JPH08222237A - Separator for fuel cell - Google Patents
Separator for fuel cellInfo
- Publication number
- JPH08222237A JPH08222237A JP7047886A JP4788695A JPH08222237A JP H08222237 A JPH08222237 A JP H08222237A JP 7047886 A JP7047886 A JP 7047886A JP 4788695 A JP4788695 A JP 4788695A JP H08222237 A JPH08222237 A JP H08222237A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- separator
- fuel
- gas
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0254—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は燃料電池用セパレータの
構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a fuel cell separator.
【0002】[0002]
【従来の技術】燃料電池は、使用される電解質の種類に
より、固体高分子電解質型、リン酸型、溶融炭酸塩型、
固体酸化物型等の各種が知られている。このうち固体高
分子電解質型燃料電池は、分子中にプロトン交換基を有
する高分子樹脂膜を飽和に含水させるとプロトン伝導性
電解質として機能することを利用した燃料電池であっ
て、比較的低温度域で作動し、発電効率も優れているた
め、電気自動車搭載用を初めとして各種の用途が見込ま
れている。2. Description of the Related Art Fuel cells, depending on the type of electrolyte used, are solid polymer electrolyte type, phosphoric acid type, molten carbonate type,
Various types such as solid oxide type are known. Among them, the solid polymer electrolyte fuel cell is a fuel cell that utilizes a polymer resin membrane having a proton exchange group in the molecule to function as a proton-conducting electrolyte when saturated with water, and has a relatively low temperature. Since it operates in the region and has excellent power generation efficiency, it is expected to be used for various purposes including mounting on electric vehicles.
【0003】固体高分子電解質型燃料電池スタックは、
固体高分子電解質膜の両面にガス拡散電極をホットプレ
ス等の手段により接合してなる燃料電池セル(単セル)
と、カーボンや金属製のガスセパレータとを積層した構
造を有する(たとえば特開平6−119928号公報参
照)。The solid polymer electrolyte fuel cell stack is
Fuel cell (single cell) in which gas diffusion electrodes are bonded to both sides of a solid polymer electrolyte membrane by means such as hot pressing
And a gas separator made of carbon or metal are laminated (see, for example, Japanese Patent Laid-Open No. 6-119928).
【0004】ガス拡散電極は、電解質膜に接する側に配
される触媒活物質を含む触媒層と、この触媒層を支持す
ると共に反応ガス(燃料ガス、酸化剤ガス)を供給およ
び排出し、さらに集電体としての機能をも有する多孔質
のガス拡散層とからなり、一方のガス拡散電極は燃料ガ
ス(たとえば水素ガスまたは水素を高濃度に含むガス)
の供給を受ける燃料電極(アノード極)となり、他方の
ガス拡散電極は酸化剤ガス(たとえば空気)の供給を受
ける酸化剤電極(カソード極)となる。The gas diffusion electrode supports a catalyst layer containing a catalyst active material disposed on the side in contact with the electrolyte membrane, supports the catalyst layer, and supplies and discharges a reaction gas (fuel gas, oxidant gas). It is composed of a porous gas diffusion layer which also has a function as a current collector, and one gas diffusion electrode is a fuel gas (for example, hydrogen gas or a gas containing hydrogen at a high concentration).
Is supplied to the fuel electrode (anode electrode), and the other gas diffusion electrode serves as an oxidant electrode (cathode electrode) supplied with an oxidant gas (for example, air).
【0005】このような従来技術による2セルの燃料電
池スタックの構成例が図5〜図7に示される。An example of the structure of such a two-cell fuel cell stack according to the prior art is shown in FIGS.
【0006】単セル10は、上記のように、電解質膜1
1の両面にガス拡散電極12が接合されてなる。The unit cell 10 is composed of the electrolyte membrane 1 as described above.
The gas diffusion electrodes 12 are bonded to both surfaces of No. 1.
【0007】セパレータは、表裏面にそれぞれ多数の凹
溝2、3が互いに直交方向に形成されたガス不透過性材
料(たとえば緻密カーボングラファイト)よりなるセパ
レータ板1が、フェノール樹脂等の樹脂絶縁材料よりな
るセパレータ枠4の内部に収納された状態で支持されて
構成されている。セパレータ枠4にはガスマニホールド
を収容するためのマニホールド装填口5a〜5dが開口
形成される。In the separator, the separator plate 1 made of a gas impermeable material (for example, dense carbon graphite) having a large number of recessed grooves 2 and 3 formed in the front and back surfaces in a direction orthogonal to each other is a resin insulating material such as phenol resin. It is configured to be supported while being housed inside a separator frame 4 made of. Manifold loading ports 5a to 5d for accommodating a gas manifold are formed in the separator frame 4.
【0008】このようなセパレータと単セル10とを積
層してなる燃料電池スタックにおいて、マニホールド装
填口5aに装填されるガスマニホールド(図示せず)に
は燃料ガスが導入され、セパレータ枠4の内枠部8aの
内部に形成される流路孔6aを介して、セパレータ板1
とセパレータ枠4との間の上方空間領域7aに導入さ
れ、セパレータ板1の表面側の凹溝2を図6において左
方向に流動する。そして、内枠部8aに対向する内枠部
8cの内部に形成される流路孔(図示せず)を介して、
マニホールド装填口5bに装填される燃料ガス排出マニ
ホールド(図示せず)に排出される。In the fuel cell stack in which the separator and the unit cell 10 are laminated, the fuel gas is introduced into the gas manifold (not shown) loaded in the manifold loading port 5a and the inside of the separator frame 4 is introduced. The separator plate 1 is inserted through the flow path hole 6a formed inside the frame portion 8a.
Is introduced into the upper space region 7a between the separator frame 4 and the separator frame 4, and flows in the concave groove 2 on the front surface side of the separator plate 1 in the left direction in FIG. Then, via a flow path hole (not shown) formed inside the inner frame portion 8c facing the inner frame portion 8a,
The fuel gas is discharged to a fuel gas discharge manifold (not shown) loaded in the manifold loading port 5b.
【0009】酸化剤ガスの流れについても略同様であ
り、ガスマニホールド部5cに導入された酸化剤ガス
は、セパレータ枠4の内枠部8cの内部に形成される流
路孔6bを介して、セパレータ板1とセパレータ枠4と
の間の下方空間領域7bに導入され、セパレータ板1の
裏面側の凹溝3を図7において左方向に流動した後、セ
パレータ枠4の内枠部8dの内部に形成される流路孔
(図示せず)を介して、マニホールド装填口5dに装填
される酸化剤ガス排出マニホールド(図示せず)に排出
される。The flow of the oxidant gas is substantially the same, and the oxidant gas introduced into the gas manifold portion 5c passes through the flow path hole 6b formed inside the inner frame portion 8c of the separator frame 4, After being introduced into the lower space region 7b between the separator plate 1 and the separator frame 4 and flowing leftward in the concave groove 3 on the back surface side of the separator plate 1 in FIG. 7, the inside of the inner frame portion 8d of the separator frame 4 It is discharged to an oxidant gas discharge manifold (not shown) loaded in the manifold loading port 5d through a flow path hole (not shown) formed in the.
【0010】[0010]
【発明が解決しようとする課題】図5〜図7に示される
ような従来のセパレータにおいては、ガス流路溝となる
多数の凹溝2、3をその表裏面に形成しなければならな
いが、セパレータ材料の緻密カーボングラファイトの硬
度がきわめて高いため、ダイヤモンドバイト等の切削工
具を用いても切削加工が容易ではなく、量産が困難であ
るという問題があった。In the conventional separator as shown in FIGS. 5 to 7, a large number of concave grooves 2 and 3 to be gas flow channels must be formed on the front and back surfaces thereof. Since the hardness of the dense carbon graphite of the separator material is extremely high, there is a problem that the cutting process is not easy even with a cutting tool such as a diamond tool and mass production is difficult.
【0011】また、特に酸化剤極においては、電池反応
による生成水を効率良く排出する必要があるが、従来の
セパレータのガス流路溝は平行な複数の溝であり、生成
水が滞留しがちで排出効率に欠けていた。生成水の排出
効率が悪いと、電極が電解質膜から剥離する原因とな
り、反応ガスが電極上の触媒と反応して電極端部におい
て発火するというトラブルを生じる危険性が潜在してい
た。Further, especially in the oxidant electrode, it is necessary to efficiently discharge the water generated by the cell reaction, but the gas passage grooves of the conventional separator are a plurality of parallel grooves, and the generated water tends to stay. It was lacking in discharge efficiency. If the discharge efficiency of the generated water is poor, it may cause the electrode to peel off from the electrolyte membrane, and there is a risk that the reaction gas reacts with the catalyst on the electrode and ignites at the end of the electrode.
【0012】[0012]
【課題を解決するための手段】そこで本発明は上記した
従来技術の問題点を解消し、低コストで生産性が良好で
あり、安全性が高く、しかも反応ガスの供給能率に優れ
た新規な燃料電池用セパレータの構造を提供することを
目的とする。Therefore, the present invention solves the above-mentioned problems of the prior art, and is novel with low cost, good productivity, high safety, and excellent reaction gas supply efficiency. An object of the present invention is to provide a structure of a fuel cell separator.
【0013】また、本発明は、併せて、セパレータを小
型化し、もって燃料電池スタックの小型軽量化を達成す
ることを目的とする。Another object of the present invention is also to reduce the size of the separator and thus reduce the size and weight of the fuel cell stack.
【0014】これらの目的を達成するため、本発明は、
固体電解質の両側に電極を配した燃料電池セルが複数積
層されてなる燃料電池スタックにおいて前記燃料電池セ
ルの間に介挿されて用いられ、一方の側面には隣接する
一方の燃料電池セルに燃料ガスを供給するための燃料ガ
ス流路溝を備えると共に、他方の側面には隣接する他方
の燃料電池セルに酸化剤ガスを供給するための酸化剤ガ
ス流路溝を備えた燃料電池用セパレータであって、加工
性に優れた金属材料の表裏面に電気伝導性に優れた材料
がコーティングされ、かつ、その表裏面にはそれぞれ多
数の突起が適当な間隔を配して設けられ、前記突起は前
記燃料電池スタックにおいて前記燃料電池セル面に接す
るように設けられてなり、前記燃料ガス流路溝および前
記酸化剤ガス流路溝が、それぞれ、前記セパレータと前
記燃料電池セルとの間において前記突起間に連通形成さ
れることを特徴とする。To achieve these objects, the present invention provides
Used in a fuel cell stack in which a plurality of fuel cells having electrodes arranged on both sides of a solid electrolyte are stacked, and used by being inserted between the fuel cells, and one fuel cell is fueled to one fuel cell adjacent to one side. A fuel cell separator having a fuel gas flow channel for supplying gas, and an oxidant gas flow channel for supplying an oxidant gas to the other fuel cell adjacent to the other side surface. Therefore, the front and back surfaces of a metal material excellent in workability are coated with a material having excellent electrical conductivity, and a large number of projections are provided on the front and back surfaces at appropriate intervals. The fuel cell stack is provided so as to be in contact with the fuel cell surface, and the fuel gas flow channel and the oxidant gas flow channel are respectively the separator and the fuel cell. Characterized in that it is communicating formed between the projection between.
【0015】[0015]
【作用】セパレータに開口形成される燃料ガス供給用ガ
スマニホールド装填口に装填されるガスマニホールドか
ら供給される燃料ガスは、セパレータの一方の側におい
て、セパレータと燃料電池セルとの間においてセパレー
タ面の突起間に連通形成される燃料ガス流路溝を通っ
て、セパレータの反対側に同様に開口形成燃料ガス排出
用ガスマニホールド装填口に装填されるガスマニホール
ド内に排出される。酸化剤ガスは、セパレータの他方の
側において、同様にして、酸化剤供給ガスマニホールド
から、セパレータ面の突起間に連通形成される酸化剤ガ
ス流路溝を通って、酸化剤排出ガスマニホールド内に排
出される。The fuel gas supplied from the gas manifold loaded in the fuel gas supply gas manifold charging port formed in the separator has a surface of the separator between the separator and the fuel cell on one side of the separator. It is discharged through a fuel gas passage groove formed so as to communicate between the protrusions into a gas manifold that is also installed in the opening-forming fuel gas discharge gas manifold charging port on the opposite side of the separator. On the other side of the separator, the oxidant gas similarly flows from the oxidant supply gas manifold into the oxidant exhaust gas manifold through the oxidant gas flow channel groove formed to communicate between the protrusions on the separator surface. Is discharged.
【0016】[0016]
【実施例】以下図1ないし図4を参照して本発明の一実
施例による燃料電池用セパレータの構成を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of a fuel cell separator according to an embodiment of the present invention will be described below with reference to FIGS.
【0017】このセパレータは、セパレータ板20と、
フェノール樹脂等の樹脂絶縁材料よりなる一対のセパレ
ータ枠部材30aおよび30bを接合してなるセパレー
タ枠30とから構成される。セパレータ板20は、セパ
レータ枠部材30aおよび30bの間に挟持固定され
る。This separator includes a separator plate 20 and
The separator frame 30 is formed by joining a pair of separator frame members 30a and 30b made of a resin insulating material such as phenol resin. The separator plate 20 is sandwiched and fixed between the separator frame members 30a and 30b.
【0018】図1を参照して、セパレータ板20は、エ
ンボス加工ないしディンプル加工が容易な金属材料、よ
り具体的にはSUS、冷間圧延材、Al等を基材とし、
その表裏面に電気伝導性が良好なガス不透過性材料、た
とえば緻密カーボングラファイトを含浸、溶射、電着、
スパッタリング等の適宜手法によりコーティングし、こ
れにエンボス加工ないしディンプル加工を施してその表
裏面に数ミリ間隔で多数の突起21、22を形成したも
のである。突起21、22の頂上までの高さは、燃料電
池スタックを構成したときに、突起の頂上が燃料電池単
セル10に密接するように設定されている(図3)。Referring to FIG. 1, the separator plate 20 is made of a metal material that is easily embossed or dimpled, more specifically, SUS, cold rolled material, Al, etc.
A gas impermeable material with good electric conductivity on the front and back surfaces, for example, impregnated with dense carbon graphite, thermal spraying, electrodeposition,
The coating is carried out by an appropriate technique such as sputtering, and then embossing or dimple processing is applied to form a large number of projections 21 and 22 on the front and back surfaces thereof at intervals of several millimeters. The heights of the protrusions 21 and 22 to the tops are set so that the tops of the protrusions are in close contact with the fuel cell unit cell 10 when the fuel cell stack is constructed (FIG. 3).
【0019】なお、ガス不透過性材料を基板表裏面にコ
ーティングした後にエンボス加工ないしディンプル加工
を施しても良く、反対に、基板表裏面にエンボス加工な
いしディンプル加工を施して突起21、22を形成した
後にガス不透過性材料のコーティングを行っても良い。The gas impermeable material may be coated on the front and back surfaces of the substrate and then embossed or dimpled. Conversely, the front and back surfaces of the substrate may be embossed or dimpled to form the protrusions 21 and 22. After that, the gas impermeable material may be coated.
【0020】突起21、22が形成された領域の外側四
周にはそれぞれガスマニホールドを装填するためのマニ
ホールド装填口23が貫通形成される。また、四角には
スタック固定用のボルトまたはタイロッドを貫通させる
ための貫通孔24が貫通形成される。Manifold loading ports 23 for loading a gas manifold are formed through the outer four rims of the regions where the protrusions 21 and 22 are formed. Further, a through hole 24 for penetrating a bolt or a tie rod for fixing the stack is formed through the square.
【0021】セパレータ枠30は、同一構成のセパレー
タ枠部材30aおよび30bを接合することによって形
成される。各々の接合部分にはあらかじめシール剤が塗
布される。The separator frame 30 is formed by joining separator frame members 30a and 30b having the same structure. A sealant is applied to each joint in advance.
【0022】セパレータ枠部材30a(30b)の構成
が図2に示されている。セパレータ枠部材30aの中央
には開口31が貫通形成される。中央開口31の外側四
周にはそれぞれガスマニホールドを装填するためのマニ
ホールド装填口32が貫通形成され、四角にはスタック
固定用のボルトまたはタイロッドを貫通させるための貫
通孔33が形成される。これらは、セパレータ板20に
おけるマニホールド装填口23、貫通孔24とそれぞれ
整列するように設けられている。The structure of the separator frame member 30a (30b) is shown in FIG. An opening 31 is formed through the center of the separator frame member 30a. Manifold loading ports 32 for loading the gas manifolds are formed through the four outer circumferences of the central opening 31, and through holes 33 for passing the stack fixing bolts or tie rods are formed in the squares. These are provided so as to be aligned with the manifold loading port 23 and the through hole 24 in the separator plate 20, respectively.
【0023】セパレータ枠部材30aの下面側におい
て、多数のガス流路孔34が対向して設けられる。これ
らガス流路孔34は、その両端において、マニホールド
装填口32、32および中央開口31にそれぞれ開口し
ている。On the lower surface side of the separator frame member 30a, a large number of gas passage holes 34 are provided so as to face each other. These gas flow passage holes 34 are open at the manifold loading ports 32, 32 and the central opening 31, respectively, at both ends thereof.
【0024】上記のように構成されたセパレータ枠部材
30aおよび30bを、90度向きを変えて直交状態と
して、それぞれ図2に示される上面を向かい合わせに
し、これらセパレータ枠部材30aおよび30bの間に
セパレータ板20を挟んで互いに接合させることによっ
て、本実施例のセパレータが構成される。The separator frame members 30a and 30b configured as described above are turned 90 degrees to be orthogonal to each other, and the upper surfaces shown in FIG. 2 are faced to each other, and the separator frame members 30a and 30b are placed between them. The separator of this embodiment is constructed by sandwiching the separator plates 20 and joining them together.
【0025】このようなセパレータを用いて、2つの単
セル10、10をそれぞれセパレータ間に挟持して2セ
ルの燃料電池スタックを構成した場合の一方向の断面図
が図3に示される。各燃料電池単セル10は、固体高分
子電解質膜11の両面にガス拡散電極12、12をホッ
トプレス等の手段により接合してなる。各セパレータ間
において、燃料電池単セル10における電解質膜11の
端部は、セパレータ枠部材30aおよび30bの間に挟
持され、エポキシ樹脂等の熱硬化性樹脂によるシール剤
36により接着固定されている。FIG. 3 shows a unidirectional sectional view of a case where a two-cell fuel cell stack is constructed by sandwiching two single cells 10, 10 between the separators using such a separator. Each fuel cell unit cell 10 is formed by joining gas diffusion electrodes 12, 12 to both sides of a solid polymer electrolyte membrane 11 by means such as hot pressing. Between the separators, the end portion of the electrolyte membrane 11 in the fuel cell unit cell 10 is sandwiched between the separator frame members 30a and 30b, and is adhesively fixed by a sealant 36 made of a thermosetting resin such as epoxy resin.
【0026】図3において符号37は、燃料ガス導入マ
ニホールド(図示せず)のための装填領域を示し、セパ
レータ板20およびセパレータ枠部材30a、30bに
形成された各マニホールド装填口23、32の各一つが
整列して該マニホールド装填領域37をなしている。燃
料ガス導入マニホールドに導入された燃料ガスは、マニ
ホールド装填口37から上側のセパレータ枠部材30a
の下面側に設けられたガス流路孔34を通り、さらに、
セパレータ板20の上面と単セル10の下面との間にお
いてセパレータ板上面に形成された多数の突起21間に
連続して形成されている空間領域38を通って矢印方向
に流れ、反対側のマニホールド装填口に装填される燃料
ガス排出マニホールド(図示せず)に排出される。In FIG. 3, reference numeral 37 indicates a loading area for a fuel gas introduction manifold (not shown), and each of the manifold loading ports 23, 32 formed in the separator plate 20 and the separator frame members 30a, 30b. One is aligned to form the manifold loading area 37. The fuel gas introduced into the fuel gas introduction manifold is supplied from the manifold loading port 37 to the upper separator frame member 30a.
Through the gas passage hole 34 provided on the lower surface side of
Between the upper surface of the separator plate 20 and the lower surface of the unit cell 10, a flow is made in the arrow direction through a space region 38 formed continuously between a large number of protrusions 21 formed on the upper surface of the separator plate, and the manifold on the opposite side. The fuel gas is discharged to a fuel gas discharge manifold (not shown) loaded in the loading port.
【0027】上記燃料電池スタックの図3とは直交する
方向の断面図が図4に示される。図4において符号39
は、酸化剤ガス導入マニホールド(図示せず)のための
装填領域を示す。酸化剤ガス導入マニホールドに導入さ
れた酸化剤ガスは、マニホールド装填口39から下側の
セパレータ枠部材30bの上面側に設けられたガス流路
孔35を通り、さらに、セパレータ板20と単セル10
との間において多数の突起22間に連続して形成されて
いる空間領域40を通って矢印方向に流れ、反対側のマ
ニホールド装填口に装填される酸化剤ガス排出マニホー
ルド(図示せず)に排出される。FIG. 4 is a sectional view of the fuel cell stack in a direction orthogonal to FIG. Reference numeral 39 in FIG.
Shows a loading area for an oxidant gas introduction manifold (not shown). The oxidant gas introduced into the oxidant gas introduction manifold passes from the manifold loading port 39 through the gas passage hole 35 provided on the upper surface side of the lower separator frame member 30b, and further, the separator plate 20 and the unit cell 10 are connected.
Through a space region 40 formed continuously between the plurality of projections 22 and in the direction of the arrow, and is discharged to an oxidant gas discharge manifold (not shown) loaded in the manifold loading port on the opposite side. To be done.
【0028】[0028]
【発明の効果】本発明によれば、エンボス加工ないしデ
ィンプル加工が容易な金属材料の表裏面に電気伝導性に
優れたガス不透過性材料をコーティングしたものをセパ
レータとして用い、この表裏面にエンボス加工ないしデ
ィンプル加工を施して突起を多数形成して反応ガス流路
溝としたので、反応ガス流路溝の加工が容易であり、セ
パレータを低コストにて量産することが可能である。According to the present invention, a metal material which is easily embossed or dimpled and coated with a gas impermeable material having excellent electric conductivity is used as a separator. Since many protrusions are formed by processing or dimple processing to form the reaction gas flow channel groove, the reaction gas flow channel groove can be easily processed and the separator can be mass-produced at low cost.
【0029】また、従来の平行溝からなる反応ガス流路
溝では得られなかった乱流効果により反応ガス供給効率
が向上し、酸化剤極における生成水の滞留も解消するこ
とができる。Further, the reaction gas supply efficiency is improved by the turbulent flow effect which was not obtained in the conventional reaction gas flow passage groove formed of parallel grooves, and the retention of the produced water at the oxidizer electrode can be eliminated.
【0030】さらには、従来の緻密カーボングラファイ
トによるセパレータの厚み5.3mmを本発明によれば
たとえば0.5mm程度にまで薄くすることが可能であ
る。このため、多数の燃料電池セルとセパレータとが積
層されてなる燃料電池スタックにおいては大幅な小型軽
量化が実現される。Furthermore, according to the present invention, it is possible to reduce the thickness of the conventional dense carbon graphite separator of 5.3 mm to about 0.5 mm. Therefore, in a fuel cell stack in which a large number of fuel cells and separators are stacked, a significant reduction in size and weight is realized.
【図1】本発明の一実施例による燃料電池用セパレータ
に用いられるセパレータ板の上面図である。FIG. 1 is a top view of a separator plate used in a fuel cell separator according to an embodiment of the present invention.
【図2】セパレータ枠部材の上面図である。FIG. 2 is a top view of a separator frame member.
【図3】図1のセパレータ板を図2のセパレータ枠部材
で上下から挟んで構成されるセパレータを用いて得られ
る2セル燃料電池スタックを示す断面図である。3 is a cross-sectional view showing a 2-cell fuel cell stack obtained by using a separator configured by sandwiching the separator plate of FIG. 1 between the separator frame members of FIG. 2 from above and below.
【図4】図3の2セル燃料電池スタックを図3とは直交
する方向から見た断面図である。4 is a cross-sectional view of the two-cell fuel cell stack of FIG. 3 viewed from a direction orthogonal to FIG.
【図5】従来技術による2セル燃料電池スタックの上面
図である。FIG. 5 is a top view of a 2-cell fuel cell stack according to the prior art.
【図6】図5中A−A線による断面図である。6 is a cross-sectional view taken along the line AA in FIG.
【図7】図5中B−B線による断面図である。FIG. 7 is a sectional view taken along line BB in FIG.
10 燃料電池単セル 20 セパレータ板 21、22 突起 30 セパレータ枠 30a、30b セパレータ枠部材 23、32 ガスマニホールド装填口 34 燃料ガス流路孔 35 酸化剤ガス流路孔 37 燃料ガス導入マニホールド装填領域 38 燃料ガス流路 39 酸化剤ガス導入マニホールド装填領域 40 酸化剤ガス流路 10 Fuel Cell Single Cell 20 Separator Plate 21, 22 Protrusion 30 Separator Frame 30a, 30b Separator Frame Member 23, 32 Gas Manifold Loading Port 34 Fuel Gas Channel Hole 35 Oxidant Gas Channel Hole 37 Fuel Gas Introduction Manifold Loading Area 38 Fuel Gas channel 39 Oxidizing gas introduction manifold loading area 40 Oxidizing gas channel
Claims (2)
電池セルが複数積層されてなる燃料電池スタックにおい
て前記燃料電池セルの間に介挿されて用いられ、一方の
側面には隣接する一方の燃料電池セルに燃料ガスを供給
するための燃料ガス流路溝を備えると共に、他方の側面
には隣接する他方の燃料電池セルに酸化剤ガスを供給す
るための酸化剤ガス流路溝を備えた燃料電池用セパレー
タであって、加工性に優れた金属材料の表裏面に電気伝
導性に優れた材料がコーティングされ、かつ、その表裏
面にはそれぞれ多数の突起が適当な間隔を配して設けら
れ、前記突起は前記燃料電池スタックにおいて前記燃料
電池セル面に接するように設けられてなり、前記燃料ガ
ス流路溝および前記酸化剤ガス流路溝が、それぞれ、前
記セパレータと前記燃料電池セルとの間において前記突
起間に連通形成されることを特徴とする燃料電池用セパ
レータ。1. A fuel cell stack in which a plurality of fuel cells having electrodes arranged on both sides of a solid electrolyte are stacked and used by being inserted between the fuel cells, and one side surface of one of the adjacent fuel cells is used. A fuel gas flow channel for supplying a fuel gas to the fuel cell was provided, and an oxidant gas flow channel for supplying an oxidant gas to the other adjacent fuel cell was provided on the other side surface. A fuel cell separator, in which the front and back surfaces of a metal material with excellent workability are coated with a material with excellent electrical conductivity, and a large number of protrusions are provided on the front and back surfaces at appropriate intervals. The protrusion is provided so as to be in contact with the fuel cell surface in the fuel cell stack, and the fuel gas flow channel and the oxidant gas flow channel are respectively provided in the fuel cell stack and the fuel cell stack. A fuel cell separator, characterized in that the fuel cell separator is formed so as to communicate with the fuel cell.
された2つのセパレータ枠部材から構成され、前記セパ
レータ板の周縁部が前記各セパレータ枠部材間に挟持さ
れて一体的に接合されてなることを特徴とする請求項1
の燃料電池用セパレータ。2. The separator frame is composed of two separator frame members divided into two in the thickness direction, and a peripheral edge portion of the separator plate is sandwiched between the separator frame members and integrally joined. Claim 1 characterized by the above-mentioned.
Fuel cell separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7047886A JPH08222237A (en) | 1995-02-14 | 1995-02-14 | Separator for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7047886A JPH08222237A (en) | 1995-02-14 | 1995-02-14 | Separator for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08222237A true JPH08222237A (en) | 1996-08-30 |
Family
ID=12787888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7047886A Pending JPH08222237A (en) | 1995-02-14 | 1995-02-14 | Separator for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08222237A (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10241709A (en) * | 1997-02-28 | 1998-09-11 | Aisin Takaoka Ltd | Solid macromolecular film type fuel cell and separator for the same |
EP0951086A2 (en) * | 1998-04-17 | 1999-10-20 | Matsushita Electric Industrial Co., Ltd. | Solid polymer electrolyte fuel cell and method for producing the same |
JP2000012050A (en) * | 1998-06-18 | 2000-01-14 | Toyota Motor Corp | Gas separator device and fuel cell using the same |
JP2000133282A (en) * | 1998-10-21 | 2000-05-12 | Ishikawajima Harima Heavy Ind Co Ltd | Separator for solid polymer electrolyte fuel cell |
WO2001028020A1 (en) * | 1999-10-08 | 2001-04-19 | Alliedsignal Inc. | Corrosion resistant coated fuel cell bipolar plate with graphite protective barrier and method of making the same |
WO2002025765A2 (en) * | 2000-09-23 | 2002-03-28 | Daimlerchrysler Ag | Fuel cell stack |
US6383678B1 (en) | 1998-12-21 | 2002-05-07 | Toyota Jidosha Kabushiki Kaisha | Separator for fuel cell and a method for producing the separator |
EP1220347A2 (en) * | 2000-12-27 | 2002-07-03 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell stack |
EP1235288A1 (en) * | 1999-09-17 | 2002-08-28 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
US6444346B1 (en) | 1998-07-21 | 2002-09-03 | Matsushita Electric Industrial Co., Ltd. | Fuel cells stack |
JP2002252004A (en) * | 2001-02-15 | 2002-09-06 | Asia Pacific Fuel Cell Technology Ltd | Bipolar board for fuel cell |
EP1248314A2 (en) * | 2001-04-07 | 2002-10-09 | DaimlerChrysler AG | Stack of electrochemical cells |
US6490778B1 (en) | 1998-08-03 | 2002-12-10 | Toyota Jidosha Kabushiki Kaisha | Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate |
JP2002367624A (en) * | 2001-06-12 | 2002-12-20 | Honda Motor Co Ltd | Fuel cell |
WO2002069426A3 (en) * | 2001-02-27 | 2004-02-26 | Du Pont | Fluid flow field plates for electrochemical devices |
US7022430B2 (en) | 2002-01-07 | 2006-04-04 | Honda Giken Kogyo Kabushiki Kaisha | Compact fuel cell with improved fluid supply |
JP2006107862A (en) * | 2004-10-04 | 2006-04-20 | Toyota Motor Corp | Sealing structure of fuel cell |
JP2006120655A (en) * | 2006-02-01 | 2006-05-11 | Toyota Motor Corp | Separator for fuel cell |
WO2006054399A1 (en) * | 2004-11-17 | 2006-05-26 | Nissan Motor Co., Ltd. | Fuel cell separator |
US7097931B2 (en) | 2002-02-27 | 2006-08-29 | E. I. Du Pont De Nemours And Company | Fluid flow-fields for electrochemical devices |
US7205061B2 (en) | 2000-02-08 | 2007-04-17 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
CN1316666C (en) * | 2002-10-04 | 2007-05-16 | 燃料电池能有限公司 | Flexible fuel cell gas manifold system |
JP2008192606A (en) * | 2007-01-09 | 2008-08-21 | Soc D Technologie Michelin | Flexible graphite/metal distribution plate for fuel cell assembly |
US7572537B2 (en) | 1997-12-18 | 2009-08-11 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and separator for the same |
US7618735B2 (en) | 2002-10-28 | 2009-11-17 | Honda Motor Co., Ltd. | Fuel cell with triangular buffers |
US7745062B2 (en) | 2002-10-28 | 2010-06-29 | Honda Motor Co., Ltd. | Fuel cell having coolant inlet and outlet buffers on a first and second side |
US7758991B2 (en) * | 2006-11-09 | 2010-07-20 | Honda Motor Co., Ltd. | Fuel cell |
US7846613B2 (en) | 2003-12-22 | 2010-12-07 | Honda Motor Co., Ltd. | Fuel cell with separator having a ridge member |
US7951508B2 (en) | 2003-12-25 | 2011-05-31 | Honda Motor Co., Ltd. | Fuel cell |
WO2012053288A1 (en) | 2010-10-20 | 2012-04-26 | 本田技研工業株式会社 | Fuel cell |
US8304140B2 (en) | 2009-06-12 | 2012-11-06 | Honda Motor Co., Ltd. | Fuel cell separator comprising overlapping bosses and guide ridges |
US8399151B2 (en) | 2009-06-05 | 2013-03-19 | Honda Motor Co., Ltd. | Fuel cell with buffer-defined flow fields |
US8465880B2 (en) | 2008-06-27 | 2013-06-18 | Honda Motor Co., Ltd. | Fuel cell stack |
US8993190B2 (en) | 2011-04-20 | 2015-03-31 | Honda Motor Co., Ltd. | Fuel cell unit and fuel cell |
JP2015207505A (en) * | 2014-04-23 | 2015-11-19 | トヨタ自動車株式会社 | fuel cell |
US9225032B2 (en) | 2011-01-12 | 2015-12-29 | Honda Motor Co., Ltd. | Fuel cell |
US9590254B2 (en) | 2008-08-27 | 2017-03-07 | Honda Motor Co., Ltd. | Fuel cell stack |
JP2020136258A (en) * | 2019-02-14 | 2020-08-31 | 國立臺北科技大學 | Manufacturing method of modular flat connecting plate, assembly of modular flat connecting plate including modular flat connecting plate, and stamping assembly for manufacturing modular flat connecting plate |
-
1995
- 1995-02-14 JP JP7047886A patent/JPH08222237A/en active Pending
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10241709A (en) * | 1997-02-28 | 1998-09-11 | Aisin Takaoka Ltd | Solid macromolecular film type fuel cell and separator for the same |
US7572537B2 (en) | 1997-12-18 | 2009-08-11 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and separator for the same |
EP0951086A2 (en) * | 1998-04-17 | 1999-10-20 | Matsushita Electric Industrial Co., Ltd. | Solid polymer electrolyte fuel cell and method for producing the same |
EP0951086A3 (en) * | 1998-04-17 | 2001-10-17 | Matsushita Electric Industrial Co., Ltd. | Solid polymer electrolyte fuel cell and method for producing the same |
EP1484813A3 (en) * | 1998-04-17 | 2008-10-08 | Matsushita Electric Industrial Co., Ltd. | Solid polymer electrolyte fuel cell and method for producing the same |
US6372373B1 (en) | 1998-04-17 | 2002-04-16 | Matsushita Electric Industrial Co., Ltd. | Solid polymer electrolyte fuel cell and method for producing the same |
JP2000012050A (en) * | 1998-06-18 | 2000-01-14 | Toyota Motor Corp | Gas separator device and fuel cell using the same |
US6444346B1 (en) | 1998-07-21 | 2002-09-03 | Matsushita Electric Industrial Co., Ltd. | Fuel cells stack |
US6490778B1 (en) | 1998-08-03 | 2002-12-10 | Toyota Jidosha Kabushiki Kaisha | Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate |
US6833214B2 (en) | 1998-08-03 | 2004-12-21 | Toyota Jidosha Kabushiki Kaisha | Multiple uneven plate and separator using multiple uneven plate |
JP2000133282A (en) * | 1998-10-21 | 2000-05-12 | Ishikawajima Harima Heavy Ind Co Ltd | Separator for solid polymer electrolyte fuel cell |
US6383678B1 (en) | 1998-12-21 | 2002-05-07 | Toyota Jidosha Kabushiki Kaisha | Separator for fuel cell and a method for producing the separator |
EP1235288A1 (en) * | 1999-09-17 | 2002-08-28 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
EP1235288A4 (en) * | 1999-09-17 | 2006-12-06 | Matsushita Electric Ind Co Ltd | Polymer electrolyte fuel cell |
WO2001028020A1 (en) * | 1999-10-08 | 2001-04-19 | Alliedsignal Inc. | Corrosion resistant coated fuel cell bipolar plate with graphite protective barrier and method of making the same |
US6864007B1 (en) | 1999-10-08 | 2005-03-08 | Hybrid Power Generation Systems, Llc | Corrosion resistant coated fuel cell plate with graphite protective barrier and method of making the same |
US7205061B2 (en) | 2000-02-08 | 2007-04-17 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
WO2002025765A2 (en) * | 2000-09-23 | 2002-03-28 | Daimlerchrysler Ag | Fuel cell stack |
WO2002025765A3 (en) * | 2000-09-23 | 2003-01-03 | Daimler Chrysler Ag | Fuel cell stack |
EP1220347A3 (en) * | 2000-12-27 | 2004-05-12 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell stack |
EP1220347A2 (en) * | 2000-12-27 | 2002-07-03 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell stack |
US7521143B2 (en) | 2000-12-27 | 2009-04-21 | Panasonic Corporation | Polymer electrolyte fuel cell |
JP2002252004A (en) * | 2001-02-15 | 2002-09-06 | Asia Pacific Fuel Cell Technology Ltd | Bipolar board for fuel cell |
WO2002069426A3 (en) * | 2001-02-27 | 2004-02-26 | Du Pont | Fluid flow field plates for electrochemical devices |
EP1248314A3 (en) * | 2001-04-07 | 2004-01-02 | Ballard Power Systems Inc. | Stack of electrochemical cells |
EP1248314A2 (en) * | 2001-04-07 | 2002-10-09 | DaimlerChrysler AG | Stack of electrochemical cells |
JP2002367624A (en) * | 2001-06-12 | 2002-12-20 | Honda Motor Co Ltd | Fuel cell |
US7022430B2 (en) | 2002-01-07 | 2006-04-04 | Honda Giken Kogyo Kabushiki Kaisha | Compact fuel cell with improved fluid supply |
DE10300068B4 (en) * | 2002-01-07 | 2009-04-09 | Honda Giken Kogyo K.K. | fuel cell |
US7097931B2 (en) | 2002-02-27 | 2006-08-29 | E. I. Du Pont De Nemours And Company | Fluid flow-fields for electrochemical devices |
CN1316666C (en) * | 2002-10-04 | 2007-05-16 | 燃料电池能有限公司 | Flexible fuel cell gas manifold system |
US7618735B2 (en) | 2002-10-28 | 2009-11-17 | Honda Motor Co., Ltd. | Fuel cell with triangular buffers |
US7867666B2 (en) | 2002-10-28 | 2011-01-11 | Honda Motor Co., Ltd. | Fuel cell with triangular buffers for reactant gas and coolant |
US7745062B2 (en) | 2002-10-28 | 2010-06-29 | Honda Motor Co., Ltd. | Fuel cell having coolant inlet and outlet buffers on a first and second side |
US7846613B2 (en) | 2003-12-22 | 2010-12-07 | Honda Motor Co., Ltd. | Fuel cell with separator having a ridge member |
US7951508B2 (en) | 2003-12-25 | 2011-05-31 | Honda Motor Co., Ltd. | Fuel cell |
JP2006107862A (en) * | 2004-10-04 | 2006-04-20 | Toyota Motor Corp | Sealing structure of fuel cell |
JP4595476B2 (en) * | 2004-10-04 | 2010-12-08 | トヨタ自動車株式会社 | Fuel cell |
WO2006054399A1 (en) * | 2004-11-17 | 2006-05-26 | Nissan Motor Co., Ltd. | Fuel cell separator |
JP4569483B2 (en) * | 2006-02-01 | 2010-10-27 | トヨタ自動車株式会社 | Fuel cell separator |
JP2006120655A (en) * | 2006-02-01 | 2006-05-11 | Toyota Motor Corp | Separator for fuel cell |
US7758991B2 (en) * | 2006-11-09 | 2010-07-20 | Honda Motor Co., Ltd. | Fuel cell |
JP2015092501A (en) * | 2007-01-09 | 2015-05-14 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Fluid distribution plate for fuel cell assembly |
JP2008192606A (en) * | 2007-01-09 | 2008-08-21 | Soc D Technologie Michelin | Flexible graphite/metal distribution plate for fuel cell assembly |
US8465880B2 (en) | 2008-06-27 | 2013-06-18 | Honda Motor Co., Ltd. | Fuel cell stack |
US9590254B2 (en) | 2008-08-27 | 2017-03-07 | Honda Motor Co., Ltd. | Fuel cell stack |
US8399151B2 (en) | 2009-06-05 | 2013-03-19 | Honda Motor Co., Ltd. | Fuel cell with buffer-defined flow fields |
US8304140B2 (en) | 2009-06-12 | 2012-11-06 | Honda Motor Co., Ltd. | Fuel cell separator comprising overlapping bosses and guide ridges |
WO2012053288A1 (en) | 2010-10-20 | 2012-04-26 | 本田技研工業株式会社 | Fuel cell |
US9660276B2 (en) | 2010-10-20 | 2017-05-23 | Honda Motor Co., Ltd. | Fuel cell including separator with outer ends placed inward of fluid passages formed in frame |
US9225032B2 (en) | 2011-01-12 | 2015-12-29 | Honda Motor Co., Ltd. | Fuel cell |
US8993190B2 (en) | 2011-04-20 | 2015-03-31 | Honda Motor Co., Ltd. | Fuel cell unit and fuel cell |
JP2015207505A (en) * | 2014-04-23 | 2015-11-19 | トヨタ自動車株式会社 | fuel cell |
JP2020136258A (en) * | 2019-02-14 | 2020-08-31 | 國立臺北科技大學 | Manufacturing method of modular flat connecting plate, assembly of modular flat connecting plate including modular flat connecting plate, and stamping assembly for manufacturing modular flat connecting plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08222237A (en) | Separator for fuel cell | |
US6858338B2 (en) | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell | |
US8039162B2 (en) | Unit cell for solid polymer electrolyte fuel cell | |
JP5234446B2 (en) | Structure to improve stackability of metal separator for fuel cell stack | |
US6413664B1 (en) | Fuel cell separator plate with discrete fluid distribution features | |
US6777127B2 (en) | Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies | |
US7081316B2 (en) | Bipolar plate assembly having transverse legs | |
US7569301B2 (en) | Fuel cell | |
CA2594530C (en) | Fuel cell separator | |
JPH06290795A (en) | Separator for fuel cell | |
US8221930B2 (en) | Bipolar separators with improved fluid distribution | |
EP0460629B1 (en) | Solid oxide fuel cell | |
JP3594345B2 (en) | Fuel cell separator | |
CA2490669C (en) | Fuel cell | |
EP2054965B1 (en) | Bipolar separators with improved fluid distribution | |
JP2000323149A (en) | Separator for fuel cell and manufacturing device thereof | |
JP4109569B2 (en) | Fuel cell | |
JP2000012053A (en) | Solid high-polymer electrolyte-type fuel cell | |
GB2380853A (en) | Fuel cell or electrolyser construction | |
JP2000315507A (en) | Solid highpolymer fuel cell | |
JP2000067885A (en) | Fuel cell | |
JP3496819B2 (en) | Polymer electrolyte fuel cell | |
JPH0414854Y2 (en) | ||
JPH0727564Y2 (en) | Fuel cell | |
JP2006210212A (en) | Polymer electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |