication hole 30a into the oxidant gas flow path 36 of the first separator 14, moves in the direction of arrow B, and is supplied to the cathode electrode 20 of the step MEA 10a. On the other hand, the fuel gas is introduced into the fuel gas flow path 38 of the second separator 16 from the fuel gas inlet communication hole 34a. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode electrode 22 of the step MEA 10a.

従って、各段差MEA10aでは、カソード電極20に供給される酸化剤ガスと、アノード電極22に供給される燃料ガスとが、第1電極触媒層20a及び第2電極触媒層22a内で電気化学反応により消費されて、発電が行われる。   Therefore, in each step MEA 10a, the oxidant gas supplied to the cathode electrode 20 and the fuel gas supplied to the anode electrode 22 are subjected to an electrochemical reaction in the first electrode catalyst layer 20a and the second electrode catalyst layer 22a. It is consumed and power is generated.

次いで、カソード電極20に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極22に供給されて消費された燃料ガスは、燃料ガス出口連通孔34bに沿って矢印A方向に排出される。   Next, the oxidant gas consumed by being supplied to the cathode electrode 20 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b. Similarly, the fuel gas consumed by being supplied to the anode electrode 22 is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.

また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、段差MEA10aを冷却した後、冷却媒体出口連通孔32bから排出される。   The cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow path 40 between the first separator 14 and the second separator 16, and then flows in the direction of arrow B. The cooling medium is discharged from the cooling medium outlet communication hole 32b after cooling the step MEA 10a.

この場合、本実施形態では、図2に示すように、固体高分子電解質膜18の露出面18beと樹脂枠部材24の接合面24asとの間には、接着剤シート26が配置されている。そして、接着剤シート26は、メッシュ部材26mに熱可塑性接着剤26sが含浸されている。   In this case, in this embodiment, as shown in FIG. 2, an adhesive sheet 26 is disposed between the exposed surface 18be of the solid polymer electrolyte membrane 18 and the bonding surface 24as of the resin frame member 24. In the adhesive sheet 26, the mesh member 26m is impregnated with the thermoplastic adhesive 26s.

このため、発電セル12の運転時の温度域が、熱可塑性接着剤26sのガラス転移点を上回っても、メッシュ部材26mは、運転圧力を確実に受けることができる。従って、接着剤シート26の厚さを一定に保持することが可能になるとともに、メッシュ部材26mは、熱可塑性接着剤26sの流出を良好に抑制することができるという効果が得られる。ここで、流出とは、熱可塑性接着剤26sが溶融してメッシュ部材26mの外部に流れ出ることをいう。   For this reason, even if the temperature range during operation of the power generation cell 12 exceeds the glass transition point of the thermoplastic adhesive 26s, the mesh member 26m can reliably receive the operating pressure. Therefore, the thickness of the adhesive sheet 26 can be kept constant, and the mesh member 26m can effectively suppress the outflow of the thermoplastic adhesive 26s. Here, the outflow means that the thermoplastic adhesive 26s is melted and flows out of the mesh member 26m.

10…樹脂枠付き電解質膜・電極構造体 10a…段差MEA
12…発電セル 14、16…セパレータ
18…固体高分子電解質膜 18be…露出面
20…カソード電極 20a、22a…電極触媒層
20b、22b…ガス拡散層 22…アノード電極
24…樹脂枠部材 24a…内側肉薄部
24as…接合面 24b…外周肉厚部
24s…段部 26…接着剤シート
26m…メッシュ部材 26s…熱可塑性接着剤
30a…酸化剤ガス入口連通孔 30b…酸化剤ガス出口連通孔
32a…冷却媒体入口連通孔 32b…冷却媒体出口連通孔
34a…燃料ガス入口連通孔 34b…燃料ガス出口連通孔
36…酸化剤ガス流路 38…燃料ガス流路
40…冷却媒体流路 42、44…シール部材
10 ... Electrolyte membrane / electrode structure with resin frame 10a ... Step MEA
DESCRIPTION OF SYMBOLS 12 ... Power generation cell 14, 16 ... Separator 18 ... Solid polymer electrolyte membrane 18be ... Exposed surface 20 ... Cathode electrode 20a, 22a ... Electrode catalyst layer 20b, 22b ... Gas diffusion layer 22 ... Anode electrode 24 ... Resin frame member 24a ... Inside Thin portion 24as ... joint surface 24b ... outer peripheral thick portion 24s ... step portion 26 ... adhesive sheet 26m ... mesh member 26s ... thermoplastic adhesive 30a ... oxidant gas inlet communication hole 30b ... oxidant gas outlet communication hole 32a ... cooling Medium inlet communication hole 32b ... Cooling medium outlet communication hole 34a ... Fuel gas inlet communication hole 34b ... Fuel gas outlet communication hole 36 ... Oxidant gas flow path 38 ... Fuel gas flow path 40 ... Cooling medium flow path 42, 44 ... Sealing member

Claims (2)

固体高分子電解質膜の一方の面には、第1電極が設けられ、前記固体高分子電解質膜の他方の面には、第2電極が設けられるとともに、前記第1電極の平面寸法は、前記第2電極の平面寸法よりも大きな寸法に設定される段差MEAと、
前記固体高分子電解質膜の外周を周回して設けられる樹脂枠部材と、
を備える燃料電池用樹脂枠付き電解質膜・電極構造体であって、
前記固体高分子電解質膜の前記他方の面の中、前記第2電極の外方に露呈する露出面と前記露出面に対向する前記樹脂枠部材の接合面との間には、メッシュ部材に熱可塑性接着剤が含浸されてなる接着剤シートが設けられることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
A first electrode is provided on one surface of the solid polymer electrolyte membrane, a second electrode is provided on the other surface of the solid polymer electrolyte membrane, and the planar dimensions of the first electrode are A step MEA set to a dimension larger than the planar dimension of the second electrode;
A resin frame member provided around the outer periphery of the solid polymer electrolyte membrane;
An electrolyte membrane / electrode structure with a resin frame for a fuel cell comprising:
Among the other surface of the solid polymer electrolyte membrane, the mesh member is heated between the exposed surface exposed to the outside of the second electrode and the joint surface of the resin frame member facing the exposed surface. An electrolyte membrane / electrode structure with a resin frame for a fuel cell, wherein an adhesive sheet impregnated with a plastic adhesive is provided.
請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体であって、前記メッシュ部材は、格子状の膜を複数枚積層して構成されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。   2. The electrolyte membrane / electrode structure with a fuel cell resin frame according to claim 1, wherein the mesh member is formed by laminating a plurality of lattice-like membranes. 3. Electrolyte membrane / electrode structure.
JP2015191023A 2015-09-29 2015-09-29 Resin frame-attached electrolyte membrane-electrode structure for fuel cell Pending JP2017068956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015191023A JP2017068956A (en) 2015-09-29 2015-09-29 Resin frame-attached electrolyte membrane-electrode structure for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015191023A JP2017068956A (en) 2015-09-29 2015-09-29 Resin frame-attached electrolyte membrane-electrode structure for fuel cell

Publications (1)

Publication Number Publication Date
JP2017068956A true JP2017068956A (en) 2017-04-06

Family

ID=58495084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015191023A Pending JP2017068956A (en) 2015-09-29 2015-09-29 Resin frame-attached electrolyte membrane-electrode structure for fuel cell

Country Status (1)

Country Link
JP (1) JP2017068956A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199201A1 (en) * 2019-04-04 2020-10-08 武汉雄韬氢雄燃料电池科技有限公司 Fuel cell stack based on modular design and manufacturing method therefor
US11271234B2 (en) 2016-08-26 2022-03-08 Ballard Power Systems Inc. Fuel cell with improved durability
US11374240B2 (en) 2019-09-30 2022-06-28 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell
JP2022144978A (en) * 2021-03-19 2022-10-03 本田技研工業株式会社 Adhesive selection method and power generation cell
US11710842B2 (en) 2021-02-03 2023-07-25 Toyota Jidosha Kabushiki Kaisha Manufacturing method for fuel cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057693A2 (en) * 2002-12-20 2004-07-08 Ballard Power Systems Inc. Sealing membrane electrode assemblies for electrochemical fuel cells
JP2008004344A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Manufacturing method of reinforcement type electrolyte membrane and membrane electrode assembly
JP2009021217A (en) * 2007-06-11 2009-01-29 Panasonic Corp Electrode-membrane-frame assembly for fuel cell and manufacturing method thereof, and polymer electrolyte fuel cell and manufacturing method thereof
JP2012190720A (en) * 2011-03-11 2012-10-04 Toppan Printing Co Ltd Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same
JP2013251253A (en) * 2012-05-01 2013-12-12 Toyota Motor Corp Fuel cell unit cell and method for manufacturing fuel cell unit cell
JP2013258096A (en) * 2012-06-14 2013-12-26 Honda Motor Co Ltd Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
WO2014010382A1 (en) * 2012-07-10 2014-01-16 日産自動車株式会社 Gas-permeable sheet
JP2014026799A (en) * 2012-07-26 2014-02-06 Honda Motor Co Ltd Membrane electrode assembly for fuel cell
JP2014029834A (en) * 2012-06-29 2014-02-13 Honda Motor Co Ltd Membrane electrode assembly for fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057693A2 (en) * 2002-12-20 2004-07-08 Ballard Power Systems Inc. Sealing membrane electrode assemblies for electrochemical fuel cells
JP2008004344A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Manufacturing method of reinforcement type electrolyte membrane and membrane electrode assembly
JP2009021217A (en) * 2007-06-11 2009-01-29 Panasonic Corp Electrode-membrane-frame assembly for fuel cell and manufacturing method thereof, and polymer electrolyte fuel cell and manufacturing method thereof
JP2012190720A (en) * 2011-03-11 2012-10-04 Toppan Printing Co Ltd Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same
JP2013251253A (en) * 2012-05-01 2013-12-12 Toyota Motor Corp Fuel cell unit cell and method for manufacturing fuel cell unit cell
JP2013258096A (en) * 2012-06-14 2013-12-26 Honda Motor Co Ltd Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2014029834A (en) * 2012-06-29 2014-02-13 Honda Motor Co Ltd Membrane electrode assembly for fuel cell
WO2014010382A1 (en) * 2012-07-10 2014-01-16 日産自動車株式会社 Gas-permeable sheet
JP2014026799A (en) * 2012-07-26 2014-02-06 Honda Motor Co Ltd Membrane electrode assembly for fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271234B2 (en) 2016-08-26 2022-03-08 Ballard Power Systems Inc. Fuel cell with improved durability
WO2020199201A1 (en) * 2019-04-04 2020-10-08 武汉雄韬氢雄燃料电池科技有限公司 Fuel cell stack based on modular design and manufacturing method therefor
US11374240B2 (en) 2019-09-30 2022-06-28 Toyota Jidosha Kabushiki Kaisha Fuel-cell unit cell
US11710842B2 (en) 2021-02-03 2023-07-25 Toyota Jidosha Kabushiki Kaisha Manufacturing method for fuel cell
JP2022144978A (en) * 2021-03-19 2022-10-03 本田技研工業株式会社 Adhesive selection method and power generation cell

Similar Documents

Publication Publication Date Title
JP6263214B2 (en) Step MEA with resin frame for fuel cells
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5683433B2 (en) Fuel cell stack
JP5643146B2 (en) Fuel cell
JP2017068956A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP2018097917A (en) Resin frame-attached electrolyte membrane-electrode structure and method of manufacturing the same
US10559835B2 (en) Resin-framed membrane-electrode assembly for fuel cell
JP6709053B2 (en) Method and apparatus for manufacturing step MEA with resin frame
JP6594809B2 (en) Step MEA with resin frame for fuel cell and manufacturing method thereof
JP2017079170A (en) Electrolyte membrane-electrode structure with resin frame for fuel cell and method therefor
JP2015050137A (en) Electrolyte membrane-electrode structure with resin frame for fuel cell
JP2015090793A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel batteries
JP6144650B2 (en) Manufacturing method of fuel cell
JP6602244B2 (en) Step MEA with resin frame for fuel cell and manufacturing method thereof
JP6666664B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2013258097A (en) Electrolyte membrane/electrode structure and manufacturing method thereof
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
JP2013157093A (en) Fuel cell
JP6126049B2 (en) Manufacturing method of fuel cell
JP6158758B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2017004607A (en) Manufacturing method of electrolyte membrane electrode structure with resin frame for fuel battery
JP2017016758A (en) Fuel cell
JP6208650B2 (en) Fuel cell
JP2016091936A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6090799B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226