JPS58129780A - Fused carbonate fuel cell layer body - Google Patents

Fused carbonate fuel cell layer body

Info

Publication number
JPS58129780A
JPS58129780A JP57011849A JP1184982A JPS58129780A JP S58129780 A JPS58129780 A JP S58129780A JP 57011849 A JP57011849 A JP 57011849A JP 1184982 A JP1184982 A JP 1184982A JP S58129780 A JPS58129780 A JP S58129780A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
methanol
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011849A
Other languages
Japanese (ja)
Inventor
Kenji Murata
謙二 村田
Masatsugu Yoshimori
吉森 正嗣
Hakaru Ogawa
斗 小川
Tamotsu Shirogami
城上 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57011849A priority Critical patent/JPS58129780A/en
Publication of JPS58129780A publication Critical patent/JPS58129780A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To maintain temperature distribution in a plane direction of a fuel cell body, an anode without complicating a fuel gas passage, by installing a modified layer, which carries out modifying reaction on methanol fuel, inside the fuel cell. CONSTITUTION:An oxidizer gas recycle device 37, a fuel gas recycle device 36, an exhaust fuel gas combustion burner 39 as well as a feed pump 41 and a DC load device 40 are all disposed around a fuel cell body 38 and, using water 33, methanol 34 and air 35, a fused carbonate fuel cell of 10kW in rated output is operated. At this time, a mixed solution of methanol and water is led into a bent pipe 29 installed on the outer surface of a gas distributor 31b at the fuel gas exhaust side by means of an intake pump 26 and gasified hereat whereby modified by a methanol modified layer 27 of a CuO-Cr2O3 clad nickel porous layer installed inside a gas distributor 31a at the fuel gas exhaust side and then fed to the anode side of each individual cell of the fuel cell layer body.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 i昼 本発明はφ融成酸塩燃料電池に係り、特に使用燃料ヲメ
タノール等のアルコールとし、その改質〔従来技術及び
その問題点、要求〕 電池発電システムは、燃料電池本体の外部に設けた改質
装置によって、メタン−1しと水蒸気とから水素及び−
酸化炭素を主成分とする混合ガスに改質し、これを燃料
電池本体に供給していた。しかしながら、この様にメタ
ノールの改質全燃料電池本体の外部に設置した改質装置
を用いて行う発電プラントの構成方法は以下の欠点を有
している。
[Detailed description of the invention] [Technical field to which the invention pertains] i. The present invention relates to a φ fused acid salt fuel cell, and particularly relates to the use of alcohol such as methanol as the fuel and its reforming [prior art and its problems; Requirements] The battery power generation system converts methane and water vapor into hydrogen and
It was reformed into a mixed gas containing carbon oxide as the main component, which was then supplied to the fuel cell itself. However, this method of configuring a power plant using a reformer installed outside the methanol reforming fuel cell main body has the following drawbacks.

■ 改質器全別途必要とするので、発電プラントの単位
籠気出力当りの所要面積が増大する。
■ Since the entire reformer is required separately, the area required per unit cage air output of the power plant increases.

■ メタノ−〜改質装置は、改質燃料量に応じ熱効率と
の最適サイズがあるので、発電プラントの′透気出力の
規模に応じサイズを変化させる必要がある。特に改質反
応全90%以りの熱効率で行うには、処理量としてIM
W以旧の′電気出力に相当する規模の改質装置が必要と
なる。
(2) Since the methanol reformer has an optimal size and thermal efficiency depending on the amount of reformed fuel, it is necessary to change the size depending on the scale of the permeation output of the power plant. In particular, in order to carry out the entire reforming reaction with a thermal efficiency of more than 90%, the throughput must be IM.
A reformer of a scale equivalent to the electrical output of the W and older models is required.

■ 改質装置から燃料電池へ改質した燃料ガスを移送す
る配管を必要としこの配管は高温のガスを移送できる様
な保温を施す必要がある。
■ Piping is required to transfer the reformed fuel gas from the reformer to the fuel cell, and this piping must be insulated to be able to transfer high-temperature gas.

この様な欠点全解決する方法として燃料ガスの改質を燃
料電池内部で行う方法が特開昭55−12700号公報
に提案されている。第1図及び第2図は特開昭55−1
2700号公報に記載されているものである。第1図に
おいて燃料電池単セル1はアノード2、電解質層3、及
びカソード4 V(よって構成されている。そして、隣
り合わせの燃料電池単セル1の間は隔離板5によって隔
離されている。
As a method to overcome all of these drawbacks, a method of reforming the fuel gas inside the fuel cell is proposed in Japanese Patent Laid-Open No. 12700/1983. Figures 1 and 2 are JP-A-55-1
This is described in Japanese Patent No. 2700. In FIG. 1, a fuel cell single cell 1 is composed of an anode 2, an electrolyte layer 3, and a cathode 4V (thus).Adjacent fuel cell single cells 1 are separated by a separator 5.

この隔離板5は、第2図で示されるように一方の面には
、カソード4に酸化剤を供給するための溝状の酸化剤ガ
ス流通路6が設けられ、また他方の面には、アノード2
に燃料を供給する波形状の改質済ガス流通路7aが設け
られている。この改質済ガス流通路7aは隔離板5に波
形シート部材8を取り付けてつくられる。また、この波
形/−ヒト部材のアノード極に接しない燃料ガス流通縁
7bには改質触媒9(たとえば0uO−ZnO等の触媒
が用いられる。)が充填されている。
As shown in FIG. 2, this separator 5 is provided with a groove-shaped oxidant gas flow path 6 on one side for supplying an oxidant to the cathode 4, and on the other side, Anode 2
A wave-shaped reformed gas flow path 7a is provided for supplying fuel to the fuel. This reformed gas flow path 7a is created by attaching a corrugated sheet member 8 to the separator plate 5. In addition, a reforming catalyst 9 (for example, a catalyst such as OuO-ZnO is used) is filled in the fuel gas flow edge 7b of the corrugated/-human member that is not in contact with the anode electrode.

このような構成を持つ燃料電池装置は、アノード側で必
要とするH2 k燃料ガス流通路7bにおいてアルコ−
υ等の形で供給された燃料から次の反応によって得るこ
とができる。
A fuel cell device having such a configuration has an alcohol in the H2K fuel gas flow path 7b required on the anode side.
It can be obtained from fuel supplied in the form of υ etc. by the following reaction.

OH,OH+ H20→Co2+3H2しかしながら、
改質触媒を波形シート部材8のアノード極に接しない燃
料ガス流通路7bに設ける等起電素子近傍にのみ改質反
応層を設ける構成では、特に低負荷時に改質反応に伴う
熱除去量が大きすぎて未改質ガス入口付近の温度が低く
なりすぎ、燃料電池本体アノードの平面方向の温度分布
を均一に維持する事が困難となる。この温度不均一は、
燃料電池内部に熱膨張差にょる応力を生じせしめ、気密
部の破壊につながっていく。
OH, OH+ H20→Co2+3H2However,
In a configuration in which the reforming reaction layer is provided only in the vicinity of the electromotive element, such as providing the reforming catalyst in the fuel gas flow path 7b that does not contact the anode electrode of the corrugated sheet member 8, the amount of heat removed due to the reforming reaction is reduced, especially at low loads. If it is too large, the temperature near the unreformed gas inlet becomes too low, making it difficult to maintain a uniform temperature distribution in the planar direction of the anode of the fuel cell main body. This temperature non-uniformity is
This causes stress within the fuel cell due to the difference in thermal expansion, leading to the destruction of the airtight area.

又、積層した各屯電池の波形シート部材の表と裏に燃料
ガスと改質済ガスという組成の異なったガス全流通させ
るためVCU、例えば、排出ガス用のガス分配器内部に
燃料ガス(未改質ガス)を各単電池波形シートの改質反
応を行う部分に供給する通路を設ける等、ガス流路構造
が複雑になる。
In addition, in order to fully distribute gases of different compositions, such as fuel gas and reformed gas, to the front and back sides of the corrugated sheet members of each stacked battery, fuel gas (unused gas) is installed inside the VCU, for example, a gas distributor for exhaust gas. The gas flow path structure becomes complicated, such as by providing a passage for supplying (reformed gas) to the portion of each unit cell corrugated sheet where the modification reaction takes place.

〔本発明の目的〕[Object of the present invention]

本発明の目的は、このような従来技術の欠点に鑑み、燃
料ガス流路構造をことさらに複雑にせず、また低負荷時
における燃料電池本体アノードの平面方向の温度分布を
均一に維持出来る様にして、屠体を提供することにある
In view of the shortcomings of the prior art, it is an object of the present invention to provide a method that does not make the fuel gas flow path structure particularly complicated and maintains a uniform temperature distribution in the planar direction of the anode of the fuel cell body during low load. The goal is to provide the carcass.

〔本発明の概要〕[Summary of the invention]

本発明はメタノール燃料の改質反応全行う改質層を、燃
料電池積層体側面に設けたガス分配器の燃料ガス入口と
積層体各電池との間の空間に設ける事によシ、燃料ガス
流路構造を複雑にする事な酸塩燃料電池積層体である。
The present invention provides a reforming layer for carrying out the entire reforming reaction of methanol fuel in the space between the fuel gas inlet of the gas distributor provided on the side of the fuel cell stack and each cell in the stack. This is an acid-acid fuel cell stack that complicates the flow path structure.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を用いて説明する。第3燃料電池
積層体を示すもので、第3図はその縦断面図、第4図は
第3図のA矢方向視の平面図である。第6図は第3図に
用いた単電池を積層した本体の斜視図、m5図は第3図
の燃料電池積層体を屠体の構成を詳細に説明する。第6
図に示した単電池20’t 100層と、マンガン・ニ
ッケル合金系の集゛醒体21a、21bと、アルミナ製
の絶縁板22a、22bと、ステンレス製の補強板23
a 、23bと、ステンレス製の4本の締付バー24a
、24bと4本の締付ロッド25ヲ用vhテ、高870
0 mm、幅、奥行とも300mmの定格出力10KW
の燃料電池積層体内部の本体38を構成した。次いで、
上記にメタノール水蒸気混合ガス入口26aと、下部に
リサイクル燃料ガス入口26bを備え、メタノール水蒸
気混合ガス入口26aが設けられた空間40aを内側に
、リサイクル燃料ガス入口26bが設けられた空間40
b ’i内側に内部空間を2分割するように、厚み40
1mの表面を0uO−C!r20.で被覆したニラケシ
多孔質焼結体のメタノール改質層27ヲ取シつけた燃料
ガス供給側ガス分配器31aと、下部に使用済燃料ガス
排出口30fc有し、外面に屈曲したステンレスパイプ
29を溶接してメタノール水混合液体気化器41とした
燃料ガス排出側ガス分配器31bと、酸化剤ガス供給側
、排出側の図示しないガス分配器を取りつけて外部を断
熱層でおおって燃料電池積層体を構成した。また屈曲し
たステンレスパイプ29の一端はメタノール水蒸気混合
ガス入口26aに接続され、他端はメタノールと水の混
合液体導入ポンプ32の排出側に接続され、ポンプ:3
2の導入側はメタノールと水の供給源に接続されている
。さらに第5図に示すように酸化剤ガスリサイクル装置
37、燃料カスリサイクル装置36、排出燃料ガス燃焼
バーナー39と、供給ポンプ41.直流負荷装置40を
燃料電池8fを運転1〜た。この際メタノールと水との
混合液体は、導入ポンプ26で燃料ガス排出側ガス分配
器31b外面に設けた屈曲したバイブ29に導入されこ
こで気化し、燃料ガス供給側ガス分配器31a内部に設
けた0uO−Or203被覆ニッケル多孔質体のメタノ
ール改質層27で改質されて燃料”酸池積屠体層体に使
用した単゛戒池の構成を述べる。アノード51は、90
wt%Ni 、 10 wt%Orの合金粉末を用い、
片面に燃料ガスの通流する溝51aを有するようにカル
ポキンメチルセνロースをバインダーとし、還元雰囲気
中で焼結したもので、多孔度60%、全体厚み1.5m
m、溝深さO,13mm、縦、横300mmであった。
Embodiments of the present invention will be described using the drawings. 3 is a vertical sectional view thereof, and FIG. 4 is a plan view taken in the direction of arrow A in FIG. 3, showing the third fuel cell stack. FIG. 6 is a perspective view of the main body in which the unit cells used in FIG. 3 are stacked, and FIG. 6th
The illustrated unit cell 20't 100 layers, manganese-nickel alloy aggregates 21a, 21b, alumina insulating plates 22a, 22b, and stainless steel reinforcing plate 23
a, 23b, and four stainless steel tightening bars 24a
, VH for 24b and 4 tightening rods 25, height 870
0mm, width and depth are both 300mm, rated output 10KW
The main body 38 inside the fuel cell stack was constructed. Then,
A space 40 with a methanol steam mixed gas inlet 26a above and a recycled fuel gas inlet 26b at the bottom with a space 40a provided with the methanol steam mixed gas inlet 26a on the inside and a recycled fuel gas inlet 26b provided therewith.
b 'i Thickness 40 so as to divide the internal space into two
0uO-C on 1m surface! r20. A gas distributor 31a on the fuel gas supply side has a methanol reforming layer 27 made of a porous sintered body covered with nirakpy, and a spent fuel gas discharge port 30fc at the bottom, and a bent stainless steel pipe 29 on the outer surface. A fuel gas discharge side gas distributor 31b which is welded into a methanol/water mixed liquid vaporizer 41, and gas distributors (not shown) on the oxidant gas supply side and discharge side are attached, and the outside is covered with a heat insulating layer to form a fuel cell stack. was constructed. Further, one end of the bent stainless steel pipe 29 is connected to the methanol steam mixed gas inlet 26a, and the other end is connected to the discharge side of the methanol and water mixed liquid introduction pump 32.
The inlet of 2 is connected to methanol and water sources. Furthermore, as shown in FIG. 5, an oxidizing gas recycling device 37, a fuel waste recycling device 36, an exhaust fuel gas combustion burner 39, a supply pump 41. The DC load device 40 was used to operate the fuel cell 8f. At this time, the mixed liquid of methanol and water is introduced by the introduction pump 26 into a bent vibrator 29 provided on the outer surface of the fuel gas discharge side gas distributor 31b, where it is vaporized, and is vaporized there. The structure of a single fuel pond used for the acid pond carcass layer body modified with the methanol reforming layer 27 of a porous nickel coated with 0uO-Or203 will be described.
Using an alloy powder of wt%Ni and 10wt%Or,
It is sintered in a reducing atmosphere using carpoquin methyl sevulose as a binder so as to have grooves 51a on one side through which fuel gas flows, and has a porosity of 60% and a total thickness of 1.5 m.
m, groove depth O, 13 mm, length and width 300 mm.

このアノード51を周囲に爪52a、52bを有する厚
さ0.2tnmのステンレスの板で包みこみ、この板を
燃料ガス、酸化剤ガスの混合を防止するアノード側セパ
レータ52とした。また2辺にカソード54積載くぼみ
531)を有し、両端部を折り曲げた厚d0.2imの
ステンレスの波形状板のカソード側セパレータ53ヲ、
そのカソード54に接しない側の凸部53a f:、ア
ノード側セパレータ52に電子ビーム溶接し、カソード
側セパレータ53とアノード側セパレーク52と全一体
化した。カソード54はニッケルの繊維を300 mm
 X 280 mm 、厚き0.5羽のマット状に形成
した後、これをアルカリ水溶液中で3価の酸化物とした
後乾燥しプロピレンカーボネートと過塩累酸リチウムの
混合溶液中で′嘔気化学的に還元させ、表面(i7Li
イオンの拡散した2価のニッケル酸化物としたものをカ
ソード側セパレータ53のくぼみに積載した。電解質層
55は、窒化ボロンの短繊維、直径3μ、長さ0.2問
を補強材とし、これとβ型リチウムアルミネートとバイ
ンダーとを重量比で15 : 80 : 5の割合で混
合して0.5闘の厚みのシート55aとした後、このシ
ート55aとアノード51との間にこの7)55aのi
tの3倍の重量のモル比で62対38のLi2Co、と
に、00゜の混合粉末の電解質55bを付与して構成し
た。
This anode 51 was wrapped in a stainless steel plate having a thickness of 0.2 tnm and having claws 52a and 52b around the periphery, and this plate was used as an anode side separator 52 for preventing mixing of fuel gas and oxidizing gas. In addition, a cathode side separator 53 made of a corrugated stainless steel plate with a thickness of d0.2 mm with both ends bent and having a cathode 54 loading recess 531) on two sides,
Convex portions 53a f on the side not in contact with the cathode 54: were electron beam welded to the anode side separator 52 to completely integrate the cathode side separator 53 and the anode side separator 52. The cathode 54 is made of nickel fiber with a thickness of 300 mm.
After forming a mat of 280 mm x 0.5 mm thick, it was made into a trivalent oxide in an alkaline aqueous solution, dried, and treated in a mixed solution of propylene carbonate and lithium persalt oxide. surface (i7Li
A divalent nickel oxide with diffused ions was loaded in the recess of the cathode side separator 53. The electrolyte layer 55 is made of boron nitride short fibers, diameter 3μ, length 0.2mm, as a reinforcing material, mixed with β-type lithium aluminate and a binder in a weight ratio of 15:80:5. After forming the sheet 55a with a thickness of 0.5 mm, this 7) i of 55a is placed between the sheet 55a and the anode 51.
The electrolyte 55b of a mixed powder of 00° was applied to Li2Co at a molar ratio of 62:38 and 3 times the weight of t.

〔発明の効果〕〔Effect of the invention〕

本発明の構成をとる事により、以下の効果が得られた。 By adopting the configuration of the present invention, the following effects were obtained.

■ 従来の燃料電池積層体に較べ、燃料ガス供給側のガ
ス分配器の重量全15%増加し、燃料ガス排出側のガス
分配器の重量全10%増加するだけで、内部構造体の構
成及び外形の変化なしに、すなわち積層体構成の大幅な
変化なしに燃料電池8fで燃料ガスの改質を行う事がで
き外部に大掛シな改質装置を要しない。
■ Compared to conventional fuel cell stacks, the total weight of the gas distributor on the fuel gas supply side is increased by 15%, and the total weight of the gas distributor on the fuel gas discharge side is increased by 10%, but the structure of the internal structure and The fuel gas can be reformed in the fuel cell 8f without changing the external shape, that is, without significantly changing the structure of the stacked body, and there is no need for a large-scale external reformer.

■ ば気出力10 KWという比較的小規模な改質反応
も行わせる事ができた。
■ We were also able to carry out a relatively small-scale reforming reaction with an air output of 10 KW.

■ 定格の20%の通気出力を、定格の3096の燃料
流量で運転した際、従来の燃料電池積層体のアノードの
温度分布±50°Cに較べ、本発明の温度分布は±20
00となった。
■ When operating at 20% of the rated ventilation output and the rated fuel flow rate of 3096, the temperature distribution of the anode of the conventional fuel cell stack is ±50°C, while the temperature distribution of the present invention is ±20°C.
It became 00.

□ ■ ガス分配器外壁温度は、300〜400°Cで
従来の燃料電池積層体に較べ100〜200°C低下し
、これに伴い積層体外部を覆う断熱層の厚みを従来の2
00 m711から30%減少させる事ができた。燃料
電池8f層体をコンパクトに構成できる。
□ ■ The temperature of the gas distributor outer wall is 300 to 400°C, which is 100 to 200°C lower than that of a conventional fuel cell stack.
We were able to reduce it by 30% from 00 m711. The fuel cell 8f layer body can be configured compactly.

■ 分配器内の改質層が同時にガス流の邪魔板となって
、燃料電池積層体各年電池へのガスの流量分布を均一と
する事が出来た。
■ The reforming layer in the distributor simultaneously acts as a gas flow baffle, making it possible to make the gas flow rate distribution uniform to the cells in each year of the fuel cell stack.

〔発明の変形例〕[Modified example of the invention]

第6図のリブ付多孔質アノード51’e第7図に断面を
示したように電解質層側に孔径の大なる領域60a q
形成し、かつ逆の燃料ガスの通流する溝60c側を孔径
の小なる領域60bの2重構造とすると共に溝60a内
面に改質反応を起させるため、OuO−0r2o3の触
媒層60d ?設けたリブ付多孔質アノード60として
形成すれば、第3図に示した燃料ガス供給側ガス分配器
31aの内部に設けたOuO−Or20gで被覆したニ
ッケル多孔質焼結体改質層27の厚み全40朋から20
mMに減少きせる事ができる。
Ribbed porous anode 51'e in FIG. 6, and a region 60aq with large pores on the electrolyte layer side, as shown in cross section in FIG.
A catalyst layer 60d of OuO-0r2o3 is formed in order to form a double structure of a region 60b with a smaller pore diameter on the side of the groove 60c through which fuel gas flows, and to cause a reforming reaction on the inner surface of the groove 60a. If it is formed as a ribbed porous anode 60, the thickness of the nickel porous sintered modified layer 27 coated with 20 g of OuO-Or provided inside the fuel gas supply side gas distributor 31a shown in FIG. 20 out of 40 friends
It can be reduced to mM.

この際、l0KW定格の燃料電池を定格の30%の流量
で定格の20係の出力全書る様に運転したところ、気化
したメタノールの90%は分配器内に設けた改質層で改
質された。一方、定格出力で運転したところ、気化した
メタノールの50%がガス分配器内の改質層で改質され
、残りはリブ付多孔質アノード成極で改質された。この
構成では、前記第3図に示した実施例構成VC,較べ1
50mA/m”  の定′屯流で運転した際、作Rib
屯圧を単電池あたり0,03V、I:昇させる事ができ
た。これは定格に近い運転ではアノードの中心付近まで
一部の燃料ガスを気化メタノールとして供給できるため
反応が均一に起るからでおる。
At this time, when a fuel cell rated for 10KW was operated at a flow rate of 30% of the rated value to achieve the full output of the 20th section of the rated value, 90% of the vaporized methanol was reformed in the reforming layer installed in the distributor. Ta. On the other hand, when operated at the rated output, 50% of the vaporized methanol was reformed in the reforming layer in the gas distributor, and the rest was reformed in the ribbed porous anode polarization. In this configuration, the embodiment configuration VC shown in FIG.
When operating at a constant current of 50mA/m”, the production Rib
It was possible to increase the tonic pressure by 0.03V per cell. This is because when operating near the rated capacity, some of the fuel gas can be supplied as vaporized methanol to the vicinity of the center of the anode, so that the reaction occurs uniformly.

又、第6図に示した構成のアノード51と電解質55の
組み合わせに変えて、第8図に示す構成に変える事も出
来る。すなわち、第8図において、70は粒度の異なる
2種の5rTiO,の微粉末を用い、大きな孔径を有す
る領域70aと、小さな孔径を有する領域70bと、大
なる孔径の部分に溝70cを有す様に焼成し、かつ溝を
有する側を下側にし硫酸ニッケルの溶液をスプレーで吹
きつけて還元雰囲気で処理する事により溝70c f形
成する部位近傍70dの表面全Ni金属で被覆したセラ
ミック多孔質基板である。組立時にはLi、003とに
2Co3の混合粉末の電解質を小孔径の領域70b側の
t面70eに付与し、最初の電池起動時の加熱によって
電解質を溶融し、その液を小孔径の領域70bに含浸さ
せる事により電解質を多孔質基板70+に保持させる。
Furthermore, the combination of anode 51 and electrolyte 55 shown in FIG. 6 can be replaced with the structure shown in FIG. 8. That is, in FIG. 8, 70 uses two types of 5rTiO fine powder with different particle sizes, and has a region 70a with a large pore diameter, a region 70b with a small pore diameter, and a groove 70c in a portion with a large pore diameter. A ceramic porous ceramic whose entire surface 70d near the area 70c where the grooves 70c and f are to be formed is coated with Ni metal is fired as shown in FIG. It is a board. During assembly, an electrolyte of a mixed powder of Li, 003, and 2Co3 is applied to the t-plane 70e on the side of the small-pore area 70b, and the electrolyte is melted by heating during the first battery startup, and the liquid is applied to the small-pore area 70b. The electrolyte is retained in the porous substrate 70+ by impregnation.

燃料としてQよ、メタノール以外にエタノ−n=f使用
する事も可能アある。
Q, it is also possible to use ethanol n=f in addition to methanol as a fuel.

メタノールと水の混合液体の気化全行わせる場所は燃料
ガス排出側ガス分配器の外壁面とは限らない他のガス分
配器の外壁面を利用する事も可能でおる。
The place where the mixed liquid of methanol and water is completely vaporized is not limited to the outer wall surface of the gas distributor on the fuel gas discharge side, but it is also possible to use the outer wall surface of another gas distributor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料改質器内蔵型燃料達池装置の積層体
本体を示す縦断面図、第2図は第1図の流側を示す縦断
面図、第4図は第3図のA矢方向視を示す平面図、第5
図は第3図に示す燃料電池積I一体を用いた発磁システ
ムのブロック図、第6図は第3図に示す積層体を構成す
る本体の斜視図、第7図、第8図は本発明の変形例の要
部を示す縦断面図である0 20・・・単電池 27・・・メタノ−lし改質層 29・・・パイプ 31a、31b・・・ガス分配器 j8・・・本体 41・・・メタノ−lし、水混合液体気化器51・・ア
ノード 52・・アノード側セパレータ 53・・・カソード側セパレータ 54・・・カソード 55・・・電解質層 代理人 弁理士 則 近 意 佑(ほか1名)第  6
  図 33I:) 第7図 第  8  図 、7De ’toct  ’7oc
Fig. 1 is a vertical cross-sectional view showing the main body of a stacked body of a conventional fuel reformer built-in fuel delivery device, Fig. 2 is a longitudinal cross-sectional view showing the flow side of Fig. Plan view showing the view in the direction of arrow A, 5th
The figure is a block diagram of a magnetization system using the integrated fuel cell stack I shown in Figure 3, Figure 6 is a perspective view of the main body constituting the stacked body shown in Figure 3, and Figures 7 and 8 are 020... Cell 27... Methanol reforming layer 29... Pipes 31a, 31b... Gas distributor j8... Main body 41...methanol, water mixed liquid vaporizer 51...anode 52...anode side separator 53...cathode side separator 54...cathode 55...electrolyte layer agent Patent attorney rule Yu (and 1 other person) 6th
Figure 33I:) Figure 7 Figure 8, 7De 'toc'7oc

Claims (1)

【特許請求の範囲】 弧 れた燃料を気化させて燃料ガスとする側壁にとりつけた
ガス分配器に設けた気化器と、ガス分配器内を燃料ガス
入口側と単電池側とに空間を二分割する燃料ガスの改質
を行う多孔質のメタノール改料電池積層体。
[Claims] A vaporizer installed in a gas distributor attached to a side wall that vaporizes arcuate fuel into fuel gas, and a space divided into two spaces inside the gas distributor on the fuel gas inlet side and on the cell side. A porous methanol reforming cell stack that reforms the fuel gas to be split.
JP57011849A 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body Pending JPS58129780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011849A JPS58129780A (en) 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011849A JPS58129780A (en) 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body

Publications (1)

Publication Number Publication Date
JPS58129780A true JPS58129780A (en) 1983-08-02

Family

ID=11789166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011849A Pending JPS58129780A (en) 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body

Country Status (1)

Country Link
JP (1) JPS58129780A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138855A (en) * 1983-12-27 1985-07-23 Toshiba Corp Fuel cell
JPS60241674A (en) * 1984-05-15 1985-11-30 Toshiba Corp Fused carbonate type fuel cell
JPS6124169A (en) * 1984-07-13 1986-02-01 Mitsubishi Electric Corp Fused carbonate type fuel cell
JPS61193371A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Fuel cell power generator
JPS61193372A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Internally reformed type of fuel cell
JPH03105865A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Inside reformed type fuel cell and power plant using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138855A (en) * 1983-12-27 1985-07-23 Toshiba Corp Fuel cell
JPS60241674A (en) * 1984-05-15 1985-11-30 Toshiba Corp Fused carbonate type fuel cell
JPS6124169A (en) * 1984-07-13 1986-02-01 Mitsubishi Electric Corp Fused carbonate type fuel cell
JPS61193371A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Fuel cell power generator
JPS61193372A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Internally reformed type of fuel cell
JPH03105865A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Inside reformed type fuel cell and power plant using it

Similar Documents

Publication Publication Date Title
JP2919588B2 (en) Electrochemical battery
JP4585218B2 (en) Fuel cell assembly
JP3781942B2 (en) Solid oxide fuel cell system
JP2007128716A (en) Fuel cell
WO2017038782A1 (en) Fuel cell module and fuel cell device
JP2010225454A (en) Fuel cell
JP4956946B2 (en) Fuel cell
KR100659014B1 (en) Fuel cell system and related method
JP2010212038A (en) Fuel cell
JP5600283B2 (en) Cell stack device, fuel cell module and fuel cell device
JP5753733B2 (en) Fuel cell module and fuel cell system
JP2011134504A (en) Power generator
JP4513282B2 (en) Fuel cell
JPS58129780A (en) Fused carbonate fuel cell layer body
JP2007080761A (en) Fuel cell and its starting method
JP2004362800A (en) Fuel cell
JP2007005134A (en) Steam generator and fuel cell
JP5239174B2 (en) Fuel cell
EP3322014B1 (en) Fuel cell system
JPH1167258A (en) Fuel cell
KR101023147B1 (en) Fuel cell system
JP2005019034A (en) Solid oxide fuel cell
JP2007073358A (en) Fuel heat exchanger and fuel cell
JP5228342B2 (en) Fuel reformer and fuel cell
JP5077384B2 (en) Fuel cell