JPS6124169A - Fused carbonate type fuel cell - Google Patents

Fused carbonate type fuel cell

Info

Publication number
JPS6124169A
JPS6124169A JP59146320A JP14632084A JPS6124169A JP S6124169 A JPS6124169 A JP S6124169A JP 59146320 A JP59146320 A JP 59146320A JP 14632084 A JP14632084 A JP 14632084A JP S6124169 A JPS6124169 A JP S6124169A
Authority
JP
Japan
Prior art keywords
reaction
gas
anode
cathode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59146320A
Other languages
Japanese (ja)
Inventor
Toshiaki Murahashi
村橋 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59146320A priority Critical patent/JPS6124169A/en
Publication of JPS6124169A publication Critical patent/JPS6124169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a fuel cell excellent in a gas-sealing property, prevent the wetting of a reforming catalyst due to an electrolyte, and efficiently perform the internal reforming reaction by providing a reaction gas feed hole and a reaction pipe arranged in it and filled with a reforming catalyst inside a laminated body. CONSTITUTION:The anode gas such as natural gas or coas gas is first fed to a reaction pipe 11. The anode gas reformed by the action of a reforming catalyst 9 while passing the reaction pipe 11 turns at the top of the reaction pipe 11 and flows downward around the reaction pipe 11, i.e., inside a reaction gas feed hole 10, and is fed to individual anodes 5 through anode gas passages 6 communicated to the reaction gas feed hole 10. A reaction gas feed hole having no reaction pipe 11 is provided on cathodes 3 in parallel with the lamination direction like the case of the anodes 5, and the cathode gas is fed to individual cathode gas passages 2 through this reaction gas feed hole, thereby the cathode reaction is generated, and the cell reaction proceeds as a whole together with the anode reaction.

Description

【発明の詳細な説明】 (発明の技術分野〕 この発明は、溶融炭酸塩燃料電池、特に反応ガス供給機
構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION This invention relates to molten carbonate fuel cells, and in particular to reactant gas supply mechanisms.

〔従来の技術〕[Conventional technology]

第1図は従来の溶融炭酸塩形燃料電池を示している。図
において、(υは端板、12)はカソード用集電板兼ガ
ス流路すなわち流路骨のガス分離板、(3)はカソード
、(4)は電解質保持体、(5jはアノード・(61は
アノード用集電板兼ガス流路すなわち流路付ノカス分離
板、(7)はマニホールド、(8)はマニホールドシー
ル用のガスケットである。対向するアノード電極(5)
とカソード電極(31および両電極<s+ 、(51間
に介在する電解質保持体(4)により単電池が構成され
、この単電池とガス分離板(21、+61を交互に積層
して積層体が構成されている。第2図は@1図に示す燃
料電池のマニホールド配置とガスノ流しを示している。
FIG. 1 shows a conventional molten carbonate fuel cell. In the figure, (υ is the end plate, 12) is the cathode current collector plate and gas flow path, that is, the gas separation plate of the flow path bone, (3) is the cathode, (4) is the electrolyte holder, (5j is the anode/( 61 is a current collector plate for the anode and a gas flow path, that is, a nocas separation plate with a flow path, (7) is a manifold, and (8) is a gasket for manifold sealing.Anode electrode (5) facing
A single cell is constituted by the electrolyte holder (4) interposed between the cathode electrode (31 and both electrodes <s+, (51), and the cell and the gas separation plate (21, +61) are alternately laminated to form a laminate. Figure 2 shows the manifold arrangement and gas flow of the fuel cell shown in Figure 1.

第8図は第1図の変形例としてアノード(6)に凹凸を
設けその凹部に改質触媒(9)を充填した場合を示して
いる。
FIG. 8 shows a modification of FIG. 1 in which the anode (6) is provided with irregularities and the recesses are filled with a reforming catalyst (9).

次に動作について説明する。第1図に示す燃料電池の場
合、マニホールド(7)から導入されるアノードガスは
矢印の方向に流れてアノード(5月こ達し。
Next, the operation will be explained. In the case of the fuel cell shown in Fig. 1, the anode gas introduced from the manifold (7) flows in the direction of the arrow and reaches the anode.

アノード反応を起こす。−万、カソード(3)は第1図
の紙面に直交する方向に同様なマニホールドからカソー
ドガスが導入され、カソード反応が生じ。
Causes an anode reaction. - 10,000, cathode gas was introduced into the cathode (3) from a similar manifold in a direction perpendicular to the plane of the paper of FIG. 1, and a cathode reaction occurred.

上記アノード反応と合せて電池反応が成り立ち。Together with the above anode reaction, a battery reaction is established.

燃料電池として電力が発生する。マニホールド(7)は
ガスケット(8)を介して積層体側面に押しつけられる
ことによりガスシール性を確保している。第8図に示す
燃料電池の場合には、改質触媒(9]によりメタン(C
H4)を主成分とする天然ガスや石炭ガスを改質し、水
素を主成分とするガスに転換して直ちにアノード反応に
使用することになり、効率良い燃料電池が期待されてい
た。
Electricity is generated as a fuel cell. The manifold (7) is pressed against the side surface of the laminate through the gasket (8) to ensure gas sealing. In the case of the fuel cell shown in FIG. 8, methane (C
Natural gas or coal gas whose main component is H4) is reformed and converted into a gas whose main component is hydrogen, which is immediately used in the anode reaction, and an efficient fuel cell was expected.

従来の溶融炭酸塩形燃料電池は以上のように構成されて
いるので、先ず、マニホールド(7)のシールにガスケ
ット(8)を用いた場合、電解質、温度。
Since the conventional molten carbonate fuel cell is constructed as described above, first, when the gasket (8) is used to seal the manifold (7), the electrolyte and the temperature are controlled.

および圧縮に耐える材質的な問題があること、さらには
、内部改質触媒(9)の場合には、電解質保持体(4)
からの電解質が浸透して改質触媒(9]を濡らすことに
より触媒活性が低下するという欠点を有していた。
Furthermore, in the case of an internal reforming catalyst (9), the electrolyte holder (4)
This had the disadvantage that the electrolyte from the reforming catalyst (9) permeated and wetted the reforming catalyst (9), resulting in a decrease in catalytic activity.

(発明の概要〕 この発明は上記のような従来のものの欠点を除去するた
めになされたもので、積層体内部に積層方向と並行に設
けられ、アノードガス流路と連通する反応ガス供給孔、
およびこの反応ガス供給孔内部に配設され、改質触媒を
充填した反応管を備え、上記改質触媒で改質されたガス
を上記反応ガス供給孔に導くようにすることにより、ガ
スシール性に優れ、かつ上記改質触媒の電解質による濡
れを防止して内部改質反応を効率良く行なわせることが
できる溶融炭酸塩形燃料電池を提供することを目的とし
ている。
(Summary of the Invention) This invention was made to eliminate the drawbacks of the conventional ones as described above, and includes a reaction gas supply hole provided inside the stack in parallel with the stacking direction and communicating with the anode gas flow path.
and a reaction tube disposed inside the reaction gas supply hole and filled with a reforming catalyst, and by guiding the gas reformed by the reforming catalyst to the reaction gas supply hole, the gas sealing property is improved. It is an object of the present invention to provide a molten carbonate fuel cell which has excellent properties and is capable of efficiently carrying out an internal reforming reaction by preventing wetting of the reforming catalyst by the electrolyte.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図をもとに説明する。第4
図はこの発明の一実施例による溶融炭酸塩形燃料電池を
示す断面図である。図において。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
The figure is a sectional view showing a molten carbonate fuel cell according to an embodiment of the present invention. In fig.

Q(Iは反応ガス供給孔であり、積層体内部に積層方向
と並行に設けられ、アノードガス流路(6)と連通ずる
。東は反応管であり、この例では一部の反応ガス供給孔
−内部に配設され、改質触媒(9)が充填されている。
Q (I is a reaction gas supply hole, which is provided inside the stack in parallel with the stacking direction and communicates with the anode gas flow path (6). The east side is a reaction tube, and in this example, a part of the reaction gas supply hole The pores are disposed inside and filled with a reforming catalyst (9).

なお、矢印はアノードガスの流れを示す。Note that arrows indicate the flow of anode gas.

次に動作について説明する。天然ガスや石炭ガスなどの
アノードガスは先ず反応管(ロ)に供給される。反応管
αυを通過するうちに改質触媒(9)の作用で改質され
たアノードガスは1反応管回の頂部より一転して反応管
(ロ)の外周部すなわち反応ガス供給孔OQの内部を下
方向に流れ2反応ガス供給孔QOと連°通ずるアノード
ガス流路(6)より各アノード15)1ζ供給される。
Next, the operation will be explained. An anode gas such as natural gas or coal gas is first supplied to the reaction tube (b). The anode gas reformed by the action of the reforming catalyst (9) while passing through the reaction tube αυ turns from the top of one reaction tube turn to the outer periphery of the reaction tube (b), that is, the inside of the reaction gas supply hole OQ. 1ζ is supplied to each anode 15) from an anode gas flow path (6) that flows downward and communicates with the two reaction gas supply holes QO.

その後、大部分は反応に寄与し一部は未反応のまま、第
4図左方の反応ガス供給孔QGに達し、外部へ排田され
る。すなわち、溶融炭酸塩形燃料電池用の7ノードガス
である天然ガスや石炭ガスは反応管αηに導かれ、積層
体が650 ℃で運転されるので同温度になっている反
応管ゆで改質反応が生じ、改質されたガスは反応管aυ
の頂上から周囲の反応ガス供給孔明に入る一反応ガス供
給孔Q(Iはアノードガス流路(6)と連通しているの
で、改質ガスは速やかにアノード(5)に浸透して行き
、アノード反応に寄与する。−万、カソード(3)には
1図面の手前と向う側に反応管(ロ)を持たない反応ガ
ス供給孔(図示せず)をアノード(6)の場合と同様に
積層方向と並行に設け、この反応ガス供給孔を通じて各
カソードガス流路(2目ζカソードガスを供給すること
によりカソード反応が生じ、上述のアノード反応と合せ
て全体として電池反応が進行する。
Thereafter, most of the gas contributes to the reaction, while some remains unreacted, reaches the reaction gas supply hole QG on the left side of FIG. 4, and is discharged to the outside. In other words, natural gas and coal gas, which are the 7-node gases for the molten carbonate fuel cell, are led to the reaction tube αη, and the stack is operated at 650°C, so the reforming reaction is carried out by boiling the reaction tube at the same temperature. The generated and reformed gas is transferred to the reaction tube aυ
Since the reactant gas supply hole Q (I is in communication with the anode gas flow path (6)), the reformed gas quickly permeates into the anode (5). Contributes to the anode reaction. - In the cathode (3), reactant gas supply holes (not shown) without reaction tubes (b) are stacked on the front and opposite sides of the drawing in the same way as the anode (6). A cathode reaction occurs by supplying cathode gas to each cathode gas flow path (second ζ) through this reaction gas supply hole, and the battery reaction as a whole proceeds together with the above-mentioned anode reaction.

このような反応ガス供給機構とすれば、反応ガス供給の
ためのマニホールドすなわち反応ガス供給孔QOのシー
ルが容易にでき、しかもアノードガスの改質反応をこの
反応ガス供給孔QQの内部で行なわせる仁とにより、改
質触媒(9)の電解質による濡れを防止することができ
るので、信頼性が高くしかも高効率な電池反応が得られ
る。
With such a reaction gas supply mechanism, the manifold for supplying the reaction gas, that is, the reaction gas supply hole QO, can be easily sealed, and the reforming reaction of the anode gas can be carried out inside the reaction gas supply hole QQ. Since the reforming catalyst (9) can be prevented from being wetted by the electrolyte, a highly reliable and highly efficient cell reaction can be obtained.

なお・上記実施例ではアノードガスを積層体の下方から
反応管(ロ)に導入する場合を示したが、上方から導入
してもよい。
Although the above embodiment shows the case where the anode gas is introduced into the reaction tube (b) from below the stacked body, it may also be introduced from above.

また、上記実施例ではカソード(31側にもアノード(
5)側と同様な反応ガス供給孔QOを設けた場合につい
て説明したが、カソード(IJ側には第1図の従来例で
示すような箱型のいわゆる外部マニホールド(7)を設
けても上記実施例と同様の効果が得られる。
In addition, in the above embodiment, the anode (
Although we have explained the case in which a reaction gas supply hole QO similar to that on the 5) side is provided, even if a box-shaped so-called external manifold (7) as shown in the conventional example in Fig. 1 is provided on the cathode (IJ side), Effects similar to those of the embodiment can be obtained.

し発明の効果〕 以上のように、この発明によれば、積層体内部に積層方
向と並行に設けられ、アノードガス流路と連通ずる反応
ガス供給孔、およびこの反応ガス供給孔内部に配設され
、改質触媒を充填した反応管を備え、上記改質触媒で改
質されたガスを上記反応ガス供給孔に導くようにしたの
で、ガスシール性に優れ、かつ上記改質触媒の電解質に
よる濡れを防出して内部改質反応を効率良く行なわせる
ことができる効果がある。
[Effects of the Invention] As described above, according to the present invention, there is a reaction gas supply hole provided inside the laminate in parallel with the stacking direction and communicating with the anode gas flow path, and a reaction gas supply hole provided inside the reaction gas supply hole. The structure is equipped with a reaction tube filled with a reforming catalyst, and the gas reformed by the reforming catalyst is guided to the reaction gas supply hole, so that it has excellent gas sealing properties, and the electrolyte of the reforming catalyst It has the effect of preventing wetting and allowing internal reforming reactions to occur efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶融炭酸塩形燃料電池の一例を示す断面
図、第2図は第1図に示す燃料電池のマニホールドの配
置と反応ガスの流れを模式的に示す説明図、第8図は第
1図に示す従来の溶融炭酸塩形燃料電池の変形例の主要
部を示す断面図、第4図はこの発明の一実施例による溶
融炭酸塩形燃料電池を示す断面図である。 図において、 (21、(61はガス流路骨のガス分離
板、(3]はカソード、(4]は電解質保持体、(5)
はアノード、(9)は改質触媒、 Q(Iは反応ガス供
給孔、C1υは反応管である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
Figure 1 is a sectional view showing an example of a conventional molten carbonate fuel cell, Figure 2 is an explanatory diagram schematically showing the arrangement of the manifold and the flow of reactant gas in the fuel cell shown in Figure 1, and Figure 8. FIG. 4 is a sectional view showing a main part of a modification of the conventional molten carbonate fuel cell shown in FIG. 1, and FIG. 4 is a sectional view showing a molten carbonate fuel cell according to an embodiment of the present invention. In the figure, (21, (61 is the gas separation plate of the gas flow path bone, (3) is the cathode, (4) is the electrolyte holder, (5)
is an anode, (9) is a reforming catalyst, Q (I is a reaction gas supply hole, and C1υ is a reaction tube. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 電解質保持体を介在して対向するアノードおよびカソー
ドを有する単電池、並びに上記アノードに対設するアノ
ードガス流路と上記カソードに対設するカソードガス流
路とを分離するガス分離板を交互に積層して積層体を構
成する溶融炭酸塩形燃料電池において、上記積層体内部
に積層方向と並行に設けられ、上記アノードガス流路と
連通する反応ガス供給孔、およびこの反応ガス供給孔内
部に配設され、改質触媒を充填した反応管を備え、改質
触媒で改良されたガスを上記反応ガス供給孔に導くよう
にしたことを特徴とする溶融炭酸塩形燃料電池。
Single cells having an anode and a cathode facing each other with an electrolyte holder interposed therebetween, and gas separation plates that separate an anode gas flow path facing the anode from a cathode gas flow path facing the cathode are alternately laminated. In the molten carbonate fuel cell which constitutes a stacked body, a reactive gas supply hole is provided in the stacked body in parallel with the stacking direction and communicates with the anode gas flow path, and a reactive gas supply hole is arranged inside the reactive gas supply hole. 1. A molten carbonate fuel cell comprising a reaction tube filled with a reforming catalyst, the gas being improved by the reforming catalyst being guided to the reaction gas supply hole.
JP59146320A 1984-07-13 1984-07-13 Fused carbonate type fuel cell Pending JPS6124169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59146320A JPS6124169A (en) 1984-07-13 1984-07-13 Fused carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59146320A JPS6124169A (en) 1984-07-13 1984-07-13 Fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPS6124169A true JPS6124169A (en) 1986-02-01

Family

ID=15404999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59146320A Pending JPS6124169A (en) 1984-07-13 1984-07-13 Fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS6124169A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005625A2 (en) * 1994-08-08 1996-02-22 Ztek Corporation Ultra-high efficiency turbine and fuel cell combination
WO1996025773A1 (en) * 1995-02-16 1996-08-22 Siemens Aktiengesellschaft Solid electrolyte high-temperature fuel cell module and method of operating the latter
US6099983A (en) * 1996-10-18 2000-08-08 Kabushiki Kaisha Toshiba Fuel cell containing a fuel supply means, gas generating means and temperature control means operated to prevent the deposition of carbon
KR100952604B1 (en) 2008-07-28 2010-04-15 한국과학기술원 Solid oxide fuel cell system integrated with reformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119167A (en) * 1982-01-11 1983-07-15 Toshiba Corp Fuel cell device
JPS58129780A (en) * 1982-01-29 1983-08-02 Toshiba Corp Fused carbonate fuel cell layer body
JPS58164171A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Cell stack of fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119167A (en) * 1982-01-11 1983-07-15 Toshiba Corp Fuel cell device
JPS58129780A (en) * 1982-01-29 1983-08-02 Toshiba Corp Fused carbonate fuel cell layer body
JPS58164171A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Cell stack of fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976332A (en) * 1994-03-21 1999-11-02 Ztek Corporation Ultra-high efficiency turbine and cell combination
WO1996005625A2 (en) * 1994-08-08 1996-02-22 Ztek Corporation Ultra-high efficiency turbine and fuel cell combination
WO1996005625A3 (en) * 1994-08-08 1996-07-18 Ztek Corp Ultra-high efficiency turbine and fuel cell combination
US5693201A (en) * 1994-08-08 1997-12-02 Ztek Corporation Ultra-high efficiency turbine and fuel cell combination
KR100271096B1 (en) * 1994-08-08 2000-11-01 데니스 엠. 오길비 Gas and steam turbin power system
WO1996025773A1 (en) * 1995-02-16 1996-08-22 Siemens Aktiengesellschaft Solid electrolyte high-temperature fuel cell module and method of operating the latter
US6099983A (en) * 1996-10-18 2000-08-08 Kabushiki Kaisha Toshiba Fuel cell containing a fuel supply means, gas generating means and temperature control means operated to prevent the deposition of carbon
KR100952604B1 (en) 2008-07-28 2010-04-15 한국과학기술원 Solid oxide fuel cell system integrated with reformer

Similar Documents

Publication Publication Date Title
US5514487A (en) Edge manifold assembly for an electrochemical fuel cell stack
JPH07109770B2 (en) Fuel cell and fuel cell stack
DE69217132D1 (en) Fuel cell stack with collecting channels completely arranged inside
DE69108104D1 (en) Fuel cell stack with internal reforming and collecting channels arranged entirely inside.
JPH08222237A (en) Separator for fuel cell
US6841282B2 (en) Fuel cell
JPS6124169A (en) Fused carbonate type fuel cell
JP4031952B2 (en) Fuel cell
JPS63119166A (en) Fuel battery
JP4109569B2 (en) Fuel cell
US3484298A (en) Electrode backing plate for electrochemical cells
JP2007207454A (en) Fuel cell stack
JP2007213928A (en) Fuel cell
JP2008293808A (en) Separator and fuel cell
JPH0349163A (en) Indirect internal reform type molten carbonate fuel cell
JP2024057209A (en) Electrochemical Reaction Module
KR100728833B1 (en) Separator for fuel cell
JPS5996670A (en) Fused-carbonate fuel cell
JP2024042644A (en) electrochemical device
JP2024053580A (en) Electrochemical Reaction Module
JP4851478B2 (en) Fuel cell
JPS63158754A (en) Internal-reforming type fuel cell
JPH0782873B2 (en) Molten carbonate fuel cell
JPH0665062B2 (en) Fuel cell separator
JP2001135342A (en) High molecular electrolyte fuel cell