JPS60241674A - Fused carbonate type fuel cell - Google Patents

Fused carbonate type fuel cell

Info

Publication number
JPS60241674A
JPS60241674A JP59097271A JP9727184A JPS60241674A JP S60241674 A JPS60241674 A JP S60241674A JP 59097271 A JP59097271 A JP 59097271A JP 9727184 A JP9727184 A JP 9727184A JP S60241674 A JPS60241674 A JP S60241674A
Authority
JP
Japan
Prior art keywords
fuel
gas
fuel cell
distribution plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59097271A
Other languages
Japanese (ja)
Other versions
JPH0656765B2 (en
Inventor
Yoichi Seta
瀬田 曜一
Keijiro Yamashita
山下 慶次郎
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59097271A priority Critical patent/JPH0656765B2/en
Publication of JPS60241674A publication Critical patent/JPS60241674A/en
Publication of JPH0656765B2 publication Critical patent/JPH0656765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reform fuel gas efficiently in a fuel cell through simple structure by making many grooves in both faces of a porous member and filling with catalist to provide a branch gas flow reforming board and forming a bipolar partition board. CONSTITUTION:A fused carbonate type fuel cell is formed by providing a pair of bipolar partition boards 21 on both faces of unit cell 1 composed of an electrolytic layer 5 sandwitched by an oxidizing agent electrode 3 and a fuel electrode 4 then laminating plural sets of unit cells 1. The partition board 21 is formed by providing sidewall members 7a, 7b and a branch gas flow reforming board 22 at one side of partition board body 6 while sidewall members 8a, 8b and an oxidizing agent gas flow path 9b at the other side where the branch gas flow reforming board 22 is formed by making many V-grooves in both faces of porous member while crossing perpendicularly with passing direction of fuel gas P and filling with catalyst 25. Consequently, contact between the fuel gas and the catalyst 25 can be improved through simple structure resulting in efficient reforming of fuel gas in the cell.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、燃料電池本体内部に燃料ガスの改質手段を設
けた内部改質方式の溶融炭酸塩型燃料電池に関わり、特
に燃料ガスの改質効率の向上化を図れるようにした溶融
炭酸塩型燃料電池に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to an internal reforming type molten carbonate fuel cell in which fuel gas reforming means is provided inside the fuel cell main body, and particularly relates to a molten carbonate fuel cell having a fuel gas reforming means provided inside the fuel cell main body. This invention relates to a molten carbonate fuel cell that can improve quality and efficiency.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池は、例えば水素のように酸化され易いガスと、
酸素のように酸化力のあるガスとを適当な電解質の下で
電気化学反応プロセスを経て反応させて直流電力を得る
ものであり、その使用電解質によってリン酸型、溶融炭
酸塩型、固体電解質型等に大別される。
A fuel cell uses a gas that is easily oxidized, such as hydrogen, and
DC power is obtained by reacting an oxidizing gas such as oxygen through an electrochemical reaction process in an appropriate electrolyte, and depending on the electrolyte used, there are phosphoric acid type, molten carbonate type, and solid electrolyte type. It is broadly divided into

このような燃料電池のうち、上記溶融炭酸塩型のものは
、650℃程度の温度で動作させるようにしたもので、
その要部は一般に第1図に示すように構成されている。
Among these fuel cells, the above-mentioned molten carbonate type fuel cells are designed to operate at a temperature of about 650°C.
Its main parts are generally constructed as shown in FIG.

すなわち、燃料電池本体Xは、単位電池1を、後述する
双極性隔離板2を介して複数積層して構成されている。
That is, the fuel cell main body X is constructed by stacking a plurality of unit cells 1 with bipolar separators 2 interposed therebetween, which will be described later.

単位電池1は、ニッケル合金系多孔質体からなる一対の
ガス拡散電極板、すなわち酸化剤極3および燃料極4の
間に平板状の電解質層5を設けて構成されている。電解
質層5は、たとえば炭酸リチウムや炭酸カリウムなどの
炭酸塩電解質を、リチウムアルミネートなどからなるセ
ラミック系保持材によって保持したものである。
The unit cell 1 is constructed by providing a flat electrolyte layer 5 between a pair of gas diffusion electrode plates made of a nickel alloy porous material, that is, an oxidizer electrode 3 and a fuel electrode 4. The electrolyte layer 5 is one in which a carbonate electrolyte such as lithium carbonate or potassium carbonate is held by a ceramic holding material made of lithium aluminate or the like.

上記双極性隔離板2は、ステンレス鋼1の隔離板本体6
の両面に、互いに直交する向きにガス流路を形成するべ
く、ステンレス鋼製の側壁部材7a。
The bipolar separator 2 has a separator body 6 made of stainless steel 1.
side wall member 7a made of stainless steel in order to form gas flow paths in directions perpendicular to each other on both sides of the side wall member 7a;

7b、 8a、 8bを各面の両辺部に平行にろう付け
したものである。そして、これらの側壁部材7a、 7
b。
7b, 8a, and 8b are brazed in parallel to both sides of each surface. And these side wall members 7a, 7
b.

8a、 8bと隔離板本体60面とによって形成される
溝部を上記ガス流路(燃料ガスPの流路と酸化剤ガスQ
の流路)としている。また、これらの各ガス流路には、
そこに流れるガスを実質的に分流させるべく、ステンレ
ス鋼製の波板9a、 9bが嵌合されている。また前記
側壁部材7a、 7b、 8a、 8bの各端面には、
前記ガス拡散電極板3,4をそれぞれ嵌合するべく段部
が設けられており、この段部に前記ガス拡散電極板3,
4を嵌合した側壁部材7a。
The groove formed by 8a, 8b and the 60th surface of the separator body is connected to the gas flow path (fuel gas P flow path and oxidant gas Q).
flow path). In addition, each of these gas flow paths has
Stainless steel corrugated plates 9a and 9b are fitted in order to substantially divide the gas flowing there. Further, on each end face of the side wall members 7a, 7b, 8a, 8b,
Steps are provided to fit the gas diffusion electrode plates 3 and 4, respectively, and the gas diffusion electrode plates 3 and 4 are fitted into the step portions.
4 is fitted into the side wall member 7a.

7b、 sj 8bの端部と前記電解質層5とをウェッ
トシールして前記ガス供給部に導かれたガスの漏洩を防
止する構造となっている。なお、上記ウェットシールは
、例えば電解質がLi2COa/に2 CO3、62/
38モル比からなる2元素共融組成からなる場合、その
電池動作温Ill 650℃まで昇温した際、上記電解
質が488℃で溶融することによって行われる。
7b, sj 8b and the electrolyte layer 5 are wet-sealed to prevent leakage of the gas guided to the gas supply section. In addition, the above-mentioned wet seal has an electrolyte of, for example, Li2COa/2CO3,62/
In the case of a two-element eutectic composition with a molar ratio of 38, this is done by melting the electrolyte at 488°C when the battery operating temperature Ill is raised to 650°C.

ところで、このような構造を有する溶融炭酸塩型燃料電
池においては、燃料極4に供給される燃料ガスとしてメ
タン、エタン、プロパンなどの炭化水素、またはメタノ
ール、エタノールなどのアルコール類を用いる。ところ
が、これらのガスをそのまま燃料極4に供給したとして
も反応速度が遅いため実用上十分な電力を得ることは困
難である。したがって、これらのガスを用いる場合には
、燃料電池に供給する前に、改質器によって予め水素リ
ッチなガスに改質しておく必要がある。
Incidentally, in a molten carbonate fuel cell having such a structure, hydrocarbons such as methane, ethane, and propane, or alcohols such as methanol and ethanol are used as the fuel gas supplied to the fuel electrode 4. However, even if these gases are supplied as they are to the fuel electrode 4, the reaction rate is slow and it is difficult to obtain practically sufficient power. Therefore, when using these gases, it is necessary to reform them into a hydrogen-rich gas using a reformer before supplying them to the fuel cell.

従来は、このような改質器を燃料電池本体の外部に設置
していた。ところが、改質反応を行なわせるためには、
十分な熱エネルギを必要とするので、このように燃料電
池本体の外部に改質器を設置すると、改質反応に必要な
熱エネルギーの供給手段を燃料電池の外部に設置しなけ
ればならないことになる。そこで最近では、燃料電池内
部の熱エネルギーの有効利用と、システムの簡易化とを
企図して、燃料電池本体の内部に改質器を設置するよう
にした内部改質方式の燃料電池が提案されている。
Conventionally, such a reformer was installed outside the fuel cell main body. However, in order to carry out the reforming reaction,
Since sufficient thermal energy is required, if the reformer is installed outside the fuel cell body in this way, the means for supplying the thermal energy necessary for the reforming reaction must be installed outside the fuel cell. Become. Therefore, recently, an internal reforming type fuel cell has been proposed in which a reformer is installed inside the fuel cell body, with the aim of effectively utilizing the thermal energy inside the fuel cell and simplifying the system. ing.

この内部改質方式の溶融炭酸塩燃料電池は、第2図にそ
の燃料電池本体Yを示すように、矩形波型の隔離板11
の上下を隔離して、隔離板11の上側凹部に燃料ガスP
の改質用の触媒12を充填するとともに、この隔離板1
1と図中上部で隣接する燃料極13の上記隔離板11と
接する面に、触媒12の充填帯と直交する方向で燃料ガ
スPの流路となる溝14を形成したものとなっている。
This internal reforming type molten carbonate fuel cell has a rectangular wave type separator 11, as shown in FIG.
The upper and lower parts of the separator 11 are separated, and the fuel gas P is placed in the upper recess of the separator 11.
This separator plate 1 is filled with a catalyst 12 for reforming.
A groove 14, which serves as a flow path for the fuel gas P, is formed in the surface of the fuel electrode 13 which is adjacent to the fuel electrode 1 at the upper part of the figure and is in contact with the separator plate 11 in a direction perpendicular to the filling zone of the catalyst 12.

このような構成であれば、燃料ガスPは溝14内を通流
する過程で触媒12と接触し、改質される。
With such a configuration, the fuel gas P comes into contact with the catalyst 12 while flowing through the groove 14 and is reformed.

この触媒による燃料ガスの改質反応は、燃料電池の通常
運転温度である650℃において行われるので、十分に
速い速度で改質反応が進行する。この結果、水素リッチ
な燃料ガスを燃料電池本体Yの内部で生成することがで
き、前述の効果を奏することができる。
Since the reforming reaction of the fuel gas by this catalyst is carried out at 650° C., which is the normal operating temperature of the fuel cell, the reforming reaction proceeds at a sufficiently fast rate. As a result, hydrogen-rich fuel gas can be generated inside the fuel cell main body Y, and the above-mentioned effects can be achieved.

しかしながら、このように構成された溶融炭酸塩型燃料
電池にあっては、溝14を通流する燃料ガスPと触媒1
2とが極一部でしか接触しないため、燃料ガスの改質効
率が悪いという欠点があった。
However, in the molten carbonate fuel cell configured in this way, the fuel gas P flowing through the groove 14 and the catalyst 1
Since there is only a small contact with 2, there was a drawback that the reforming efficiency of the fuel gas was poor.

したがって、燃料ガスが完全に改質されず、一部未改質
の燃料ガスがガスの排出側に到達してしまうことがあっ
た。しかも、燃料電池本体がこのような構造であると、
燃料極13に溝加工を要するうえ、隔離板11の端面に
おける燃料ガスPと酸化剤ガスQとの隔離が難しい等の
問題があった。
Therefore, the fuel gas may not be completely reformed, and some unreformed fuel gas may reach the gas discharge side. Moreover, if the fuel cell body has such a structure,
In addition to requiring groove processing in the fuel electrode 13, there were other problems such as difficulty in separating the fuel gas P and the oxidant gas Q at the end face of the separator 11.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題に基づきなされたものであり、
その目的とするところは、内部改質方式の溶融炭酸塩型
燃料電池にあって、燃料ガスを効率良く改質できるとと
もに、構成の簡単化を図ることができる溶融炭酸塩型燃
料電池を提供することにある。
The present invention was made based on such problems,
The purpose is to provide a molten carbonate fuel cell using an internal reforming method, which can efficiently reform fuel gas and has a simple configuration. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明は、燃料極に隣接して設けられ外部がら導入され
た燃料ガスを分流して上記燃料極に導く多孔質体で形成
されたガス分流板と、このガス分流板の内部に埋設され
て上記ガス分流板の内部を通流する燃料ガスを改質する
触媒層とを具備したことを特徴としている。
The present invention provides a gas distribution plate formed of a porous material provided adjacent to a fuel electrode and dividing fuel gas introduced from the outside and guiding it to the fuel electrode, and a gas distribution plate embedded inside the gas distribution plate. The present invention is characterized by comprising a catalyst layer for reforming the fuel gas flowing through the inside of the gas distribution plate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料ガスを分流するガス分流板の内部
に触媒層を埋設しているので、丁度ガスの進行を阻止す
る位置に触媒層が存在することになる。このような位置
に触媒層が存在すると、触媒層と燃料ガスとの接触する
面積を従来に比べて格段に増加させることが可能である
。しかも、燃料ガスは触媒層によって乱流化されるので
、これによっても燃料ガスの改質効率を大幅に高めるこ
とができる。
According to the present invention, since the catalyst layer is buried inside the gas distribution plate that divides the fuel gas, the catalyst layer is located exactly at the position where the gas flow is blocked. When the catalyst layer is present at such a position, it is possible to significantly increase the contact area between the catalyst layer and the fuel gas compared to the conventional method. Moreover, since the fuel gas is made turbulent by the catalyst layer, the reforming efficiency of the fuel gas can be greatly increased.

また、本発明は、多孔質体からなるガス分流板に触媒層
を埋設したものを燃料極に隣接して設けるだけの至って
簡単な構成である。このため、特に燃料極や隔離板等に
特別の加工を施す必要がないので、構造の複雑化を伴う
ことなしに内部改質方式の溶融炭酸塩型燃料電池を提供
することができる。
Furthermore, the present invention has a very simple structure, in which a gas distribution plate made of a porous material with a catalyst layer embedded therein is provided adjacent to the fuel electrode. Therefore, since there is no need to perform any special processing on the fuel electrode, separator, etc., it is possible to provide an internal reforming type molten carbonate fuel cell without complicating the structure.

なお、ガス分流板を電子伝導性部材で形成すれば、同時
に各単位電池の集電機能を持たせることもでき、また、
ガス分流板に所定の機械的強度を持たせれば、各単位電
池の支持体としての機能を持たせることも出来る。
Note that if the gas distribution plate is made of an electron conductive material, it can also have a current collecting function for each unit battery, and
If the gas distribution plate has a predetermined mechanical strength, it can also function as a support for each unit cell.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例に基づき説明する。 Hereinafter, details of the present invention will be explained based on illustrated embodiments.

なお、第3図において第1図と同一部分には同一符号を
付しである。したがって、重複する部分の詳しい説明は
省くことにする。
In FIG. 3, the same parts as in FIG. 1 are given the same reference numerals. Therefore, a detailed explanation of the overlapping parts will be omitted.

実施例1 第3図は第1の実施例に係る溶融炭酸塩型燃料電池の要
部構成、すなわち燃料電池本体Zを示す図である。
Embodiment 1 FIG. 3 is a diagram showing the main structure of a molten carbonate fuel cell according to a first embodiment, that is, the fuel cell main body Z.

この燃料電池本体2が第1図に示した従来の燃料電池本
体Xと異なる点は、双極性隔離板21の構成にある。本
実施例に係る双極性隔離板21は、側壁部材7a、 7
bと隔離板本体6の図中上面とで形成される溝に従来嵌
合されていた波板9aに代えて新たにガス分流改質板2
2を嵌合したものとなっている。
This fuel cell body 2 differs from the conventional fuel cell body X shown in FIG. 1 in the configuration of the bipolar separator 21. The bipolar separator 21 according to this embodiment includes side wall members 7a, 7
A new gas flow reforming plate 2 is installed in place of the corrugated plate 9a that was conventionally fitted into the groove formed by b and the upper surface of the separator body 6 in the figure.
2 are fitted together.

このガス分流改質板22は、第4図に示すように、多孔
質体からなるガス分流板23の両面に、燃料ガスPの通
流方向とは直交する方向に延びる複数本の■溝24を交
互に形成するとともに、これらV溝24に触媒25を充
填して構成されている。
As shown in FIG. 4, this gas distribution reforming plate 22 includes a plurality of grooves 24 extending in a direction perpendicular to the flow direction of the fuel gas P on both sides of a gas distribution plate 23 made of a porous material. are formed alternately, and these V grooves 24 are filled with a catalyst 25.

本実施例では、このガス分流板23として、特に、厚さ
2m+のニッケル多孔質体(気孔率90%)を200x
 180 mの大きさに切出したもの用いた。そして、
このガス分流板23の両面に5閣ピツチで交互に深さ1
履のV溝24を形成し、これらV溝24に、アルミナ−
マグネシア担持体ニッケル触媒25(比表面積32Td
/g)とエタノールとを混合してなるスラリーを充填し
た。エタノールを揮発させた後、得られたガス分流改質
板22を第3図に示す燃料電池本体Zに組込んだ。なお
、燃料電池本体2は3層の単位電池1で構成し、燃料電
池本体Zの酸化剤ガスの流路に設けられた波板9bには
ステンレス調性の板を用いた。
In this embodiment, the gas distribution plate 23 is made of a nickel porous body (porosity 90%) with a thickness of 2m+.
A piece cut out to a size of 180 m was used. and,
On both sides of this gas flow distribution plate 23, five holes are alternately arranged at a depth of 1.
The V-grooves 24 of the shoe are formed, and these V-grooves 24 are filled with alumina.
Magnesia supported nickel catalyst 25 (specific surface area 32Td
/g) and ethanol was filled. After volatilizing the ethanol, the obtained gas distribution reforming plate 22 was assembled into the fuel cell main body Z shown in FIG. The fuel cell main body 2 is composed of three layers of unit cells 1, and the corrugated plate 9b provided in the oxidant gas flow path of the fuel cell main body Z is made of stainless steel.

このようにして得られた燃料電池本体2に、図示しない
反応ガスマニホールド、エンドプレート、締付はバーな
どを組付けて燃料電池を組立てた。
A reactant gas manifold, an end plate, a tightening bar, etc. (not shown) were attached to the fuel cell main body 2 thus obtained to assemble a fuel cell.

そして、この燃料電池をマツフル炉に収容し、650℃
の温度で稼動させた。この稼動実験は、燃料電池に供給
する燃料ガスPおよび酸化剤ガスQとして、 ■燃料ガス・・・メタン(CH4)十水(H20):S
、/C−2,5 酸化剤カス・・70Air/CO2 ■燃料ガス・・・メタノール(CH30H)+水(H2
0); s/c=2.5 酸化剤ガス・・・70A ir/ CO2の2種類を用
いて行なった。
Then, this fuel cell was placed in a Matsufuru furnace and heated to 650°C.
It was operated at a temperature of In this operation experiment, as the fuel gas P and the oxidizing gas Q supplied to the fuel cell, ■Fuel gas...methane (CH4), water (H20):S
,/C-2,5 Oxidizer scum...70Air/CO2 ■Fuel gas...methanol (CH30H) + water (H2
0); s/c=2.5 Oxidizing gas: Two types of 70A ir/CO2 were used.

実施例2 上記実施例1のガス分流板23のみをステンレス316
Lの多孔質発砲体(気孔率92%)に代えて、同様の実
験を行なった。
Example 2 Only the gas distribution plate 23 of Example 1 was made of stainless steel 316.
A similar experiment was conducted using a porous foam L (porosity: 92%).

実施例3 前記実施例1の触媒25のみをリチウムアルミネート担
持体ニッケル触媒に代えて同様の実験を行なった。
Example 3 A similar experiment was conducted in Example 1 except that only the catalyst 25 was replaced with a nickel catalyst supported on lithium aluminate.

比較例 第2図に示す矩形波型の隔離板11の燃料種1311凹
部にアルミナ−マグネシア担持体ニッケル触媒を充填し
、同図に示す従来の燃料電池本体Yを組立て、前記実施
例1と同様な実験を行なった。
Comparative Example The concave portion of the fuel type 1311 of the rectangular wave separator 11 shown in FIG. 2 was filled with an alumina-magnesia supported nickel catalyst, and the conventional fuel cell main body Y shown in the same figure was assembled, in the same manner as in Example 1. We conducted an experiment.

以上の実施例1〜実施例4および従来例における電流密
度に対する各単位電池のセル電圧を測定したところ、燃
料ガスにメタンを用いた場合には、第5図に示す結果と
なり、また燃料ガスにメタノールを用いた場合には、第
6図に示す結果となった。
When we measured the cell voltage of each unit cell with respect to the current density in Examples 1 to 4 and the conventional example, we found that when methane was used as the fuel gas, the results were as shown in Figure 5. When methanol was used, the results shown in FIG. 6 were obtained.

この図から明らかなように、実施例1〜実施例4の燃料
電池の電池特性(A、B、C,D)は、比較例の燃料電
池の電池特性(E)に較べて向上することが確認できた
As is clear from this figure, the cell characteristics (A, B, C, D) of the fuel cells of Examples 1 to 4 can be improved compared to the cell characteristics (E) of the fuel cell of the comparative example. It could be confirmed.

また、各実験における燃料ガス改質の転換効率を測定し
たところ、下表に示す結果を得た。
In addition, when the conversion efficiency of fuel gas reforming in each experiment was measured, the results shown in the table below were obtained.

この表から明らかな如く、上記実施例1〜4に係る燃料
電池は、比較例に較べ、その燃料ガス改質の転換効率も
良好であることが確認された。
As is clear from this table, it was confirmed that the fuel cells according to Examples 1 to 4 had better conversion efficiency in fuel gas reforming than the comparative example.

以上に述べた如く、これらの実施例によれば、単に従来
構造の燃料電池の燃料ガス流路に設けられた波板をガス
分流改質板に代えるのみの簡単な改良で、燃料ガス改質
の転換効率を高めることができる。また、これら実施例
のガス分流板23は、ニッケルまたはステンレスの多孔
質体で構成されているので、各単位電池の集電機能と支
持機能とを兼ね備えたものとなる。
As described above, according to these embodiments, fuel gas reforming can be achieved with a simple improvement of simply replacing the corrugated plate provided in the fuel gas flow path of a fuel cell with a conventional structure with a gas distribution reforming plate. conversion efficiency can be increased. Furthermore, since the gas distribution plate 23 in these embodiments is made of a porous material of nickel or stainless steel, it has both a current collection function and a support function for each unit cell.

なお、本発明は、上記実施例に限定されるものではない
。たとえば、第7図に示すように、ガス分流板31に形
成する溝32を矩形状にしたり、台形状にするようにし
ても良く、また、その満32はガス分流板31の片方の
面のみに形成するようにしても良い。これら溝は、機械
加工、プレス加工等積々の方法で形成することができる
。この溝に充填される触媒は、前述したものの他に、た
とえばアルミナ、カルシア−アルミナ、アルミナ−ジル
コニア、リチウムジルコネート、ストロンチウムチタネ
ート、リチウムチタネートもしくはボロンナイトライド
からなる担持体にニッケルもしくはニッケル合金触媒を
付与したものを用いても良い。
Note that the present invention is not limited to the above embodiments. For example, as shown in FIG. 7, the grooves 32 formed in the gas flow divider plate 31 may be rectangular or trapezoidal. It may be formed as follows. These grooves can be formed by various methods such as machining and press working. In addition to the above-mentioned catalysts, the catalysts filled in these grooves include, for example, a nickel or nickel alloy catalyst on a support made of alumina, calcia-alumina, alumina-zirconia, lithium zirconate, strontium titanate, lithium titanate, or boron nitride. You may use the one provided.

これら触媒は、特にスラリーの状態で充填されるものに
限定されるものではない。
These catalysts are not particularly limited to those packed in the form of slurry.

また、ガス分流改質板と燃料極とを一体構成にするよう
にしても良く、ガス分流板は、ニッケル合金でもよい。
Further, the gas flow reforming plate and the fuel electrode may be integrally configured, and the gas flow flow reforming plate may be made of a nickel alloy.

要するに本発明は、その要旨を逸脱しない範囲で種々変
更して実施することができる。
In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシンメタルプレート型溶融炭酸塩型燃料
電池の主要部を示す分解斜視図、第2図は従来提案され
ている内部改質方式の溶融炭酸塩型燃料電池の主要部の
構成を示す分解斜視図、第3図は本発明の第1から第4
の実施例に係る内部改質方式の溶融炭酸塩型燃料電池の
主要部の構成を示す分解斜視図、第4図は同燃料電池に
おけるガス分流改質板を示す斜視図、第5図および第6
図は第1から第4の実施例に係る燃料電池の電池特性を
比較例と比較して説明するための特性図、第7図は本発
明の他の実施例に係る燃料電池におけるガス分流改質板
を示す斜視図である。 1・・・単位電池、2.21・・・双極性隔離板、3・
・・酸化剤極、4,13・・・燃料極、5・・・電解質
板、6・・・隔離板本体、7a、 7b、 8a、 8
b−・・側壁部材、9a、 9b・・・波板、11・・
・隔離板、12.25.33・・・触媒、22・・・ガ
ス分流改質板、23.31・・・ガス分流板、X、Y、
Z・・・燃料電池本体、P・・・燃料ガス、Q・・・酸
化剤ガス。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 ム 第4図 第7図 3 第5図
Figure 1 is an exploded perspective view showing the main parts of a conventional thin metal plate type molten carbonate fuel cell, and Figure 2 shows the configuration of the main parts of a previously proposed internal reforming type molten carbonate fuel cell. FIG. 3 is an exploded perspective view showing the first to fourth parts of the present invention.
FIG. 4 is an exploded perspective view showing the configuration of the main parts of the internal reforming molten carbonate fuel cell according to the embodiment, FIG. 4 is a perspective view showing the gas distribution reforming plate in the fuel cell, FIG. 6
The figure is a characteristic diagram for explaining the cell characteristics of the fuel cells according to the first to fourth embodiments in comparison with a comparative example, and FIG. It is a perspective view showing a quality board. 1... Unit battery, 2.21... Bipolar separator, 3.
...Oxidizer electrode, 4, 13...Fuel electrode, 5...Electrolyte plate, 6...Separator body, 7a, 7b, 8a, 8
b-...Side wall member, 9a, 9b...Corrugated plate, 11...
・Separation plate, 12.25.33... Catalyst, 22... Gas distribution reforming plate, 23.31... Gas distribution plate, X, Y,
Z: Fuel cell body, P: Fuel gas, Q: Oxidizing gas. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】 (1)炭酸塩からなる電解質層の両面に酸化剤極および
燃料極を設け、前記酸化剤極に酸化剤ガスを供給すると
ともに前記燃料極に燃料ガスを供給し、これら両ガスと
前記炭酸塩とで起電反応を生起させるようにした溶融炭
酸塩型燃料電池において、前記燃料極に隣接して設けら
れ外部から導入された燃料ガスを分流して上記燃料極に
導く多孔黄体で形成されたガス分流板と、このガス分流
板の内部に埋設されて上記ガス分流板の内部を通流する
燃料ガスを改質する触媒層とを具備してなることを特徴
とする溶融炭酸塩型燃料電池。 (2前記触媒層は、前記ガス分流板に導入される燃料ガ
スの導入方向と直交する方向で前記ガス分流板に形成さ
れた複数の溝に触媒を充填して形成されたものであるこ
とを特徴とする特許請求の範囲第1項記載の溶融炭酸塩
型燃料電池。 (3) 前記触媒層は、アルミナ、アルミナ−マグネシ
ア、カルシア−アルミナ、アルミナ−ジルコニア、リチ
ウムアルミネート、リチウムジルコネート、ストロンチ
ウムチタネート、リチウムチタネートもしくはボロンナ
イトライドからなる担持体上にニッケル触媒もしくはニ
ッケル合金触媒を付与してなるものであることを特徴と
する特許請求の範囲第1項記載の溶融炭酸塩型燃料電池
。 (4)前記ガス分流板は、ステンレス、ニッケルもしく
はニッケル合金からなるものであることを特徴とする特
許請求の範囲第1項記載の溶融炭酸塩型燃料電池。 (5)前記燃料極と前記ガス分流板とは一体的に形成さ
れたものであることを特徴とする特許請求の範囲第1項
記載の溶融炭酸塩型燃料電池。
[Scope of Claims] (1) An oxidizing agent electrode and a fuel electrode are provided on both sides of an electrolyte layer made of carbonate, an oxidizing agent gas is supplied to the oxidizing agent electrode, and a fuel gas is supplied to the fuel electrode; In a molten carbonate fuel cell in which an electromotive reaction is caused between both gases and the carbonate, the fuel gas provided adjacent to the fuel electrode and introduced from the outside is divided and guided to the fuel electrode. It is characterized by comprising a gas flow distribution plate made of porous corpus luteum, and a catalyst layer embedded inside the gas flow distribution plate to reform the fuel gas flowing through the gas flow distribution plate. Molten carbonate fuel cell. (2) The catalyst layer is formed by filling a plurality of grooves formed in the gas distribution plate with a catalyst in a direction perpendicular to the direction of introduction of the fuel gas introduced into the gas distribution plate. The molten carbonate fuel cell according to claim 1, characterized in that the catalyst layer comprises alumina, alumina-magnesia, calcia-alumina, alumina-zirconia, lithium aluminate, lithium zirconate, and strontium. The molten carbonate fuel cell according to claim 1, characterized in that the fuel cell is a nickel catalyst or a nickel alloy catalyst provided on a support made of titanate, lithium titanate, or boron nitride. 4) The molten carbonate fuel cell according to claim 1, wherein the gas distribution plate is made of stainless steel, nickel, or a nickel alloy. (5) The fuel electrode and the gas distribution plate The molten carbonate fuel cell according to claim 1, wherein the plate is integrally formed.
JP59097271A 1984-05-15 1984-05-15 Molten carbonate fuel cell Expired - Lifetime JPH0656765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097271A JPH0656765B2 (en) 1984-05-15 1984-05-15 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097271A JPH0656765B2 (en) 1984-05-15 1984-05-15 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS60241674A true JPS60241674A (en) 1985-11-30
JPH0656765B2 JPH0656765B2 (en) 1994-07-27

Family

ID=14187862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097271A Expired - Lifetime JPH0656765B2 (en) 1984-05-15 1984-05-15 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0656765B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167958A (en) * 1987-12-23 1989-07-03 Tokyo Gas Co Ltd Internally reforming type molten carbonate fuel cell
JPH0290470A (en) * 1988-09-27 1990-03-29 Mitsubishi Electric Corp Lamination type fuel battery
WO1996038871A1 (en) * 1995-05-31 1996-12-05 Forschungszentrum Jülich GmbH Anode substrate for a high-temperature fuel cell
WO2023020104A1 (en) * 2021-08-18 2023-02-23 华能国际电力股份有限公司 Molten carbonate fuel cell sealing structure, preparation method therefor, and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810374A (en) * 1981-06-12 1983-01-20 エナジ−・リサ−チ・コ−ポレ−シヨン Fuel battery for causing internal modification for fuel battery gas
JPS58129780A (en) * 1982-01-29 1983-08-02 Toshiba Corp Fused carbonate fuel cell layer body
JPS6032255A (en) * 1983-07-29 1985-02-19 Mitsubishi Electric Corp Internally reformed type fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810374A (en) * 1981-06-12 1983-01-20 エナジ−・リサ−チ・コ−ポレ−シヨン Fuel battery for causing internal modification for fuel battery gas
JPS58129780A (en) * 1982-01-29 1983-08-02 Toshiba Corp Fused carbonate fuel cell layer body
JPS6032255A (en) * 1983-07-29 1985-02-19 Mitsubishi Electric Corp Internally reformed type fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167958A (en) * 1987-12-23 1989-07-03 Tokyo Gas Co Ltd Internally reforming type molten carbonate fuel cell
JPH0290470A (en) * 1988-09-27 1990-03-29 Mitsubishi Electric Corp Lamination type fuel battery
WO1996038871A1 (en) * 1995-05-31 1996-12-05 Forschungszentrum Jülich GmbH Anode substrate for a high-temperature fuel cell
US5998056A (en) * 1995-05-31 1999-12-07 Forschungszentrum Julich Gmbh Anode substrate for a high temperature fuel cell
WO2023020104A1 (en) * 2021-08-18 2023-02-23 华能国际电力股份有限公司 Molten carbonate fuel cell sealing structure, preparation method therefor, and application thereof

Also Published As

Publication number Publication date
JPH0656765B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
CA2251163C (en) Fuel cell stack
EP1962358B1 (en) Fuel cell stack and fuel cell system having the same
JPH05190187A (en) Fuel cell stack
JP4585218B2 (en) Fuel cell assembly
DK441387D0 (en) ANNEX TO FUEL CELLS AND USE THEREOF
US20050266296A1 (en) Stack having improved cooling structure and fuel cell system having the same
JPS60241674A (en) Fused carbonate type fuel cell
JPH0147863B2 (en)
JPH0652657B2 (en) Molten carbonate fuel cell with internal reforming
US7348091B2 (en) Fuel cell having flow passage
JP4390373B2 (en) Fuel cell
JPH0615404Y2 (en) Internal reforming fuel cell
JP2647912B2 (en) Internal reforming fuel cell
JPH0349163A (en) Indirect internal reform type molten carbonate fuel cell
JPS62186471A (en) Internally reformed type fuel cell
JPH0782873B2 (en) Molten carbonate fuel cell
JPS63158754A (en) Internal-reforming type fuel cell
JPS61248364A (en) Fused carbonate type fuel cell
JPH06314570A (en) Manifold structure of fuel cell
JPS6124167A (en) Internal reformation type, fused carbonate type fuel cell
JPH0349159A (en) Indirect internal reform type molten carbonate fuel cell
KR100599715B1 (en) Fuel cell system, stack, and separator of the same
JPS6113576A (en) Internal reformed type fuel cell
KR100570687B1 (en) Fuel sell system
JPH0680591B2 (en) Molten carbonate fuel cell