JP6126049B2 - Manufacturing method of fuel cell - Google Patents

Manufacturing method of fuel cell Download PDF

Info

Publication number
JP6126049B2
JP6126049B2 JP2014132613A JP2014132613A JP6126049B2 JP 6126049 B2 JP6126049 B2 JP 6126049B2 JP 2014132613 A JP2014132613 A JP 2014132613A JP 2014132613 A JP2014132613 A JP 2014132613A JP 6126049 B2 JP6126049 B2 JP 6126049B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
gas diffusion
adhesive sheet
diffusion layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014132613A
Other languages
Japanese (ja)
Other versions
JP2016012435A (en
Inventor
真弘 福田
真弘 福田
福島 保秀
保秀 福島
真巳 栗本
真巳 栗本
洋平 片岡
洋平 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014132613A priority Critical patent/JP6126049B2/en
Priority to US14/749,773 priority patent/US20150380746A1/en
Priority to CN201510358381.5A priority patent/CN105226316B/en
Publication of JP2016012435A publication Critical patent/JP2016012435A/en
Application granted granted Critical
Publication of JP6126049B2 publication Critical patent/JP6126049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、段差電解質膜・電極構造体と樹脂枠部材とが接合される枠付き段差電解質膜・電極構造体を備える燃料電池の製造方法に関する。   The present invention relates to a method of manufacturing a fuel cell including a stepped electrolyte membrane / electrode structure with a frame in which a stepped electrolyte membrane / electrode structure and a resin frame member are joined.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。燃料電池は、固体高分子電解質膜の両側に、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とからなるアノード電極及びカソード電極を配設した電解質膜・電極構造体(MEA)を備えている。そして、電解質膜・電極構造体は、セパレータ(バイポーラ板)によって挟持されている。燃料電池は、所定の数だけ積層して燃料電池スタックを構成するとともに、例えば、車載用燃料電池スタックとして使用されている。   In general, a polymer electrolyte fuel cell employs a polymer electrolyte membrane made of a polymer ion exchange membrane. A fuel cell has an electrolyte membrane / electrode structure (MEA) in which an anode electrode and a cathode electrode each comprising a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon) are disposed on both sides of a solid polymer electrolyte membrane. ). The electrolyte membrane / electrode structure is sandwiched between separators (bipolar plates). A predetermined number of fuel cells are stacked to constitute a fuel cell stack, and are used as, for example, an in-vehicle fuel cell stack.

電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな表面積に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と同一の表面積に設定される、所謂、段差MEAを構成する場合がある。その際、比較的高価な固体高分子電解質膜の使用量を削減させるとともに、薄膜状で強度が低い前記固体高分子電解質膜を保護するために、樹脂枠部材を組み込んだ枠付き段差MEAが採用されている。   In the electrolyte membrane / electrode structure, one gas diffusion layer is set to a smaller surface area than the solid polymer electrolyte membrane, and the other gas diffusion layer is set to the same surface area as the solid polymer electrolyte membrane. A so-called step MEA may be configured. At that time, a step MEA with a frame incorporating a resin frame member is used to reduce the amount of use of a relatively expensive solid polymer electrolyte membrane and to protect the solid polymer electrolyte membrane that is thin and low in strength. Has been.

例えば、特許文献1に開示されている電解質膜−電極接合体が知られている。この電解質膜−電極接合体では、図15に示すように、膜1の一方の側には、アノード触媒層2aとアノードガス拡散層2bとが配置されている。膜1の他方の側には、カソード触媒層3aとカソードガス拡散層3bとが配置されている。これによって、段差MEA4が構成されている。   For example, an electrolyte membrane-electrode assembly disclosed in Patent Document 1 is known. In this electrolyte membrane-electrode assembly, as shown in FIG. 15, an anode catalyst layer 2 a and an anode gas diffusion layer 2 b are disposed on one side of the membrane 1. On the other side of the membrane 1, a cathode catalyst layer 3a and a cathode gas diffusion layer 3b are disposed. Thus, the step MEA 4 is configured.

アノードガス拡散層2bは、カソードガス拡散層3bよりも大きな面積に設定されており、前記カソードガス拡散層3b側の膜1の外周部とガスケット構造体5とは、接着部位6を介して接合されている。   The anode gas diffusion layer 2 b is set to have a larger area than the cathode gas diffusion layer 3 b, and the outer peripheral portion of the film 1 on the cathode gas diffusion layer 3 b side and the gasket structure 5 are joined via an adhesion site 6. Has been.

特開2007−66766号公報JP 2007-66766 A

ところで、上記の特許文献1では、カソードガス拡散層3b側の膜1の外周縁部(平面)とガスケット構造体5の内周薄肉部5aの平面とが、額縁平面形状の接着部位6を介して接合されている。このため、段差MEA4とガスケット構造体5との接着強度が低下し易く、前記段差MEA4の端部剥がれや破損が惹起されるという問題がある。   By the way, in the above-mentioned Patent Document 1, the outer peripheral edge (plane) of the membrane 1 on the cathode gas diffusion layer 3b side and the plane of the inner peripheral thin portion 5a of the gasket structure 5 are connected via the bonding portion 6 having a frame shape. Are joined. For this reason, there exists a problem that the adhesive strength of level | step difference MEA4 and the gasket structure 5 falls easily, and the edge part peeling and damage of the level | step difference MEA4 are caused.

本発明は、この種の問題を解決するものであり、簡単な工程で、段差電解質膜・電極構造体と樹脂枠部材とを確実に接合させることが可能な燃料電池の製造方法を提供することを目的とする。   The present invention solves this type of problem and provides a method of manufacturing a fuel cell capable of reliably joining a stepped electrolyte membrane / electrode structure and a resin frame member with a simple process. With the goal.

本発明は、段差電解質膜・電極構造体と樹脂枠部材とが接合される枠付き段差電解質膜・電極構造体を備える燃料電池の製造方法に関するものである。段差電解質膜・電極構造体は、固体高分子電解質膜の一方の面に、第1触媒層及び第1ガス拡散層を有する第1電極が配設され、且つ前記固体高分子電解質膜の他方の面に、第2触媒層及び第2ガス拡散層を有する第2電極が配設されている。そして、第1ガス拡散層の平面寸法は、第2ガス拡散層の平面寸法よりも大きな寸法に設定されている。   The present invention relates to a method of manufacturing a fuel cell including a stepped electrolyte membrane / electrode structure with a frame in which a stepped electrolyte membrane / electrode structure and a resin frame member are joined. In the step electrolyte membrane / electrode structure, a first electrode having a first catalyst layer and a first gas diffusion layer is disposed on one surface of the solid polymer electrolyte membrane, and the other electrode of the solid polymer electrolyte membrane is provided. A second electrode having a second catalyst layer and a second gas diffusion layer is disposed on the surface. The planar dimension of the first gas diffusion layer is set to be larger than the planar dimension of the second gas diffusion layer.

樹脂枠部材は、固体高分子電解質膜の外周を周回する枠形状を有しており、段部を介し薄肉状に形成されて第2ガス拡散層側に突出する内周突部が設けられている。   The resin frame member has a frame shape that circulates around the outer periphery of the solid polymer electrolyte membrane, and is provided with an inner peripheral protrusion that is formed thinly through the step and protrudes toward the second gas diffusion layer. Yes.

この製造方法は、段差電解質膜・電極構造体及び樹脂枠部材を個別に作製する工程と、枠形状を有する接着シートを、前記段差電解質膜・電極構造体と前記樹脂枠部材との接着部位の間を隙間なく接着する形状に成形する工程を有している。次いで、樹脂枠部材の内周突部と段差電解質膜・電極構造体の外周縁部とを、成形された接着シートにより接着する工程を有している。
In this manufacturing method, a step electrolyte membrane / electrode structure and a resin frame member are individually manufactured, and an adhesive sheet having a frame shape is attached to the step electrolyte membrane / electrode structure and the resin frame member. and a step of forming a form shaped to adhere without a gap between. Next, there is a step of bonding the inner peripheral protrusion of the resin frame member and the outer peripheral edge of the step electrolyte membrane / electrode structure with a molded adhesive sheet.

また、この製造方法では、成形された接着シートは、内周突部と第2ガス拡散層の端部から外方に突出する固体高分子電解質膜の外周縁部との間に形成される平面部を有することが好ましい。その際、内周突部の先端と第2ガス拡散層の先端との間には、平面部に対して略直角に屈曲する第1屈曲部が形成されるとともに、前記先端から内方に略直角に屈曲し、前記平面部と略平行な第2屈曲部が設けられることが好ましい。   In this manufacturing method, the molded adhesive sheet is a flat surface formed between the inner peripheral protrusion and the outer peripheral edge of the solid polymer electrolyte membrane protruding outward from the end of the second gas diffusion layer. It is preferable to have a part. At this time, a first bent portion that is bent at a substantially right angle with respect to the flat surface portion is formed between the tip of the inner peripheral protrusion and the tip of the second gas diffusion layer, and substantially inward from the tip. It is preferable that a second bent portion that is bent at a right angle and substantially parallel to the flat portion is provided.

さらに、この製造方法では、接着シートを成形する工程では、型部材と段差電解質膜・電極構造体との間で前記接着シートを成形し、前記接着シートにより接着する工程の前に、成形された前記接着シートを前記段差電解質膜・電極構造体の外周縁部に設ける工程をさらに有することが好ましい。
Further, in this manufacturing method, in the step of forming the adhesive sheet , the adhesive sheet is formed between the mold member and the step electrolyte membrane / electrode structure, and is formed before the step of bonding with the adhesive sheet. It is preferable to further include a step of providing the adhesive sheet on the outer peripheral edge of the step electrolyte membrane / electrode structure .

さらにまた、この製造方法では、接着シートを成形する工程では、型部材と樹脂枠部材の内周突部との間で接着シートを成形し、前記接着シートにより接着する工程の前に、成形された前記接着シートを前記樹脂枠部材に設ける工程をさらに有していてもよい。
Furthermore, in this manufacturing method, in the step of forming the adhesive sheet , the adhesive sheet is formed between the mold member and the inner peripheral protrusion of the resin frame member, and is formed before the step of bonding with the adhesive sheet. In addition, the method may further include a step of providing the adhesive sheet on the resin frame member .

また、この製造方法では、接着シートを成形する工程では、複数の型部材間で前記接着シートを成形してもよい。
Further, in this manufacturing method, in the step of forming the adhesive sheet may be molded to the adhesive sheet between a plurality of mold members.

本発明によれば、枠形状の接着シートは、予め段差電解質膜・電極構造体と樹脂枠部材との接着部位の形状に倣って成形されている。このため、成形された接着シートが、樹脂枠部材の内周突部と段差電解質膜・電極構造体の外周縁部との間の接着部位に介装される際、前記接着部位には、前記接着シートの成形不良による空隙部が設けられることがない。   According to the present invention, the frame-shaped adhesive sheet is preliminarily molded according to the shape of the bonding site between the stepped electrolyte membrane / electrode structure and the resin frame member. For this reason, when the molded adhesive sheet is interposed in the adhesive part between the inner peripheral protrusion of the resin frame member and the outer peripheral part of the step electrolyte membrane / electrode structure, There is no space provided due to poor molding of the adhesive sheet.

従って、ガスやエアの滞留を可及的に抑制することができ、簡単な工程で、段差電解質膜・電極構造体と樹脂枠部材とを確実且つ強固に接合させることが可能になる。   Therefore, stagnation of gas and air can be suppressed as much as possible, and the stepped electrolyte membrane / electrode structure and the resin frame member can be reliably and firmly joined with a simple process.

本発明に係る製造方法が適用される固体高分子型燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory view of the polymer electrolyte fuel cell to which the manufacturing method according to the present invention is applied. 前記燃料電池の、図1中、II−II線断面説明図である。FIG. 2 is a sectional view of the fuel cell taken along line II-II in FIG. 1. 前記燃料電池を構成する枠付き段差電解質膜・電極構造体のアノード電極側の正面説明図である。It is front explanatory drawing by the side of the anode electrode of the level | step difference electrolyte membrane and electrode structure with a frame which comprises the said fuel cell. 本発明の第1の実施形態に係る製造方法において、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。In the manufacturing method which concerns on the 1st Embodiment of this invention, it is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame. 前記第1の実施形態で、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame in the said 1st Embodiment. 前記第1の実施形態で、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame in the said 1st Embodiment. 前記第1の実施形態で、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame in the said 1st Embodiment. 本発明の第2の実施形態に係る製造方法において、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。In the manufacturing method which concerns on the 2nd Embodiment of this invention, it is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame. 前記第2の実施形態で、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the said stepped electrolyte membrane and electrode structure with a frame in the said 2nd Embodiment. 前記第2の実施形態で、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the said stepped electrolyte membrane and electrode structure with a frame in the said 2nd Embodiment. 本発明の第3の実施形態に係る製造方法において、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。In the manufacturing method which concerns on the 3rd Embodiment of this invention, it is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame. 前記第3の実施形態で、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame in the said 3rd Embodiment. 前記第3の実施形態で、前記枠付き段差電解質膜・電極構造体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the said level | step difference electrolyte membrane and electrode structure with a frame in the said 3rd Embodiment. 本発明の第4の実施形態に係る燃料電池の製造方法に使用される金型装置の断面説明図である。It is sectional explanatory drawing of the metal mold | die apparatus used for the manufacturing method of the fuel cell which concerns on the 4th Embodiment of this invention. 特許文献1に開示された電解質膜−電極接合体の説明図である。6 is an explanatory diagram of an electrolyte membrane-electrode assembly disclosed in Patent Document 1. FIG.

図1及び図2に示すように、本発明に係る製造方法が適用される固体高分子型燃料電池10は、矢印A方向(例えば、水平方向)に複数積層されることにより、例えば、車載用燃料電池スタックが構成される。   As shown in FIGS. 1 and 2, the polymer electrolyte fuel cell 10 to which the manufacturing method according to the present invention is applied is stacked in the direction of arrow A (for example, the horizontal direction), for example, for in-vehicle use. A fuel cell stack is configured.

燃料電池10は、枠付き段差電解質膜・電極構造体12を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成される。   The fuel cell 10 sandwiches a stepped electrolyte membrane / electrode structure 12 with a frame between a first separator 14 and a second separator 16. The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plating-treated steel plate, a metal plate whose surface is subjected to anticorrosion treatment, a carbon member, or the like.

図2に示すように、枠付き段差電解質膜・電極構造体12は、段差MEA(段差電解質膜・電極構造体)12aを備える。段差MEA12aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜(陽イオン交換膜)18と、前記固体高分子電解質膜18を挟持するカソード電極(第1電極)20及びアノード電極(第2電極)22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質が使用される。   As shown in FIG. 2, the stepped electrolyte membrane / electrode structure 12 with a frame includes a step MEA (stepped electrolyte membrane / electrode structure) 12a. The step MEA 12a includes, for example, a solid polymer electrolyte membrane (cation exchange membrane) 18 in which a perfluorosulfonic acid thin film is impregnated with water, and a cathode electrode (first electrode) 20 sandwiching the solid polymer electrolyte membrane 18. And an anode electrode (second electrode) 22. The solid polymer electrolyte membrane 18 uses an HC (hydrocarbon) electrolyte in addition to a fluorine electrolyte.

アノード電極22は、固体高分子電解質膜18及びカソード電極20よりも小さな平面寸法を有する。なお、カソード電極20は、固体高分子電解質膜18及びアノード電極22よりも小さな平面寸法を有していてもよい。その際、アノード電極22は、第1電極となる一方、カソード電極20は、第2電極となる。   The anode electrode 22 has a smaller planar dimension than the solid polymer electrolyte membrane 18 and the cathode electrode 20. The cathode electrode 20 may have a smaller planar dimension than the solid polymer electrolyte membrane 18 and the anode electrode 22. At that time, the anode electrode 22 becomes the first electrode, while the cathode electrode 20 becomes the second electrode.

カソード電極20は、固体高分子電解質膜18の一方の面18aに配置されるとともに、アノード電極22は、前記固体高分子電解質膜18の他方の面18bに配置される。   The cathode electrode 20 is disposed on one surface 18 a of the solid polymer electrolyte membrane 18, and the anode electrode 22 is disposed on the other surface 18 b of the solid polymer electrolyte membrane 18.

カソード電極20は、固体高分子電解質膜18の面18aに接合される第1電極触媒層(第1触媒層)20aと、前記第1電極触媒層20aに積層される第1ガス拡散層20bとを有する。第1電極触媒層20aと第1ガス拡散層20bとは、同一の平面寸法に、すなわち、固体高分子電解質膜18と同一の平面寸法に設定される。   The cathode electrode 20 includes a first electrode catalyst layer (first catalyst layer) 20a joined to the surface 18a of the solid polymer electrolyte membrane 18, and a first gas diffusion layer 20b laminated on the first electrode catalyst layer 20a. Have The first electrode catalyst layer 20 a and the first gas diffusion layer 20 b are set to have the same planar dimensions, that is, the same planar dimensions as the solid polymer electrolyte membrane 18.

アノード電極22は、固体高分子電解質膜18の面18bに接合される第2電極触媒層(第2触媒層)22aと、前記第2電極触媒層22aに積層される第2ガス拡散層22bとを有する。第2電極触媒層22aは、第2ガス拡散層22bよりも大きな平面寸法(又は第2ガス拡散層22bと同一の平面寸法)に設定される。第1電極触媒層20aは、第2電極触媒層22aよりも大きな平面寸法を有しているが、前記第1電極触媒層20aと前記第2電極触媒層22aとは、同一の平面寸法に設定されてもよい。   The anode electrode 22 includes a second electrode catalyst layer (second catalyst layer) 22a joined to the surface 18b of the solid polymer electrolyte membrane 18, and a second gas diffusion layer 22b laminated on the second electrode catalyst layer 22a. Have The second electrode catalyst layer 22a is set to have a larger planar dimension than the second gas diffusion layer 22b (or the same planar dimension as the second gas diffusion layer 22b). The first electrode catalyst layer 20a has a larger planar dimension than the second electrode catalyst layer 22a, but the first electrode catalyst layer 20a and the second electrode catalyst layer 22a are set to the same planar dimension. May be.

第1電極触媒層20a及び第2電極触媒層22aは、例えば、カーボンブラックに白金粒子を担持した触媒粒子を形成し、イオン導電性バインダーとして高分子電解質を使用する。この高分子電解質の溶液中に触媒粒子を均一に混合して作製された触媒ペーストを、固体高分子電解質膜18の両方の面18a、18bに印刷、塗布又は転写することによって構成される。   For example, the first electrode catalyst layer 20a and the second electrode catalyst layer 22a form catalyst particles in which platinum particles are supported on carbon black, and use a polymer electrolyte as an ion conductive binder. The catalyst paste prepared by uniformly mixing the catalyst particles in the polymer electrolyte solution is configured by printing, coating or transferring on both surfaces 18a and 18b of the solid polymer electrolyte membrane 18.

第1ガス拡散層20b及び第2ガス拡散層22bは、例えば、カーボンブラック及びPTFE(ポリテトラフルオロエチレン)粒子を含む下地層(中間層)をカーボンペーパに塗布して形成される。下地層は、カーボンペーパと同じ平面寸法に設定されている。なお、下地層は、必要に応じて設ければよい。第1ガス拡散層20bの平面寸法は、第2ガス拡散層22bの平面寸法よりも大きな寸法に設定される。   The first gas diffusion layer 20b and the second gas diffusion layer 22b are formed, for example, by applying a base layer (intermediate layer) containing carbon black and PTFE (polytetrafluoroethylene) particles to carbon paper. The underlayer is set to have the same planar dimensions as the carbon paper. In addition, what is necessary is just to provide a base layer as needed. The planar dimension of the first gas diffusion layer 20b is set to be larger than the planar dimension of the second gas diffusion layer 22b.

図1及び図2に示すように、枠付き段差電解質膜・電極構造体12は、段差MEA12aに接合(接着)される樹脂枠部材24を備える。樹脂枠部材24は、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーンゴム、フッ素ゴム、EPDM(エチレンプロピレンゴム)又はm−PPE(変性ポリフェニレンエーテル樹脂)等で構成される。   As shown in FIGS. 1 and 2, the stepped electrolyte membrane / electrode structure 12 with a frame includes a resin frame member 24 bonded (adhered) to the stepped MEA 12a. The resin frame member 24 includes, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyethersulfone), LCP (liquid crystal polymer), PVDF (polyvinylidene fluoride), It is composed of silicone rubber, fluorine rubber, EPDM (ethylene propylene rubber), m-PPE (modified polyphenylene ether resin), or the like.

樹脂枠部材24は、枠形状を有しており、段部を介して薄肉状に形成されてアノード電極22の外周側に突出し、固体高分子電解質膜18の外周縁部18beに当接する内周突部24aを有する。固体高分子電解質膜18の外周縁部18beは、アノード電極22を構成する第2電極触媒層22aの外周端から外方に延在する。   The resin frame member 24 has a frame shape, is formed in a thin shape via a stepped portion, protrudes to the outer peripheral side of the anode electrode 22, and has an inner periphery that contacts the outer peripheral edge portion 18 be of the solid polymer electrolyte membrane 18. It has a protrusion 24a. The outer peripheral edge 18be of the solid polymer electrolyte membrane 18 extends outward from the outer peripheral end of the second electrode catalyst layer 22a constituting the anode electrode 22.

内周突部24aは、内周壁面24bから内方に所定の長さを有して延在し、固体高分子電解質膜18の外周縁部18beから第2電極触媒層22aの先端縁部を覆って配置される。段差MEA12aの先端と内周壁面24bとの間には、所定の隙間が形成される。   The inner peripheral protrusion 24a extends inward from the inner peripheral wall surface 24b with a predetermined length, and extends from the outer peripheral edge 18be of the solid polymer electrolyte membrane 18 to the tip edge of the second electrode catalyst layer 22a. It is placed over. A predetermined gap is formed between the tip of the step MEA 12a and the inner peripheral wall surface 24b.

固体高分子電解質膜18の外周縁部18beと樹脂枠部材24の内周突部24aとの間(接着部位)には、枠形状の接着シート26が設けられる。接着シート26は、接着前に予め成形されており、図2及び図3に示すように、内周突部24aと固体高分子電解質膜18の外周縁部18beとの間に形成される平面部26aを有する。平面部26aは、外周縁部18beから第2電極触媒層22aの先端縁部を覆って延在する。   A frame-shaped adhesive sheet 26 is provided between the outer peripheral edge 18be of the solid polymer electrolyte membrane 18 and the inner peripheral protrusion 24a of the resin frame member 24 (adhesion site). The adhesive sheet 26 is formed in advance before bonding, and as shown in FIGS. 2 and 3, a flat portion formed between the inner peripheral protrusion 24 a and the outer peripheral edge 18 be of the solid polymer electrolyte membrane 18. 26a. The flat surface portion 26a extends from the outer peripheral edge portion 18be to cover the tip edge portion of the second electrode catalyst layer 22a.

接着シート26は、内周突部24aの先端と第2ガス拡散層22bの先端との間に、平面部26aに対して略直角に屈曲する第1屈曲部26bを設ける。第1屈曲部26bの先端には、前記先端から内方に略直角に屈曲し、平面部26aと略平行な第2屈曲部26cが設けられる。第2屈曲部26cは、第2ガス拡散層22bの外周縁部の表面と積層方向に重なり合う重なり部位26ccを有する。接着シート26は、第2電極触媒層22aと直接接する重なり部位を有する。接着シート26の外周端部は、固体高分子電解質膜18及びカソード電極20の先端部と略同一位置に配置される。   The adhesive sheet 26 is provided with a first bent portion 26b that is bent at a substantially right angle with respect to the flat surface portion 26a between the tip of the inner peripheral protrusion 24a and the tip of the second gas diffusion layer 22b. At the tip of the first bent portion 26b, there is provided a second bent portion 26c that is bent at a substantially right angle inward from the tip and is substantially parallel to the flat portion 26a. The second bent portion 26c has an overlapping portion 26cc that overlaps the surface of the outer peripheral edge of the second gas diffusion layer 22b in the stacking direction. The adhesive sheet 26 has an overlapping portion that is in direct contact with the second electrode catalyst layer 22a. The outer peripheral end of the adhesive sheet 26 is disposed at substantially the same position as the tips of the solid polymer electrolyte membrane 18 and the cathode electrode 20.

接着シート26は、例えば、熱可塑性又は熱硬化性の接着剤が使用される。第1の実施形態では、接着シート26は、エステル系、アクリル系又はウレタン系のホットメルトシートにより構成される。ホットメルトシートは、加熱により溶融し、冷却により固化して接着力を得るシート状の接着剤である。   For the adhesive sheet 26, for example, a thermoplastic or thermosetting adhesive is used. In the first embodiment, the adhesive sheet 26 is configured by an ester-based, acrylic-based, or urethane-based hot melt sheet. The hot melt sheet is a sheet-like adhesive that melts by heating and solidifies by cooling to obtain an adhesive force.

図1に示すように、燃料電池10の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bが設けられる。酸化剤ガス入口連通孔30aは、酸化剤ガス、例えば、酸素含有ガスを供給する一方、冷却媒体入口連通孔32aは、冷却媒体を供給する。燃料ガス出口連通孔34bは、燃料ガス、例えば、水素含有ガスを排出する。酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bは、矢印C方向(鉛直方向)に配列して設けられる。   As shown in FIG. 1, one end edge of the fuel cell 10 in the direction of arrow B (horizontal direction in FIG. 1) communicates with each other in the direction of arrow A, which is the stacking direction. A cooling medium inlet communication hole 32a and a fuel gas outlet communication hole 34b are provided. The oxidant gas inlet communication hole 30a supplies an oxidant gas, for example, an oxygen-containing gas, while the cooling medium inlet communication hole 32a supplies a cooling medium. The fuel gas outlet communication hole 34b discharges fuel gas, for example, hydrogen-containing gas. The oxidant gas inlet communication hole 30a, the cooling medium inlet communication hole 32a, and the fuel gas outlet communication hole 34b are arranged in the direction of arrow C (vertical direction).

燃料電池10の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給する燃料ガス入口連通孔34a、冷却媒体を排出する冷却媒体出口連通孔32b、及び酸化剤ガスを排出する酸化剤ガス出口連通孔30bが設けられる。燃料ガス入口連通孔34a、冷却媒体出口連通孔32b及び酸化剤ガス出口連通孔30bは、矢印C方向に配列して設けられる。   The other end edge of the fuel cell 10 in the direction of arrow B communicates with each other in the direction of arrow A, the fuel gas inlet communication hole 34a for supplying fuel gas, the cooling medium outlet communication hole 32b for discharging the cooling medium, and the oxidation An oxidant gas outlet communication hole 30b for discharging the oxidant gas is provided. The fuel gas inlet communication hole 34a, the cooling medium outlet communication hole 32b, and the oxidant gas outlet communication hole 30b are arranged in the direction of arrow C.

第2セパレータ16の枠付き段差電解質膜・電極構造体12に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。   An oxidant gas flow path 36 communicating with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b is provided on the surface 16a of the second separator 16 facing the stepped electrolyte membrane / electrode structure 12. .

第1セパレータ14の枠付き段差電解質膜・電極構造体12に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が形成される。互いに隣接する第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が形成される。   A fuel gas flow path 38 communicating with the fuel gas inlet communication hole 34 a and the fuel gas outlet communication hole 34 b is formed on the surface 14 a of the first separator 14 facing the stepped electrolyte membrane / electrode structure 12. A cooling medium flow path 40 communicating with the cooling medium inlet communication hole 32a and the cooling medium outlet communication hole 32b is formed between the surface 14b of the first separator 14 and the surface 16b of the second separator 16 adjacent to each other. .

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。   As shown in FIGS. 1 and 2, the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14. The second seal member 44 is integrated with the surfaces 16 a and 16 b of the second separator 16 around the outer peripheral end portion of the second separator 16.

図2に示すように、第1シール部材42は、枠付き段差電解質膜・電極構造体12を構成する樹脂枠部材24の内周突部24aに当接する第1凸状シール42aと、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bとを有する。第2シール部材44は、セパレータ面に沿って平面状に延在する平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。   As shown in FIG. 2, the first seal member 42 includes a first convex seal 42 a that contacts the inner peripheral protrusion 24 a of the resin frame member 24 constituting the stepped electrolyte membrane / electrode structure 12 with a frame, and a second And a second convex seal 42b that contacts the second seal member 44 of the separator 16. The second seal member 44 constitutes a planar seal that extends in a planar shape along the separator surface. Instead of the second convex seal 42b, the second seal member 44 may be provided with a convex seal (not shown).

第1シール部材42及び第2シール部材44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材が用いられる。   For the first seal member 42 and the second seal member 44, for example, EPDM, NBR, fluororubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber or the like, cushion material Alternatively, an elastic seal member such as a packing material is used.

図1に示すように、第1セパレータ14には、燃料ガス入口連通孔34aを燃料ガス流路38に連通する供給孔部46と、前記燃料ガス流路38を燃料ガス出口連通孔34bに連通する排出孔部48とが形成される。   As shown in FIG. 1, the first separator 14 has a supply hole portion 46 that communicates the fuel gas inlet communication hole 34a with the fuel gas passage 38, and the fuel gas passage 38 communicates with the fuel gas outlet communication hole 34b. A discharge hole 48 is formed.

次いで、本発明の第1の実施形態に係る燃料電池10の製造方法について、以下に説明する。   Next, a method for manufacturing the fuel cell 10 according to the first embodiment of the present invention will be described below.

先ず、段差MEA12aが作製される一方、金型(図示せず)を用いて射出成形されることにより、樹脂枠部材24が成形される。樹脂枠部材24は、肉薄形状の内周突部24aを一体に有する。   First, the step MEA 12a is manufactured, and the resin frame member 24 is molded by injection molding using a mold (not shown). The resin frame member 24 integrally has a thin inner protrusion 24a.

図4に示すように、段差MEA12aと加熱された型部材50との間に、枠形状の平板接着シート26pが配置される。型部材50は、段差MEA12aに対向する面に、樹脂枠部材24の内周突部24aに対応するプレス面50aを有する。   As shown in FIG. 4, a frame-shaped flat plate adhesive sheet 26 p is disposed between the step MEA 12 a and the heated mold member 50. The mold member 50 has a press surface 50a corresponding to the inner peripheral protrusion 24a of the resin frame member 24 on the surface facing the step MEA 12a.

そして、図5に示すように、型部材50と段差MEA12aとの間で、平板接着シート26pにプレス成形を行うことにより、屈曲形状を有する接着シート26が成形される。具体的には、接着シート26は、平面部26a、第1屈曲部26b及び第2屈曲部26cが一体成形されるとともに、段差MEA12aに設けられる。   Then, as shown in FIG. 5, the adhesive sheet 26 having a bent shape is formed by performing press molding on the flat adhesive sheet 26 p between the mold member 50 and the step MEA 12 a. Specifically, the adhesive sheet 26 is provided with the step MEA 12a while the flat portion 26a, the first bent portion 26b, and the second bent portion 26c are integrally formed.

次に、型部材50が離型された後、図6に示すように、樹脂枠部材24が段差MEA12aに対向して配置される。そこで、樹脂枠部材24の内周突部24aと段差MEA12aとが、接着シート26を介装して互いに積層される。この状態で、図7に示すように、接着シート26が加熱溶融(ホットメルト)されるとともに、荷重(プレス等)が付与される。なお、接着シート26による接着方式は、ホットプレスやロールプレスが採用され、さらに片面加熱や両面加熱のいずれを用いてもよい。   Next, after the mold member 50 is released, as shown in FIG. 6, the resin frame member 24 is disposed to face the step MEA 12a. Therefore, the inner peripheral protrusion 24a and the step MEA 12a of the resin frame member 24 are stacked on each other with the adhesive sheet 26 interposed therebetween. In this state, as shown in FIG. 7, the adhesive sheet 26 is heated and melted (hot melt) and a load (press or the like) is applied. In addition, as a bonding method using the adhesive sheet 26, a hot press or a roll press is adopted, and either single-side heating or double-side heating may be used.

このため、内周突部24aと固体高分子電解質膜18とが接着されて、枠付き段差電解質膜・電極構造体12が製造される。図2に示すように、枠付き段差電解質膜・電極構造体12は、第1セパレータ14及び第2セパレータ16により挟持される。第1セパレータ14は、樹脂枠部材24の内周突部24aに当接し、第2セパレータ16と共に枠付き段差電解質膜・電極構造体12に荷重を付与する。   For this reason, the inner peripheral protrusion 24a and the solid polymer electrolyte membrane 18 are bonded together, and the stepped electrolyte membrane / electrode structure 12 with a frame is manufactured. As shown in FIG. 2, the stepped electrolyte membrane / electrode structure 12 with a frame is sandwiched between a first separator 14 and a second separator 16. The first separator 14 abuts on the inner peripheral protrusion 24 a of the resin frame member 24 and applies a load to the stepped electrolyte membrane / electrode structure 12 with the second separator 16.

これにより、燃料電池10が製造される。燃料電池10は、所定数だけ積層されて燃料電池スタックが構成されるとともに、図示しないエンドプレート間に締め付け荷重が付与される。   Thereby, the fuel cell 10 is manufactured. A predetermined number of fuel cells 10 are stacked to form a fuel cell stack, and a clamping load is applied between end plates (not shown).

このように構成される燃料電池10の動作について、以下に説明する。   The operation of the fuel cell 10 configured as described above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔30aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aに純水やエチレングリコール、オイル等の冷却媒体が供給される。   First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して段差MEA12aのカソード電極20に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから供給孔部46を通って第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、段差MEA12aのアノード電極22に供給される。   Therefore, the oxidant gas is introduced from the oxidant gas inlet communication hole 30a into the oxidant gas flow path 36 of the second separator 16, moves in the direction of arrow B, and is supplied to the cathode electrode 20 of the step MEA 12a. On the other hand, the fuel gas is introduced from the fuel gas inlet communication hole 34 a through the supply hole 46 into the fuel gas flow path 38 of the first separator 14. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode electrode 22 of the step MEA 12a.

従って、各段差MEA12aでは、カソード電極20に供給される酸化剤ガスと、アノード電極22に供給される燃料ガスとが、第1電極触媒層20a及び第2電極触媒層22a内で電気化学反応により消費されて発電が行われる。   Therefore, in each step MEA 12a, the oxidant gas supplied to the cathode electrode 20 and the fuel gas supplied to the anode electrode 22 are caused by an electrochemical reaction in the first electrode catalyst layer 20a and the second electrode catalyst layer 22a. It is consumed to generate electricity.

次いで、カソード電極20に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極22に供給されて消費された燃料ガスは、排出孔部48を通り燃料ガス出口連通孔34bに沿って矢印A方向に排出される。   Next, the oxidant gas consumed by being supplied to the cathode electrode 20 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b. Similarly, the fuel gas consumed by being supplied to the anode electrode 22 passes through the discharge hole 48 and is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.

また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、段差MEA12aを冷却した後、冷却媒体出口連通孔32bから排出される。   The cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow path 40 between the first separator 14 and the second separator 16, and then flows in the direction of arrow B. This cooling medium is discharged from the cooling medium outlet communication hole 32b after the step MEA 12a is cooled.

この場合、第1の実施形態では、図5に示すように、型部材50と段差MEA12aとの間で、平板接着シート26pにプレス成形を行うことにより、屈曲形状を有する接着シート26が成形されている。このため、枠形状の接着シート26は、予め段差MEA12aと樹脂枠部材24との接着部位の形状に倣って成形されている(図6参照)。   In this case, in the first embodiment, as shown in FIG. 5, the adhesive sheet 26 having a bent shape is formed by press-molding the flat adhesive sheet 26p between the mold member 50 and the step MEA 12a. ing. For this reason, the frame-shaped adhesive sheet 26 is molded in advance following the shape of the bonding portion between the step MEA 12a and the resin frame member 24 (see FIG. 6).

従って、図7に示すように、接着シート26が、樹脂枠部材24の内周突部24aと段差MEA12aの外周縁部との間の接着部位に介装される際、前記接着部位には、前記接着シート26の成形不良による空隙部が設けられることがない。これにより、ガスやエアの滞留を可及的に抑制することができ、簡単な工程で、段差MEA12aと樹脂枠部材24とを確実且つ強固に接合させることが可能になるという効果が得られる。   Therefore, as shown in FIG. 7, when the adhesive sheet 26 is interposed in the adhesion part between the inner peripheral protrusion 24 a of the resin frame member 24 and the outer peripheral edge part of the step MEA 12 a, There is no provision of voids due to poor molding of the adhesive sheet 26. As a result, the retention of gas and air can be suppressed as much as possible, and the effect that the step MEA 12a and the resin frame member 24 can be reliably and firmly joined in a simple process is obtained.

図8〜図10は、本発明の第2の実施形態に係る燃料電池10の製造方法の説明図である。   8-10 is explanatory drawing of the manufacturing method of the fuel cell 10 which concerns on the 2nd Embodiment of this invention.

図8に示すように、樹脂枠部材24と型部材52との間に、平板接着シート26pが配置される。型部材52は、樹脂枠部材24の内周突部24aに対向する面に、段差MEA12aの外周縁部に対応するプレス面52aを有する。   As shown in FIG. 8, a flat plate adhesive sheet 26 p is disposed between the resin frame member 24 and the mold member 52. The mold member 52 has a press surface 52a corresponding to the outer peripheral edge of the step MEA 12a on the surface facing the inner peripheral protrusion 24a of the resin frame member 24.

そして、図9に示すように、加熱された型部材52と樹脂枠部材24との間で、平板接着シート26pにプレス成形を行うことにより、屈曲形状を有する接着シート26が成形される。具体的には、接着シート26は、平面部26a、第1屈曲部26b及び第2屈曲部26cが一体成形されるとともに、樹脂枠部材24に設けられる。   Then, as shown in FIG. 9, the adhesive sheet 26 having a bent shape is formed by press-molding the flat plate adhesive sheet 26 p between the heated mold member 52 and the resin frame member 24. Specifically, the adhesive sheet 26 is provided on the resin frame member 24 while the flat portion 26a, the first bent portion 26b, and the second bent portion 26c are integrally formed.

次に、型部材52が離型された後、図10に示すように、段差MEA12aが樹脂枠部材24に対向して配置される。そこで、樹脂枠部材24の内周突部24aと段差MEA12aとが、接着シート26を介装して互いに積層される。この状態で、図7に示すように、接着シート26が加熱溶融(ホットメルト)されるとともに、荷重(プレス等)が付与される。   Next, after the mold member 52 is released, the step MEA 12a is disposed to face the resin frame member 24 as shown in FIG. Therefore, the inner peripheral protrusion 24a and the step MEA 12a of the resin frame member 24 are stacked on each other with the adhesive sheet 26 interposed therebetween. In this state, as shown in FIG. 7, the adhesive sheet 26 is heated and melted (hot melt) and a load (press or the like) is applied.

この場合、第2の実施形態では、枠形状の接着シート26は、型部材52と樹脂枠部材24とを用いて、予め段差MEA12aと前記樹脂枠部材24との接着部位の形状に倣って成形されている(図9参照)。このため、簡単な工程で、段差MEA12aと樹脂枠部材24とを確実且つ強固に接合させることが可能になる等、上記の第1の実施形態と同様の効果が得られる。   In this case, in the second embodiment, the frame-shaped adhesive sheet 26 is molded in advance by using the mold member 52 and the resin frame member 24, following the shape of the bonding portion between the step MEA 12 a and the resin frame member 24. (See FIG. 9). For this reason, the same effects as those of the first embodiment described above can be obtained, such as the step MEA 12a and the resin frame member 24 can be reliably and firmly joined by a simple process.

図11〜図13は、本発明の第3の実施形態に係る燃料電池10の製造方法の説明図である。   FIGS. 11-13 is explanatory drawing of the manufacturing method of the fuel cell 10 which concerns on the 3rd Embodiment of this invention.

図11に示すように、複数の型部材である第1型部材54と第2型部材56との間に、平板接着シート26pが配置される。第1型部材54は、樹脂枠部材24の内周突部24aに対応するプレス面54aを有する一方、第2型部材56は、段差MEA12aの外周縁部に対応するプレス面56aを有する。なお、複数の型部材の数は、2個に限定されるものではなく、3個以上の型部材を有してもよい。   As shown in FIG. 11, the flat plate adhesive sheet 26 p is disposed between the first mold member 54 and the second mold member 56 which are a plurality of mold members. The first mold member 54 has a press surface 54a corresponding to the inner peripheral protrusion 24a of the resin frame member 24, while the second mold member 56 has a press surface 56a corresponding to the outer peripheral edge of the step MEA 12a. Note that the number of the plurality of mold members is not limited to two, and may include three or more mold members.

そこで、図12に示すように、加熱された第1型部材54と加熱された第2型部材56との間で、平板接着シート26pにプレス成形を行うことにより、屈曲形状を有する接着シート26が成形される。具体的には、接着シート26は、平面部26a、第1屈曲部26b及び第2屈曲部26cが一体成形される。   Therefore, as shown in FIG. 12, the flat adhesive sheet 26p is press-formed between the heated first mold member 54 and the heated second mold member 56, whereby the adhesive sheet 26 having a bent shape is formed. Is formed. Specifically, in the adhesive sheet 26, a flat portion 26a, a first bent portion 26b, and a second bent portion 26c are integrally formed.

次に、第1型部材54及び第2型部材56が離型された後、図13に示すように、段差MEA12aと樹脂枠部材24とは、接着シート26を介装して互いに積層される。この状態で、図7に示すように、接着シート26が加熱溶融(ホットメルト)されるとともに、荷重(プレス等)が付与される。   Next, after the first mold member 54 and the second mold member 56 are released, as shown in FIG. 13, the step MEA 12 a and the resin frame member 24 are laminated with the adhesive sheet 26 interposed therebetween. . In this state, as shown in FIG. 7, the adhesive sheet 26 is heated and melted (hot melt) and a load (press or the like) is applied.

この場合、第3の実施形態では、枠形状の接着シート26は、第1型部材54と第2型部材56とを用いて、予め段差MEA12aと樹脂枠部材24との接着部位の形状に倣って成形されている(図12参照)。このため、簡単な工程で、段差MEA12aと樹脂枠部材24とを確実且つ強固に接合させることが可能になる等、上記の第1及び第2の実施形態と同様の効果が得られる。   In this case, in the third embodiment, the frame-shaped adhesive sheet 26 uses the first mold member 54 and the second mold member 56 to imitate the shape of the adhesion site between the step MEA 12a and the resin frame member 24 in advance. (See FIG. 12). For this reason, the same effects as those in the first and second embodiments described above can be obtained, for example, the step MEA 12a and the resin frame member 24 can be reliably and firmly joined by a simple process.

図14は、本発明の第4の実施形態に係る燃料電池10の製造方法に使用される金型装置58の断面説明図である。   FIG. 14 is a cross-sectional explanatory view of a mold apparatus 58 used in the method for manufacturing the fuel cell 10 according to the fourth embodiment of the present invention.

金型装置58は、第1金型60と第2金型62とを備え、型締めされた際、前記第1金型60及び前記第2金型62間に、キャビティ64が形成される。キャビティ64は、成形された接着シート26の形状に対応する。第2金型62には、キャビティ64に溶融状態のホットメルト剤を充填させる湯口66が形成されている。   The mold device 58 includes a first mold 60 and a second mold 62, and a cavity 64 is formed between the first mold 60 and the second mold 62 when the mold is clamped. The cavity 64 corresponds to the shape of the molded adhesive sheet 26. The second mold 62 is formed with a gate 66 for filling the cavity 64 with a molten hot melt agent.

第4の実施形態では、金型装置58において、複数個の湯口66からキャビティ64に溶融状態のホットメルト剤が充填され、前記ホットメルト剤が硬化することにより、接着シート26が製造される。   In the fourth embodiment, in the mold device 58, the molten hot melt agent is filled into the cavity 64 from the plurality of gates 66, and the hot melt agent is cured, whereby the adhesive sheet 26 is manufactured.

接着シート26は、金型装置58から離脱されて湯口部分が切断され、上記の第3の実施形態と同様に、図13に示すように、段差MEA12aと樹脂枠部材24とに挟持されて積層される。そして、接着シート26が加熱溶融(ホットメルト)されるとともに、荷重(プレス等)が付与される。   The adhesive sheet 26 is detached from the mold device 58 and the gate portion is cut, and as in the third embodiment, as shown in FIG. Is done. Then, the adhesive sheet 26 is heated and melted (hot melt) and a load (press or the like) is applied.

このように、第4の実施形態では、簡単な工程で、段差MEA12aと樹脂枠部材24とを確実且つ強固に接合させることが可能になる等、上記の第1〜第3の実施形態と同様の効果が得られる。   As described above, in the fourth embodiment, the step MEA 12a and the resin frame member 24 can be reliably and firmly joined in a simple process, and the same as in the first to third embodiments. The effect is obtained.

10…燃料電池 12…枠付き段差電解質膜・電極構造体
12a…段差MEA 14、16…セパレータ
18…固体高分子電解質膜 18be…外周縁部
20…カソード電極 20a、22a…電極触媒層
20b、22b…ガス拡散層 22…アノード電極
24…樹脂枠部材 24a…内周突部
26…接着シート 26a…平面部
26b、26c…屈曲部 30a…酸化剤ガス入口連通孔
30b…酸化剤ガス出口連通孔 32a…冷却媒体入口連通孔
32b…冷却媒体出口連通孔 34a…燃料ガス入口連通孔
34b…燃料ガス出口連通孔 36…酸化剤ガス流路
38…燃料ガス流路 40…冷却媒体流路
42、44…シール部材 50、52、54、56…型部材
50a、52a、54a、56a…プレス面
58…金型装置 60、62…金型
64…キャビティ
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 12 ... Stepped electrolyte membrane and electrode structure 12a with a frame ... Step MEA 14, 16 ... Separator 18 ... Solid polymer electrolyte membrane 18be ... Outer peripheral edge 20 ... Cathode electrodes 20a, 22a ... Electrode catalyst layers 20b, 22b ... Gas diffusion layer 22 ... Anode electrode 24 ... Resin frame member 24a ... Inner peripheral projection 26 ... Adhesive sheet 26a ... Plane part 26b, 26c ... Bending part 30a ... Oxidant gas inlet communication hole 30b ... Oxidant gas outlet communication hole 32a ... cooling medium inlet communication hole 32b ... cooling medium outlet communication hole 34a ... fuel gas inlet communication hole 34b ... fuel gas outlet communication hole 36 ... oxidant gas flow path 38 ... fuel gas flow path 40 ... cooling medium flow path 42, 44 ... Seal members 50, 52, 54, 56 ... Mold members 50a, 52a, 54a, 56a ... Press surface 58 ... Mold device 60, 62 ... Mold 64 ... Cavite

Claims (3)

固体高分子電解質膜の一方の面に、第1触媒層及び第1ガス拡散層を有する第1電極が配設され、且つ前記固体高分子電解質膜の他方の面に、第2触媒層及び第2ガス拡散層を有する第2電極が配設されるとともに、前記第1ガス拡散層の平面寸法は、前記第2ガス拡散層の平面寸法よりも大きな寸法に設定される段差電解質膜・電極構造体と、
前記固体高分子電解質膜の外周を周回する枠形状を有しており、段部を介し薄肉状に形成されて前記第2ガス拡散層側に突出する内周突部が設けられる樹脂枠部材と、
が接合される枠付き段差電解質膜・電極構造体を備える燃料電池の製造方法であって、
前記段差電解質膜・電極構造体及び前記樹脂枠部材を個別に作製する工程と、
枠形状を有する接着シートを、前記段差電解質膜・電極構造体と前記樹脂枠部材との接着部位の間を隙間なく接着する形状に成形する工程と、
前記樹脂枠部材の前記内周突部と前記段差電解質膜・電極構造体の外周縁部とを、成形された前記接着シートにより接着する工程と、
を有し、
成形された前記接着シートは、前記内周突部と前記第2ガス拡散層の端部から外方に突出する前記固体高分子電解質膜の前記外周縁部との間に形成される平面部と、前記内周突部の先端と前記第2ガス拡散層の先端との間に形成され、前記平面部に対して直角に屈曲する第1屈曲部と、前記第2ガス拡散層の前記先端から内方に直角に屈曲し、前記平面部と平行な第2屈曲部と、
を有し、
前記接着シートを成形する工程では、型部材と前記段差電解質膜・電極構造体との間で前記接着シートを成形し、
前記接着シートにより接着する工程の前に、成形された前記接着シートを前記段差電解質膜・電極構造体の前記外周縁部に設ける工程をさらに有する
ことを特徴とする燃料電池の製造方法。
A first electrode having a first catalyst layer and a first gas diffusion layer is disposed on one surface of the solid polymer electrolyte membrane, and a second catalyst layer and a second electrode are disposed on the other surface of the solid polymer electrolyte membrane. A step electrolyte membrane / electrode structure in which a second electrode having two gas diffusion layers is disposed, and a planar dimension of the first gas diffusion layer is set larger than a planar dimension of the second gas diffusion layer Body,
A resin frame member having a frame shape that circulates around the outer periphery of the solid polymer electrolyte membrane, provided with an inner peripheral protrusion that is formed thinly through a step portion and protrudes toward the second gas diffusion layer; ,
A method for producing a fuel cell comprising a stepped electrolyte membrane / electrode structure with a frame to which is joined,
Separately producing the stepped electrolyte membrane / electrode structure and the resin frame member;
A step of an adhesive sheet, which formed the shape between the adhering portion to the shape of bonding without a gap between the resin frame member and the stepped membrane electrode assembly having a frame shape,
Bonding the inner peripheral protrusion of the resin frame member and the outer peripheral edge of the step electrolyte membrane / electrode structure with the molded adhesive sheet;
I have a,
The molded adhesive sheet has a flat portion formed between the inner peripheral protrusion and the outer peripheral edge of the solid polymer electrolyte membrane protruding outward from the end of the second gas diffusion layer. A first bent portion that is formed between the tip of the inner peripheral protrusion and the tip of the second gas diffusion layer and bends at right angles to the plane portion; and from the tip of the second gas diffusion layer A second bent portion that is bent inwardly at a right angle and parallel to the plane portion;
Have
In the step of forming the adhesive sheet, the adhesive sheet is formed between a mold member and the step electrolyte membrane / electrode structure,
The method for producing a fuel cell, further comprising the step of providing the molded adhesive sheet on the outer peripheral edge of the stepped electrolyte membrane / electrode structure before the step of bonding with the adhesive sheet .
固体高分子電解質膜の一方の面に、第1触媒層及び第1ガス拡散層を有する第1電極が配設され、且つ前記固体高分子電解質膜の他方の面に、第2触媒層及び第2ガス拡散層を有する第2電極が配設されるとともに、前記第1ガス拡散層の平面寸法は、前記第2ガス拡散層の平面寸法よりも大きな寸法に設定される段差電解質膜・電極構造体と、
前記固体高分子電解質膜の外周を周回する枠形状を有しており、段部を介し薄肉状に形成されて前記第2ガス拡散層側に突出する内周突部が設けられる樹脂枠部材と、
が接合される枠付き段差電解質膜・電極構造体を備える燃料電池の製造方法であって、
前記段差電解質膜・電極構造体及び前記樹脂枠部材を個別に作製する工程と、
枠形状を有する接着シートを、前記段差電解質膜・電極構造体と前記樹脂枠部材との接着部位の間を隙間なく接着する形状に成形する工程と、
前記樹脂枠部材の前記内周突部と前記段差電解質膜・電極構造体の外周縁部とを、成形された前記接着シートにより接着する工程と、
を有し、
成形された前記接着シートは、前記内周突部と前記第2ガス拡散層の端部から外方に突出する前記固体高分子電解質膜の前記外周縁部との間に形成される平面部と、前記内周突部の先端と前記第2ガス拡散層の先端との間に形成され、前記平面部に対して直角に屈曲する第1屈曲部と、前記第2ガス拡散層の前記先端から内方に直角に屈曲し、前記平面部と平行な第2屈曲部と、
を有し、
前記接着シートを成形する工程では、型部材と前記樹脂枠部材の前記内周突部との間で前記接着シートを成形し、
前記接着シートにより接着する工程の前に、成形された前記接着シートを前記樹脂枠部材に設ける工程をさらに有する
ことを特徴とする燃料電池の製造方法。
A first electrode having a first catalyst layer and a first gas diffusion layer is disposed on one surface of the solid polymer electrolyte membrane, and a second catalyst layer and a second electrode are disposed on the other surface of the solid polymer electrolyte membrane. A step electrolyte membrane / electrode structure in which a second electrode having two gas diffusion layers is disposed, and a planar dimension of the first gas diffusion layer is set larger than a planar dimension of the second gas diffusion layer Body,
A resin frame member having a frame shape that circulates around the outer periphery of the solid polymer electrolyte membrane, provided with an inner peripheral protrusion that is formed thinly through a step portion and protrudes toward the second gas diffusion layer; ,
A method for producing a fuel cell comprising a stepped electrolyte membrane / electrode structure with a frame to which is joined,
Separately producing the stepped electrolyte membrane / electrode structure and the resin frame member;
A step of forming an adhesive sheet having a frame shape into a shape that adheres between the adhesion portions of the stepped electrolyte membrane / electrode structure and the resin frame member without gaps;
Bonding the inner peripheral protrusion of the resin frame member and the outer peripheral edge of the step electrolyte membrane / electrode structure with the molded adhesive sheet;
Have
The molded adhesive sheet has a flat portion formed between the inner peripheral protrusion and the outer peripheral edge of the solid polymer electrolyte membrane protruding outward from the end of the second gas diffusion layer. A first bent portion that is formed between the tip of the inner peripheral protrusion and the tip of the second gas diffusion layer and bends at right angles to the plane portion; and from the tip of the second gas diffusion layer A second bent portion that is bent inwardly at a right angle and parallel to the plane portion;
Have
In the step of forming the adhesive sheet, the adhesive sheet is formed between a mold member and the inner peripheral protrusion of the resin frame member ,
Wherein prior to the step of bonding the adhesive sheet, a manufacturing method of a fuel cell, characterized by further comprising the step of providing the adhesive sheet formed before Symbol resin frame member.
固体高分子電解質膜の一方の面に、第1触媒層及び第1ガス拡散層を有する第1電極が配設され、且つ前記固体高分子電解質膜の他方の面に、第2触媒層及び第2ガス拡散層を有する第2電極が配設されるとともに、前記第1ガス拡散層の平面寸法は、前記第2ガス拡散層の平面寸法よりも大きな寸法に設定される段差電解質膜・電極構造体と、
前記固体高分子電解質膜の外周を周回する枠形状を有しており、段部を介し薄肉状に形成されて前記第2ガス拡散層側に突出する内周突部が設けられる樹脂枠部材と、
が接合される枠付き段差電解質膜・電極構造体を備える燃料電池の製造方法であって、
前記段差電解質膜・電極構造体及び前記樹脂枠部材を個別に作製する工程と、
枠形状を有する接着シートを、前記段差電解質膜・電極構造体と前記樹脂枠部材との接着部位の間を隙間なく接着する形状に成形する工程と、
前記樹脂枠部材の前記内周突部と前記段差電解質膜・電極構造体の外周縁部とを、成形された前記接着シートにより接着する工程と、
を有し、
成形された前記接着シートは、前記内周突部と前記第2ガス拡散層の端部から外方に突出する前記固体高分子電解質膜の前記外周縁部との間に形成される平面部と、前記内周突部の先端と前記第2ガス拡散層の先端との間に形成され、前記平面部に対して直角に屈曲する第1屈曲部と、前記第2ガス拡散層の前記先端から内方に直角に屈曲し、前記平面部と平行な第2屈曲部と、
を有し、
前記接着シートを成形する工程では、複数の型部材間で前記接着シートを成形す
とを特徴とする燃料電池の製造方法。
A first electrode having a first catalyst layer and a first gas diffusion layer is disposed on one surface of the solid polymer electrolyte membrane, and a second catalyst layer and a second electrode are disposed on the other surface of the solid polymer electrolyte membrane. A step electrolyte membrane / electrode structure in which a second electrode having two gas diffusion layers is disposed, and a planar dimension of the first gas diffusion layer is set larger than a planar dimension of the second gas diffusion layer Body,
A resin frame member having a frame shape that circulates around the outer periphery of the solid polymer electrolyte membrane, provided with an inner peripheral protrusion that is formed thinly through a step portion and protrudes toward the second gas diffusion layer; ,
A method for producing a fuel cell comprising a stepped electrolyte membrane / electrode structure with a frame to which is joined,
Separately producing the stepped electrolyte membrane / electrode structure and the resin frame member;
A step of forming an adhesive sheet having a frame shape into a shape that adheres between the adhesion portions of the stepped electrolyte membrane / electrode structure and the resin frame member without gaps;
Bonding the inner peripheral protrusion of the resin frame member and the outer peripheral edge of the step electrolyte membrane / electrode structure with the molded adhesive sheet;
Have
The molded adhesive sheet has a flat portion formed between the inner peripheral protrusion and the outer peripheral edge of the solid polymer electrolyte membrane protruding outward from the end of the second gas diffusion layer. A first bent portion that is formed between the tip of the inner peripheral protrusion and the tip of the second gas diffusion layer and bends at right angles to the plane portion; and from the tip of the second gas diffusion layer A second bent portion that is bent inwardly at a right angle and parallel to the plane portion;
Have
In the step of forming the adhesive sheet, mold the adhesive sheet between a plurality of mold members
Method for manufacturing a fuel cell characterized by and this.
JP2014132613A 2014-06-27 2014-06-27 Manufacturing method of fuel cell Expired - Fee Related JP6126049B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014132613A JP6126049B2 (en) 2014-06-27 2014-06-27 Manufacturing method of fuel cell
US14/749,773 US20150380746A1 (en) 2014-06-27 2015-06-25 Fuel cell and method of producing the fuel cell
CN201510358381.5A CN105226316B (en) 2014-06-27 2015-06-25 Fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132613A JP6126049B2 (en) 2014-06-27 2014-06-27 Manufacturing method of fuel cell

Publications (2)

Publication Number Publication Date
JP2016012435A JP2016012435A (en) 2016-01-21
JP6126049B2 true JP6126049B2 (en) 2017-05-10

Family

ID=55229040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132613A Expired - Fee Related JP6126049B2 (en) 2014-06-27 2014-06-27 Manufacturing method of fuel cell

Country Status (1)

Country Link
JP (1) JP6126049B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6663901B2 (en) * 2017-12-05 2020-03-13 本田技研工業株式会社 Fuel cell
JP7120197B2 (en) 2019-09-30 2022-08-17 トヨタ自動車株式会社 Fuel cell unit cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332212B2 (en) * 2007-11-05 2013-11-06 大日本印刷株式会社 Electrolyte membrane-catalyst layer assembly with gasket, electrolyte membrane-electrode assembly with gasket and solid polymer fuel cell using the same
US8426078B2 (en) * 2007-12-21 2013-04-23 3M Innovative Properties Company Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket
JP5857929B2 (en) * 2012-05-01 2016-02-10 トヨタ自動車株式会社 Fuel cell and fuel cell manufacturing method
JP2013258096A (en) * 2012-06-14 2013-12-26 Honda Motor Co Ltd Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP6104050B2 (en) * 2012-06-29 2017-03-29 本田技研工業株式会社 Electrolyte membrane / electrode structure for fuel cells

Also Published As

Publication number Publication date
JP2016012435A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5615875B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6263214B2 (en) Step MEA with resin frame for fuel cells
JP5638508B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
JP5855540B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5683433B2 (en) Fuel cell stack
JP5855442B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
JP2019003821A (en) Fuel cell and manufacturing method therefor
US20150380746A1 (en) Fuel cell and method of producing the fuel cell
JP5778044B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6618762B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP2017068956A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP6594809B2 (en) Step MEA with resin frame for fuel cell and manufacturing method thereof
JP6145082B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP2016100152A (en) Polymer electrolyte electrode structure with resin frame for fuel cell
JP6144650B2 (en) Manufacturing method of fuel cell
JP6126049B2 (en) Manufacturing method of fuel cell
JP2016058161A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6666664B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2013258096A (en) Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2013157093A (en) Fuel cell
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
JP2016076372A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP6158758B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6784492B2 (en) Manufacturing method of MEA with resin frame
JP2017010704A (en) Method for manufacturing electrolyte membrane/electrode structure with resin frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6126049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees