JPH0652657B2 - Molten carbonate fuel cell with internal reforming - Google Patents

Molten carbonate fuel cell with internal reforming

Info

Publication number
JPH0652657B2
JPH0652657B2 JP60187250A JP18725085A JPH0652657B2 JP H0652657 B2 JPH0652657 B2 JP H0652657B2 JP 60187250 A JP60187250 A JP 60187250A JP 18725085 A JP18725085 A JP 18725085A JP H0652657 B2 JPH0652657 B2 JP H0652657B2
Authority
JP
Japan
Prior art keywords
anode
molten carbonate
chamber
fuel cell
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60187250A
Other languages
Japanese (ja)
Other versions
JPS6247968A (en
Inventor
俊樹 加原
秀夫 岡田
嘉男 岩瀬
浩一 三次
将人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60187250A priority Critical patent/JPH0652657B2/en
Publication of JPS6247968A publication Critical patent/JPS6247968A/en
Publication of JPH0652657B2 publication Critical patent/JPH0652657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸塩を電解質とし、メタンや天然ガスを
電池内部で水素リツチガスに変換して燃料とする内部改
質型燃料電池に係わり、とくに改質反応と電気化学的反
応を行うアノード室を備えた溶融炭酸塩型燃料電池に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an internal reforming fuel cell in which molten carbonate is used as an electrolyte and methane or natural gas is converted into hydrogen-rich gas inside the cell to be used as a fuel. In particular, it relates to a molten carbonate fuel cell having an anode chamber for carrying out a reforming reaction and an electrochemical reaction.

〔従来技術とその問題点〕[Prior art and its problems]

メタンや天然ガスを燃料電池の中で水素リツチのガスに
改質して発電する内部改質型燃料電池は、発電時に発生
する熱をそのまま改質反応に使用することができること
からエネルギー効率の高い発電方式として注目されてい
る。この型の燃料電池では、熱バランスの関係から、溶
融炭酸塩を電解質とし、650℃付近で運転されるいわ
ゆる溶融炭酸塩型燃料電池が用いられる。メタンや天然
ガスの改質はアノード室で行われるが、この反応を起こ
すための構造として、以下のような提案がなされてい
る。一つの方法は改質触媒をアノード室全部に充填する
もの(特公昭47-25782)である。他の方法は多孔質の波
形材料をアノード室にいれ、セパレータ側の溝に改質触
媒を充填するもの(特開昭58-10374)である。前者の場
合、供給するメタンや天然ガスが完全に水素に改質され
ない状態でアノードに接することおよび電池運転時に溶
融炭酸塩の蒸気やアノードを通してしみ出してきた溶融
炭酸塩によつて改質触媒が劣化し、長時間の電池運転が
できないという問題があつた。後者の場合は前者の提案
を一部改良したものであるが、多孔性の波形材料を使用
するので、アノードに接する部分では完全に改質されな
いガスがアノードに供給されること、また多孔質材料を
通して溶融炭酸塩が浸透してきたり、あるいは溶融炭酸
塩の蒸気がこれを通過してきて、改質触媒を劣化させる
という問題がいぜんとして残されていた。内部改質を行
う溶融炭酸液型燃料電池を長時間運転可能にし、かつ実
用化を図るためはこれらの問題を解決しなければならな
い。
An internal reforming fuel cell that reforms methane or natural gas into hydrogen-rich gas in a fuel cell to generate power is highly energy efficient because the heat generated during power generation can be used as is for the reforming reaction. It is attracting attention as a power generation method. In this type of fuel cell, a so-called molten carbonate fuel cell which uses molten carbonate as an electrolyte and is operated at around 650 ° C. is used because of heat balance. The reforming of methane and natural gas is performed in the anode chamber, and the following proposals have been made as a structure for causing this reaction. One method is to fill the anode chamber with a reforming catalyst (Japanese Patent Publication No. 47-25782). Another method is to put a porous corrugated material in the anode chamber and fill the grooves on the separator side with the reforming catalyst (Japanese Patent Laid-Open No. 58-10374). In the former case, the methane and natural gas to be supplied should be in contact with the anode without being completely reformed into hydrogen, and the reforming catalyst should be generated by the molten carbonate vapor and the molten carbonate exuded through the anode during the battery operation. There was a problem that it deteriorated and the battery could not be operated for a long time. The latter case is a partial improvement of the former proposal, but it uses a porous corrugated material, so that the gas that is not completely reformed is supplied to the anode at the portion in contact with the anode, and the porous material is also used. There is still a problem that the molten carbonate permeates through or the molten carbonate vapor passes through this and deteriorates the reforming catalyst. These problems must be solved in order to enable a molten carbon dioxide fuel cell that performs internal reforming to operate for a long time and to put it into practical use.

〔発明の目的〕[Object of the Invention]

本発明の目的は上記した従来技術の有する問題点を除去
し、長時間安定に燃料電池を運転することができる内部
改質を行う溶融炭酸塩型燃料電池を提供することにあ
る。
An object of the present invention is to eliminate the above-mentioned problems of the prior art and to provide a molten carbonate fuel cell that performs internal reforming and can operate the fuel cell stably for a long time.

〔発明の概要〕[Outline of Invention]

本発明の概要について説明する。本発明の特徴とすると
ころは、アノード室内を改質反応部と電気化学反応部に
仕切るとともに、各々の反応によつて生成あるいは消費
される熱をより有効に利用し、かつ燃料電池の長寿命化
を図つたことである。第1図に本発明による燃料電池の
断面構造を示す。1が溶融炭酸塩をマトリツクス板に含
浸させた電解質層、2がアノード、3がカソードであ
る。4及び5はアノード室及びカソード室を形成するセ
パレータである。アノード室6内には、波板7が配置さ
れている。アノード2はこの波板7によつて保持され
る。波板7のセパレータ側空間にはメタンや天然ガス等
の改質触媒8が充填される。第2図はこの電池の縦断面
を示したものであり、波板7の左端はセパレータから離
れて連通する端部となつており、改質触媒層上で改質さ
れた水素リツチガスはUターンしてアノード側空間に戻
つてくる。この時、改質ガスはアノード2と接し、電気
化学的反応を起こして、発電をする。この構造では、溶
融炭酸塩がアノードを通して浸透してきても、波板7に
よつて防止されるので、改質触媒が劣化することはな
い。また、溶融炭酸塩が蒸気になつて、アノードを通過
してきても改質ガスとともに電池外部に排出されるので
問題となることはない。また、改質反応は吸熱反応であ
り、電池の発電時には発熱があるが、両者の熱バランス
を考えたとき、メタンや天然ガス等の炭化水素と水蒸気
の反応はアノード室への入口側ほどおこりやすいので、
ここでより多くの熱量を必要とする。一方、電池で発生
した熱はアノード室のUターン部から順に炭化水素と水
蒸気の入口側に向かつて改質ガスによつて集められて運
ばれてくる。従つて、一番多く熱量を必要とする部分
に、一番多くの熱量を供給することができるので、エネ
ルギーを有効に利用することができる。これは本発明に
よる大きな特徴である。また、波板7を導電性材料で作
ると、セパレータとアノード間の電気的接続をすること
ができ、多層積層時に外部で電気的接続をする必要がな
くなる。
The outline of the present invention will be described. A feature of the present invention is that the anode chamber is partitioned into a reforming reaction section and an electrochemical reaction section, the heat generated or consumed by each reaction is more effectively utilized, and the fuel cell has a long life. This is to achieve FIG. 1 shows a sectional structure of a fuel cell according to the present invention. Reference numeral 1 is an electrolyte layer in which a matrix plate is impregnated with molten carbonate, 2 is an anode, and 3 is a cathode. 4 and 5 are separators forming an anode chamber and a cathode chamber. A corrugated plate 7 is arranged in the anode chamber 6. The anode 2 is held by this corrugated plate 7. The space on the separator side of the corrugated plate 7 is filled with a reforming catalyst 8 such as methane or natural gas. FIG. 2 shows a vertical cross section of this battery, in which the left end of the corrugated plate 7 is an end communicating with the separator and the hydrogen-rich gas reformed on the reforming catalyst layer is U-turned. Then it returns to the space on the anode side. At this time, the reformed gas contacts the anode 2 and causes an electrochemical reaction to generate electricity. In this structure, even if the molten carbonate permeates through the anode, it is prevented by the corrugated sheet 7, so that the reforming catalyst does not deteriorate. Further, even if the molten carbonate becomes vapor and passes through the anode, it is discharged to the outside of the battery together with the reformed gas, so that there is no problem. Also, the reforming reaction is an endothermic reaction and generates heat during power generation of the battery, but considering the heat balance between the two, the reaction between hydrocarbons such as methane and natural gas and steam occurs near the inlet side to the anode chamber. Because it ’s easy
It requires more heat here. On the other hand, the heat generated in the battery is collected and carried by the reformed gas from the U-turn portion of the anode chamber toward the inlets of hydrocarbons and steam in order. Therefore, since the largest amount of heat can be supplied to the portion that requires the largest amount of heat, energy can be effectively used. This is a great feature of the present invention. Further, when the corrugated plate 7 is made of a conductive material, the separator and the anode can be electrically connected to each other, and it is not necessary to make an external electrical connection when laminating multiple layers.

本発明の他の構造は、波板7をニツケルで作り、セパレ
ータ4側のニツケル波板面を多孔性の凹凸を有する構造
にするものである。第3図にこの発明の波板7′を用い
た電池の断面図を示す。波板に設ける多孔性凹凸は、ニ
ツケル板表面をラネーニツケル化することによつて容易
に作ることができ、しかも改質触媒としての活性も高い
という利点がある。他の方法としては、ニツケル板表面
にニツケル粉末や中空ニツケル粉末を焼結して付着させ
る方法がある。いずれの方法でも本発明の目的を達成す
ることができる。
In another structure of the present invention, the corrugated plate 7 is made of nickel, and the surface of the nickel corrugated plate on the side of the separator 4 has a porous unevenness. FIG. 3 shows a sectional view of a battery using the corrugated plate 7'of the present invention. The porous unevenness provided on the corrugated plate can be easily formed by Raney-nickeling the surface of the nickel plate, and has an advantage that the activity as a reforming catalyst is also high. As another method, there is a method in which nickel powder or hollow nickel powder is sintered and adhered to the surface of the nickel plate. Either method can achieve the object of the present invention.

〔発明の実施例〕Example of Invention

以下、本発明の実施例について記す。 Examples of the present invention will be described below.

実施例(1) 電解質1として炭酸リチウムと炭酸カリウムを2対1の
モル比で混合したものを、またアノード2には気孔率約
65%のニツケル焼結板を、カソード3には酸化ニツケ
ルにリチウムをドープした焼結板を用いた。セパレータ
4,5はステンレススチール(SUS−316)を用い
て加工した。波板7に厚さ約0.5mmのステンレススチー
ル(SUS−316)を用いた。改質触媒8として、ア
ルミナ担体にニツケルを担持したものを用い、第1図に
示したような電池を組立て、メタンと水蒸気を供給し
た。スチーム・カーボン比は3に選んだ。カソード側に
空気と炭酸ガスの混合ガスを供給し、650℃で、電流
密度150mA/cm2で連続発電した。連続発電時の電
池電圧の経時変化を第4図に記号Aを示す。比較のため
に、波板を用いないで、改質触媒をアノード室6に充填
しただけのものについて、同様に連続発電したときの結
果を第4図に記号Bで示す。
Example (1) A mixture of lithium carbonate and potassium carbonate in a molar ratio of 2: 1 was used as the electrolyte 1, a nickel sintered plate having a porosity of about 65% was used for the anode 2, and nickel oxide was used for the cathode 3. A sintered plate doped with lithium was used. The separators 4 and 5 were processed using stainless steel (SUS-316). For the corrugated plate 7, stainless steel (SUS-316) having a thickness of about 0.5 mm was used. As the reforming catalyst 8, an alumina carrier carrying nickel was used, and a battery as shown in FIG. 1 was assembled to supply methane and steam. I chose a steam-carbon ratio of 3. A mixed gas of air and carbon dioxide was supplied to the cathode side, and continuous power generation was performed at 650 ° C. and a current density of 150 mA / cm 2 . The symbol A shows the change over time in the battery voltage during continuous power generation. For comparison, the result of continuous power generation in a similar manner for a case in which the reforming catalyst is only filled in the anode chamber 6 without using a corrugated plate is shown by symbol B in FIG.

実施例(2) 実施例1で用いた波板7の厚さ約2mmのニツケル板に
し、その片面にアルミニウムを蒸着し、ニツケルアルミ
ニウムの合金を作つた。次にこれをアルカリ水溶液に浸
漬してアルミニウムを溶出し、表面に多孔性の凹凸を形
成した。その他は実施例(1)で示したものと同一のも
のを用いて電池を作つた。この電池の連続発電性能は、
第4図に記号Aで示したものとほぼ同様であつた。
Example (2) The corrugated plate 7 used in Example 1 was made into a nickel plate having a thickness of about 2 mm, and aluminum was vapor-deposited on one surface of the plate to prepare an alloy of nickel aluminum. Next, this was dipped in an alkaline aqueous solution to elute aluminum to form porous irregularities on the surface. Others were the same as those shown in Example (1), and batteries were made. The continuous power generation performance of this battery is
It was almost the same as that shown by the symbol A in FIG.

〔発明の効果〕〔The invention's effect〕

第4図から明らかなように、本発明は電池の連続発電性
能を従来のものより大幅に向上する効果がある。この効
果は溶融炭酸塩によつて改質触媒が劣化するのを防止し
たために得られたものである。
As is apparent from FIG. 4, the present invention has the effect of significantly improving the continuous power generation performance of the battery as compared with the conventional one. This effect is obtained because the reforming catalyst is prevented from being deteriorated by the molten carbonate.

【図面の簡単な説明】 第1図は本発明による溶融炭酸塩型燃料電池断面図、第
2図はその縦断面図、第3図は本発明の他の構造を有す
る溶融炭酸塩型燃料電池の断面図、第4図は本発明の電
池と従来の電池の性能を比較した図である。 1…電解質層、2…アノード、3…カソード、4…アノ
ード側セパレータ、5…カソード側セパレータ、6…ア
ノード室、7…波板、8…改質触媒、7′…ニツケル製
波板。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a molten carbonate fuel cell according to the present invention, FIG. 2 is a longitudinal sectional view thereof, and FIG. 3 is a molten carbonate fuel cell having another structure of the present invention. 4 is a cross-sectional view of FIG. 4 and FIG. 4 is a diagram comparing the performances of the battery of the present invention and the conventional battery. DESCRIPTION OF SYMBOLS 1 ... Electrolyte layer, 2 ... Anode, 3 ... Cathode, 4 ... Anode side separator, 5 ... Cathode side separator, 6 ... Anode chamber, 7 ... Corrugated sheet, 8 ... Reforming catalyst, 7 '... Nickel corrugated sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三次 浩一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 竹内 将人 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭58−119167(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Miyoshi 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Institute Ltd. (72) Masato Takeuchi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi, Ltd. (56) Reference JP-A-58-119167 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対のガス拡散電極の間に溶融炭酸塩を電
解質とする電解質層を備え、該一対のガス拡散電極に接
して夫々セパレータを備え、前記一対のガス拡散電極の
アノード及びそれに隣接するセパレータの間にアノード
室を備え、前記一対のガス拡散電極のカソード及びそれ
に隣接するセパレータの間にカソード室を備えた内部改
質を行う溶融炭酸塩型燃料電池において、 前記アノード室は隣接するアノードとセパレータに交互
に線接触し該線接触する直線方向の先端部分がアノード
室の対向する側壁に達しない波板によって該波板先端の
領域で相互に連通するアノード側の室とセパレータ側の
室に分割され、セパレータ側の室にメタンを主成分とす
る燃料ガスを水素に変換する改質触媒を保持し、前記ア
ノード室のセパレータ側の室に供給されたメタンを主成
分とする燃料ガスが前記改質触媒によって水素に変換さ
れた後、前記波板先端の領域を通ってアノード側の室に
導入されることを特徴とする内部改質を行う溶融炭酸塩
型燃料電池。
1. An electrolyte layer having a molten carbonate as an electrolyte between a pair of gas diffusion electrodes, a separator in contact with the pair of gas diffusion electrodes, and an anode of the pair of gas diffusion electrodes and adjacent thereto. In the molten carbonate fuel cell for internal reforming, the anode chamber is provided between the separators, and the cathode of the pair of gas diffusion electrodes and the cathode chamber is provided between the adjacent separators. The chambers on the anode side and the separator side that communicate with each other in the region of the corrugated plate tip end by the corrugated plates that do not reach the opposite side walls of the anode chamber, and that are in line contact with the anode and the separator alternately It is divided into chambers and holds a reforming catalyst for converting a fuel gas containing methane as a main component into hydrogen in the chamber on the side of the separator, and in the chamber on the side of the separator of the anode chamber. The internal reforming is characterized in that the supplied fuel gas containing methane as a main component is converted into hydrogen by the reforming catalyst and then introduced into the chamber on the anode side through the region at the tip of the corrugated plate. Perform molten carbonate fuel cell.
JP60187250A 1985-08-28 1985-08-28 Molten carbonate fuel cell with internal reforming Expired - Lifetime JPH0652657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60187250A JPH0652657B2 (en) 1985-08-28 1985-08-28 Molten carbonate fuel cell with internal reforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60187250A JPH0652657B2 (en) 1985-08-28 1985-08-28 Molten carbonate fuel cell with internal reforming

Publications (2)

Publication Number Publication Date
JPS6247968A JPS6247968A (en) 1987-03-02
JPH0652657B2 true JPH0652657B2 (en) 1994-07-06

Family

ID=16202673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60187250A Expired - Lifetime JPH0652657B2 (en) 1985-08-28 1985-08-28 Molten carbonate fuel cell with internal reforming

Country Status (1)

Country Link
JP (1) JPH0652657B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788110A (en) * 1987-10-20 1988-11-29 Energy Research Corporation Fuel cell with partially shielded internal reformer
JP2648620B2 (en) * 1988-07-23 1997-09-03 株式会社日立製作所 Cogeneration system
JP3102969B2 (en) * 1993-04-28 2000-10-23 三菱電機株式会社 Internal reforming fuel cell device
DE19646579C2 (en) * 1996-11-12 2002-01-24 Forschungszentrum Juelich Gmbh Fuel cell stack with integrated reformer
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
KR100803669B1 (en) 2007-03-27 2008-02-19 한국과학기술연구원 Mcfc anode for direct internal reforming of ethanol, manufacturing process thereof, and method for direct internal reforming in mcfc containing the anode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119167A (en) * 1982-01-11 1983-07-15 Toshiba Corp Fuel cell device

Also Published As

Publication number Publication date
JPS6247968A (en) 1987-03-02

Similar Documents

Publication Publication Date Title
AU2002219941B2 (en) Multipurpose reversible electrochemical system
US4702973A (en) Dual compartment anode structure
AU2002219941A1 (en) Multipurpose reversible electrochemical system
JP5261412B2 (en) MEA for fuel cell and fuel cell stack including the same
US7972742B2 (en) Tube type fuel cell to decrease current path length
US7572538B2 (en) Fuel cell
JPH0652657B2 (en) Molten carbonate fuel cell with internal reforming
US20060014056A1 (en) Reformer and fuel cell system having the same
JPH07288133A (en) Fuel cell
JPS63236262A (en) Fuel cell
JP2816473B2 (en) Solid oxide fuel cell module
JPH0355763A (en) Gas fuel battery and electrode for use in the same
KR100519414B1 (en) Molten carbonate fuel cell with simplified central distribution separator
KR20050102233A (en) Fuel cell system
KR100531822B1 (en) Apparatus for supplying air of fuel cell
JP2004185904A (en) Fuel cell
KR101030044B1 (en) Fuel cell system, stack and separator used thereto
JPH0615404Y2 (en) Internal reforming fuel cell
JPH0656765B2 (en) Molten carbonate fuel cell
KR100446781B1 (en) Electrode structure for fuel cell
JPH0414854Y2 (en)
JPS61263066A (en) Separator for internal reformation type fuel cell
JP2005340210A (en) Fuel cell system and stack
JPH0349163A (en) Indirect internal reform type molten carbonate fuel cell
CN100376051C (en) Fuel battery mix electrode structure