JPS6032255A - Internally reformed type fuel cell - Google Patents

Internally reformed type fuel cell

Info

Publication number
JPS6032255A
JPS6032255A JP58140306A JP14030683A JPS6032255A JP S6032255 A JPS6032255 A JP S6032255A JP 58140306 A JP58140306 A JP 58140306A JP 14030683 A JP14030683 A JP 14030683A JP S6032255 A JPS6032255 A JP S6032255A
Authority
JP
Japan
Prior art keywords
fuel
passage
reforming
fuel flow
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58140306A
Other languages
Japanese (ja)
Other versions
JPH0147863B2 (en
Inventor
Enjiyu Nishiyama
西山 槐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58140306A priority Critical patent/JPS6032255A/en
Publication of JPS6032255A publication Critical patent/JPS6032255A/en
Publication of JPH0147863B2 publication Critical patent/JPH0147863B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To uniform temperature distribution in a cell by expanding a cross sectional area at a right angle to the direction of the fuel flow in the fuel passage to the direction of the fuel flow. CONSTITUTION:When fuel such as hydrocarbon and steam are supplied to the fuel passage 7, hydrocarbon is reacted with steam through the contact of a fuel reforming catalyst 8 and converted into hydrogen, carbon oxide and carbon dioxide gas. The cross sectional area at a right angle to the direction of the fuel flow in the fuel passage 7 is expanded to the direction of the fuel flow, and as a result the amount of the fuel reforming catalyst 8 charged in the fuel passage 7 is increasing to the direction of the fuel flow. By this, the amount of catalyst 8 is less in the vicinity of the inlet of the fuel passage 7 where reaction speed of reforming is large and in the vicinity of the outlet where reaction speed is small, the amount of catalyst 8 becomes large, and reforming reaction is uniformed to the direction of the fuel flow. Then the heat absorption amount is uniformed and temperature distribution in the cell becomes uniform.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えば炭化水素などの燃料を電池内で改質
しながら発電を行なう内部改質形燃料電池に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an internal reforming fuel cell that generates power while reforming a fuel such as hydrocarbon within the cell.

〔従来技術〕[Prior art]

従来この種の燃料電池として第1図に示すものがあった
。図において、(1)Ii多孔性のセラミックスで構成
され、その空間には炭酸塩が充填さitている電解質マ
トリックス、(2)U多孔性のニッケルなどで構成され
た燃料電極、(3)は酸化ニッケルなどの多孔性材料で
構成された酸化剤電極であわ、燃料電極(2)と酸化剤
電極(3)とは電解質マトリックス(1)を介して対向
するように配置され、これらで単電池を構成している。
A conventional fuel cell of this type is shown in FIG. In the figure, (1) an electrolyte matrix made of porous ceramics whose space is filled with carbonate, (2) a fuel electrode made of porous nickel, and (3) The fuel electrode (2) and the oxidizer electrode (3) are arranged to face each other with the electrolyte matrix (1) interposed therebetween, and they form a single cell. It consists of

(4)は酸化剤電極(3)に対して設けられた酸化剤通
路、(5)は燃料電極(2)に接して設けられ、多数の
孔を有する燃料側スペーサ、(6)は燃料スペーサ(5
)に直角に設けられたリプであり、燃料側スペーサ(5
)とリプ(6)とで燃料通路(7)を形成している。(
8)は燃料通路(7)に充填された燃料改質触媒である
(4) is an oxidizer passage provided for the oxidizer electrode (3), (5) is a fuel-side spacer provided in contact with the fuel electrode (2) and has a large number of holes, and (6) is a fuel spacer. (5
) is provided at right angles to the fuel side spacer (5
) and the lip (6) form a fuel passage (7). (
8) is a fuel reforming catalyst filled in the fuel passage (7).

次に動作について説明する。燃料通路(7)に炭化水素
などの燃料と水蒸気が供給されると、燃料改質触媒(8
)との接触反応により、炭化水素は水蒸気と反応して水
素、−酸化炭素、および炭酸ガスに変換される。炭化水
素がメタンの場合には、この反応は以下の式で表わされ
る。
Next, the operation will be explained. When fuel such as hydrocarbons and steam are supplied to the fuel passage (7), the fuel reforming catalyst (8)
), hydrocarbons react with water vapor and are converted into hydrogen, -carbon oxide, and carbon dioxide gas. When the hydrocarbon is methane, this reaction is represented by the following equation.

CH4+H2O−C0+3H2 生成された水素および一酸化炭素は、燃料側スペーサ(
5)に設けられた孔を通り、多孔性の燃料電極(2)の
細孔を拡散する。他方、酸化剤通路(4)には空気と炭
酸ガスとの混合ガスが供給され、多孔性の酸化剤電極(
3)の細孔を拡散する。電解質マトリックス(1)に含
浸され、動作温度である600℃付近では溶融状態にな
っている炭酸塩、電極(2)、(3)、および上記水素
と酸素を主成分とする反応ガスの間に生ずる電気化学反
応により反応ガスが消費され、電流コレクタ(図示せず
)間に電位が生じ、外部に電力が収り出される。なお、
燃料改質触媒(8)上で起こる改質反応は吸熱反応であ
り、この反応を持続させるのに必要な熱量は、上記電気
化学反応に伴う挿過逆反応が熱ロスとなり、燃料電極(
2)およびスペーサ(5)を介しぞ燃料改質触媒(8)
に供給される。
CH4+H2O-C0+3H2 The generated hydrogen and carbon monoxide are transferred to the fuel side spacer (
5) and diffuses through the pores of the porous fuel electrode (2). On the other hand, a mixed gas of air and carbon dioxide is supplied to the oxidant passage (4), and the porous oxidant electrode (
3) Diffuse the pores. Between the carbonate impregnated in the electrolyte matrix (1) and in a molten state at around the operating temperature of 600°C, the electrodes (2) and (3), and the reaction gas mainly composed of hydrogen and oxygen, The resulting electrochemical reaction consumes the reactant gas, creates a potential across a current collector (not shown), and extracts electrical power to the outside. In addition,
The reforming reaction that occurs on the fuel reforming catalyst (8) is an endothermic reaction.
2) and the fuel reforming catalyst (8) through the spacer (5).
supplied to

従来の内部改質形燃料電池は以上のように構成されてい
るので、燃料改質反応は燃料通路(7)の入るので、燃
−料改賀反応がある程度進行し7゛こ点で最大となり、
発熱量も大きくなる。したがって、燃料通路(7)入口
側では温度が低下し、燃料通路(7)出口側では温度が
上昇することになり、電池内に大きな温度差が生ずると
いう欠点を有していた。
Since the conventional internal reforming fuel cell is constructed as described above, the fuel reforming reaction occurs through the fuel passage (7), so the fuel reforming reaction progresses to a certain extent and reaches its maximum at the 7° point. ,
The amount of heat generated also increases. Therefore, the temperature decreases at the inlet side of the fuel passage (7), and the temperature increases at the outlet side of the fuel passage (7), resulting in a disadvantage that a large temperature difference occurs within the battery.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、燃料通路における燃料の流れ方向
に直角な断面積を上記燃料の流れ方向に向かって拡大す
ることにより、上記燃料の流れ方向に燃料改質反応を均
一化し、その結果、電池内の温度分布を一様化すること
のできる内部改質形燃料電池を提供することを目的とし
ている。1[発明の実施例] 第2図はこの発明の一実施例による内部改質形燃料電池
を示す斜視図である。図において、電解質マトリックス
(1)、燃料電極(2)、および酸化剤電極(3)で構
成される単電池 並びに酸化剤供給のための酸化剤通路
(4)の構造は従来と同様である。燃料側スペーサ(5
)に設けられたリブ(6)は、燃料の流れ方向に直角な
断面積を燃料の流れ方向に向かって減少しており、その
結果、燃料側スペーサ(5)とリグ(6)で構成される
燃料通路(7)の幅つまり燃料の流れ方向に直角な断面
積を燃料の流れ方向に向かって拡大する。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by enlarging the cross-sectional area perpendicular to the fuel flow direction in the fuel passage, the fuel flow can be improved. It is an object of the present invention to provide an internal reforming fuel cell that can uniformize the fuel reforming reaction in the flow direction and, as a result, uniform the temperature distribution within the cell. 1 [Embodiment of the Invention] FIG. 2 is a perspective view showing an internal reforming fuel cell according to an embodiment of the invention. In the figure, the structure of the unit cell composed of an electrolyte matrix (1), a fuel electrode (2), and an oxidizer electrode (3) and an oxidizer passageway (4) for supplying the oxidizer are the same as the conventional one. Fuel side spacer (5
) has a cross-sectional area perpendicular to the fuel flow direction that decreases in the fuel flow direction, and as a result, the rib (6) provided on the fuel side spacer (5) and the rig (6) are The width of the fuel passage (7), that is, the cross-sectional area perpendicular to the fuel flow direction, is increased in the fuel flow direction.

なお、燃料通路(7)には従来と同様に燃料改質触媒(
8)が充填されている。
Note that the fuel passage (7) is equipped with a fuel reforming catalyst (
8) is filled.

次に動作について説明する。従来と同様に、燃料通路(
7)に炭化水素などの燃料と水蒸気が供給されると、燃
料改質触媒(8)との接触により、炭化水素は水蒸気と
反応して水素、−酸化炭素、および炭酸ガスに変換され
る。この際、この発明においては燃料通路(7)の燃料
の流れ方向に直角な断面積が燃料の流れ方向に向かつて
拡大しており、その結果、燃料通路(7)に充填されて
いる燃料改質触媒(8)の量も燃料の流れ方向に向かっ
て増大している。
Next, the operation will be explained. As before, the fuel passage (
When fuel such as hydrocarbon and steam are supplied to 7), the hydrocarbon reacts with the steam through contact with the fuel reforming catalyst (8) and is converted into hydrogen, carbon oxide, and carbon dioxide gas. At this time, in this invention, the cross-sectional area of the fuel passage (7) perpendicular to the fuel flow direction increases in the fuel flow direction, and as a result, the fuel reformer filled in the fuel passage (7) The amount of quality catalyst (8) also increases in the direction of fuel flow.

したがって、改質反応の反応速度の大きい燃料通路(7
)入口付近では触媒(8)量が少なく、反応速度の小さ
い出口付近では触媒(8)量が大きくなり、燃料の流れ
方向に改質反応が均一化し、したがって吸熱量も均一化
するので、電池的温度分布が一様化する。
Therefore, the fuel passage (7
) The amount of catalyst (8) is small near the inlet, and the amount of catalyst (8) is large near the outlet where the reaction rate is low, making the reforming reaction uniform in the direction of fuel flow, and therefore the amount of heat absorbed. temperature distribution becomes uniform.

なお、上記実施例では燃料通路(7)の燃料の流れ方向
に直角なIFt面積を燃料の流れ方向に向かって拡大す
るのに、燃料通路(7)の幅を燃料の流れ方向に向かっ
て広くしたものを示したが、第3図に示すように燃料側
スペーサ(5)の厚さを変えることにより燃料流路(7
)の深さを燃料の流れ方向に向かって深くしてもよい。
In the above embodiment, in order to increase the IFt area of the fuel passage (7) perpendicular to the fuel flow direction in the fuel flow direction, the width of the fuel passage (7) is widened in the fuel flow direction. However, as shown in Figure 3, by changing the thickness of the fuel side spacer (5), the fuel flow path (7) can be changed.
) may be increased in the direction of fuel flow.

また、燃料通路(7)の幅と深さの両方を変化させても
よい。
Furthermore, both the width and depth of the fuel passage (7) may be changed.

また、第1図、第2図では簡単のため、燃料電極(2)
、酸化剤電極(3)、および電解質マトリックス(1)
よりなる単電池の両側に燃料通路(7)および酸化剤通
i (4)を設けたものを示したが、実際には、これら
がガス分離板を介して複数個積層されて運転されること
が多い。
Also, in Figures 1 and 2, for simplicity, the fuel electrode (2)
, oxidant electrode (3), and electrolyte matrix (1)
Although a fuel passage (7) and an oxidizer passage (4) are provided on both sides of a unit cell made of There are many.

また、上記実施例では燃料通路(7)および酸化剤通路
(4)をそれぞれ燃料電極(2)および酸化剤電極(3
)は と二別に設けたものを示したが、これら電1(2)、(
3)に直接溝を堀るなとして通路(4)、(7)を形成
した場合にもこの発明は適用可能である。
Further, in the above embodiment, the fuel passage (7) and the oxidizer passage (4) are connected to the fuel electrode (2) and the oxidizer electrode (3), respectively.
) shows those provided separately, but these electrics 1 (2), (
The present invention is also applicable to the case where passages (4) and (7) are formed instead of directly digging a groove in (3).

また、燃料側スペーサ(5)に設けた孔は、燃料通路(
7)で改質された燃料を燃料電極(2)へ拡散させるた
めのものであり、上記のように電極(2)に直接通路(
7)を形成した場合や、燃料側スペー? (5)が多孔
性材料などで構成されている場合には不要である。
In addition, the hole provided in the fuel side spacer (5) is connected to the fuel passage (
This is for diffusing the fuel reformed in step 7) to the fuel electrode (2), and as mentioned above, there is a direct passage (
7) or if the fuel side space? It is not necessary if (5) is made of a porous material or the like.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば燃料通路における燃料
の流れ方向に直角な断面積を上記燃料の流れ方向に向か
って拡大したので、上記燃料の流れ方向に燃料改質反応
を均一化でき、その結果、電池内の温度分布を一様化す
ることができる内部改質形燃料電池が得られる効果があ
る。
As described above, according to the present invention, since the cross-sectional area perpendicular to the fuel flow direction in the fuel passage is expanded in the fuel flow direction, the fuel reforming reaction can be made uniform in the fuel flow direction. As a result, it is possible to obtain an internal reforming fuel cell in which the temperature distribution within the cell can be made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の内部改質形燃料電池を示す斜視図、第2
図はこの発明の一実施例による内部改質形燃料電池を示
す斜視図、第3図はこの発明の他の実施例例係わる燃料
通路を示す斜視図である。 図において、(1)は電解質マトリックス、(2)は燃
料電極、(3)は酸化剤電極、(4)は酸化剤通路、(
5)は燃料側スペーサ、(6)はリグ、(7)は燃料側
スペーサ(5)さリプ(6)とで構成される燃料通路、
(8)は燃料改質触媒であるっ なお、図中同一符号は同一または相当部分を示すものさ
する。 代 理 人 大 岩 増 雄 第1し1 第2図 第:″3図
Figure 1 is a perspective view of a conventional internal reforming fuel cell;
This figure is a perspective view showing an internal reforming fuel cell according to one embodiment of the invention, and FIG. 3 is a perspective view showing a fuel passage according to another embodiment of the invention. In the figure, (1) is the electrolyte matrix, (2) is the fuel electrode, (3) is the oxidant electrode, (4) is the oxidant passage, (
5) is a fuel side spacer, (6) is a rig, (7) is a fuel passage consisting of a fuel side spacer (5) and a lip (6);
(8) is a fuel reforming catalyst. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masu Oiwa 1st and 1st Figure 2: Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)燃料電極と酸化剤電極とを電解質マトリックスを
介して対向するように配置した単電池、上記燃料電極に
対して設けられた燃料通路、この燃料通路に充填された
燃料改質触媒、および上記酸化剤電極に対して設けられ
た酸化剤通路を備え、燃料および酸化剤をそれぞれ上記
通路に供給して燃料を改質しながら発電を行なう内部改
質形燃料電池において、上記燃料通路の燃料の流れ方向
に直角な断面積を上記燃料の流れ方向に高力・うて拡大
したことを特徴さする内部改質形燃料電池。
(1) A unit cell in which a fuel electrode and an oxidizer electrode are arranged to face each other with an electrolyte matrix interposed therebetween, a fuel passage provided for the fuel electrode, a fuel reforming catalyst filled in this fuel passage, and In an internal reforming fuel cell that includes an oxidizer passage provided to the oxidizer electrode, and generates power while reforming the fuel by supplying fuel and oxidizer to the passage respectively, the fuel in the fuel passage is An internal reforming fuel cell characterized in that the cross-sectional area perpendicular to the flow direction of the fuel cell is expanded with high force and verticality in the flow direction of the fuel.
(2)燃料通路は、その幅を燃料の流れ方向に向がって
広くしたことを特徴とする特許請求の範囲第1項記載の
内部改質形燃料電池。
(2) The internal reforming fuel cell according to claim 1, wherein the fuel passage is widened in the fuel flow direction.
(3)燃料通路は、その深さを燃料の流れ方向に向かっ
て深くしたことを特徴とする特許請求の範囲第1項また
は第2項記載の内部改質形燃料電池。
(3) The internal reforming fuel cell according to claim 1 or 2, wherein the depth of the fuel passage is increased in the direction of fuel flow.
JP58140306A 1983-07-29 1983-07-29 Internally reformed type fuel cell Granted JPS6032255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140306A JPS6032255A (en) 1983-07-29 1983-07-29 Internally reformed type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140306A JPS6032255A (en) 1983-07-29 1983-07-29 Internally reformed type fuel cell

Publications (2)

Publication Number Publication Date
JPS6032255A true JPS6032255A (en) 1985-02-19
JPH0147863B2 JPH0147863B2 (en) 1989-10-17

Family

ID=15265715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140306A Granted JPS6032255A (en) 1983-07-29 1983-07-29 Internally reformed type fuel cell

Country Status (1)

Country Link
JP (1) JPS6032255A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236465A (en) * 1984-04-30 1985-11-25 株式会社東芝 Method of operating fused carbonate fuel battery
JPS60241674A (en) * 1984-05-15 1985-11-30 Toshiba Corp Fused carbonate type fuel cell
JPS6212269U (en) * 1985-07-05 1987-01-24
JPS6290871A (en) * 1985-06-14 1987-04-25 Hitachi Ltd Fuel cell
JPS62140375A (en) * 1985-12-13 1987-06-23 Hitachi Ltd Inside reform type molten carbonate fuel cell system
JPS62140374A (en) * 1985-12-13 1987-06-23 Hitachi Ltd Inside reform type molten carbonate fuel cell
WO1998016961A1 (en) * 1996-10-16 1998-04-23 Bg Plc An electric power generation system using fuel cells
WO1998021770A1 (en) * 1996-11-08 1998-05-22 Bg Plc Electric power generation system including fuel cells
KR100646985B1 (en) * 2005-06-24 2006-11-23 삼성에스디아이 주식회사 Plate type fuel reforming system and fuel cell system having the same
WO2006082087A3 (en) * 2005-01-31 2007-05-03 Fraunhofer Ges Forschung Device comprising a channel carrying a medium and method for removing inclusions

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236465A (en) * 1984-04-30 1985-11-25 株式会社東芝 Method of operating fused carbonate fuel battery
JPS60241674A (en) * 1984-05-15 1985-11-30 Toshiba Corp Fused carbonate type fuel cell
JPS6290871A (en) * 1985-06-14 1987-04-25 Hitachi Ltd Fuel cell
JPH081805B2 (en) * 1985-06-14 1996-01-10 株式会社日立製作所 Fuel cell
JPS6212269U (en) * 1985-07-05 1987-01-24
JPS62140375A (en) * 1985-12-13 1987-06-23 Hitachi Ltd Inside reform type molten carbonate fuel cell system
JPS62140374A (en) * 1985-12-13 1987-06-23 Hitachi Ltd Inside reform type molten carbonate fuel cell
JPH0831321B2 (en) * 1985-12-13 1996-03-27 株式会社日立製作所 Internal reforming molten carbonate fuel cell
WO1998016961A1 (en) * 1996-10-16 1998-04-23 Bg Plc An electric power generation system using fuel cells
WO1998021770A1 (en) * 1996-11-08 1998-05-22 Bg Plc Electric power generation system including fuel cells
WO2006082087A3 (en) * 2005-01-31 2007-05-03 Fraunhofer Ges Forschung Device comprising a channel carrying a medium and method for removing inclusions
US7887621B2 (en) 2005-01-31 2011-02-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Device with a channel conducting a flowable medium and a method for removing inclusions
KR100646985B1 (en) * 2005-06-24 2006-11-23 삼성에스디아이 주식회사 Plate type fuel reforming system and fuel cell system having the same
JP2007001856A (en) * 2005-06-24 2007-01-11 Samsung Sdi Co Ltd Fuel reforming system and fuel cell system having fuel reforming system
JP4545118B2 (en) * 2005-06-24 2010-09-15 三星エスディアイ株式会社 Fuel reforming system and fuel cell system including fuel reforming system
US8092949B2 (en) 2005-06-24 2012-01-10 Samsung Sdi Co., Ltd. Fuel cell system with fuel conversion reactor

Also Published As

Publication number Publication date
JPH0147863B2 (en) 1989-10-17

Similar Documents

Publication Publication Date Title
US5100743A (en) Internal reforming type molten carbonate fuel cell
US6348280B1 (en) Fuel cell
CN100377402C (en) Stack having improved cooling structure and fuel cell system having the same
US4615955A (en) Fuel cell
DE69108104D1 (en) Fuel cell stack with internal reforming and collecting channels arranged entirely inside.
CA1242241A (en) Direct use of methanol fuel in a molten carbonate fuel cell
US7338727B2 (en) Method of operating a fuel cell to provide a heated and humidified oxidant
JPS6032255A (en) Internally reformed type fuel cell
JP3317535B2 (en) Fuel cell
JP2002151098A (en) Fuel cell
JPH0240862A (en) Internal reforming type fuel cell
JPS63310574A (en) Internal reforming type fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP4975253B2 (en) Fuel cell system and fuel supply device
JP2604393B2 (en) Internal reforming molten carbonate fuel cell
JPS6191876A (en) Fuel cell device
JPH06251778A (en) Solid polymer electrolyte fuel cell
JPH11111311A (en) Solid polymer type fuel cell
JPH04370664A (en) Fuel cell
JPS63158754A (en) Internal-reforming type fuel cell
JP2971543B2 (en) Internal reforming fuel cell
JPH0615404Y2 (en) Internal reforming fuel cell
JPH06314570A (en) Manifold structure of fuel cell
JP2734716B2 (en) Internal reforming fuel cell
JPS6269470A (en) Internal-reformation fuel cell