JPS58155669A - Reaction-gas supplying and exhausting device provided in fuel cell - Google Patents

Reaction-gas supplying and exhausting device provided in fuel cell

Info

Publication number
JPS58155669A
JPS58155669A JP57038362A JP3836282A JPS58155669A JP S58155669 A JPS58155669 A JP S58155669A JP 57038362 A JP57038362 A JP 57038362A JP 3836282 A JP3836282 A JP 3836282A JP S58155669 A JPS58155669 A JP S58155669A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
gas
air
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57038362A
Other languages
Japanese (ja)
Other versions
JPS6240831B2 (en
Inventor
Kiyoshi Kamitsuji
清 上辻
Atsuo Watanabe
敦夫 渡辺
Takeshi Yasuhara
安原 毅
Tomoyoshi Kamoshita
友義 鴨下
Hiroyuki Tajima
田島 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP57038362A priority Critical patent/JPS58155669A/en
Publication of JPS58155669A publication Critical patent/JPS58155669A/en
Publication of JPS6240831B2 publication Critical patent/JPS6240831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a fuel cell which has a simple structure and can be easily assembled without using any manifolds by making a fuel gas to be supplied and exhausted through a path which penetrates the stack of the fuel cell in such a manner that it is not connected to any air supply grooves. CONSTITUTION:Since the internal space of a case 1 is divided into two spaces by means of partitioning members 10a and 10b (more strictly, by a stack 2 and a heat-insulating material 13 as well), an air gas flows from an air-supply hole 14, which opens into one of the above two spaces, through the air supply grooves 9 of the bipolar plates 4 of the stack 2, and is sent into an air exhaust hole 15 which opens into the other space. On the other hand, a fuel gas is sent into the fuel-gas supply grooves of each bipolar plate 4 from a fuel- gas supply hole 16 through a penetrating hole provided inside the stack 2, and finally, sent back to a fuel-gas exhaust hole 17 after passing from the exhaust hole 18 of a terminal plate 8 through a tube 19.

Description

【発明の詳細な説明】 本発明は燃料ガスと酸化剤ガス(一般には空気ガスが用
いられるので以下空気ガスと称す)とを反応ガスとして
発電を行う燃料電池、とくに空気ガスと燃料ガスとを供
給する溝を異なる面に互いに非連通状態で直交するよう
配設してなるバイポーラプレートならびに該バイボ〜ラ
ブレート間に挾持された燃料電極と電解液含浸マトリッ
クスと空気電極とからなる燃料電池セルを複数個積重ね
て燃料電池スタックとなし、これをケース内に載置して
なる燃料電池における反応ガスの給排装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell that generates electricity using a fuel gas and an oxidizing gas (hereinafter referred to as air gas because air gas is generally used) as a reaction gas. A plurality of bipolar plates each having supply grooves disposed on different surfaces so as to be perpendicular to each other in a non-communicating state, and a plurality of fuel cells each consisting of a fuel electrode, an electrolyte-impregnated matrix, and an air electrode sandwiched between the bipolar plate and the bipolar plate. The present invention relates to a reactant gas supply/discharge device for a fuel cell in which individual fuel cells are stacked to form a fuel cell stack and placed in a case.

従来のこの種の燃料電池においては、燃料ガス給排用と
空気ガス給排用のマニホルドを燃料電池スタックの側面
にパツキンを介して吻合させ1反応ガスの漏洩を極力防
止するためにスタック側面の平坦度を上げかつ弾力性に
富むゴムパツキンを使用するなどの措置を講じていたが
、マニホルドを用いると、反応ガスの各セルへの均等分
配、吻合位置合わせないしはシール機構に特別の工夫を
する必要があり、極力マニホルドの使用を避ける構造の
採用が望まれていた。
In conventional fuel cells of this type, the manifolds for fuel gas supply and discharge and air gas supply and discharge are anastomosed to the side of the fuel cell stack via gaskets. Measures were taken to improve flatness and use highly elastic rubber gaskets, but using a manifold requires special measures to distribute the reaction gas evenly to each cell, align the anastomosis, or seal the mechanism. Therefore, it was desired to adopt a structure that avoids the use of manifolds as much as possible.

そこで本発明は反応ガスの給排装置としてマニホルドを
使用せず、しかも簡単で組立容易な構造のものを提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a reaction gas supply/discharge device that does not use a manifold and has a simple structure that is easy to assemble.

この目的は、本発明によれば、冒頭に述べた様式の燃料
電池において、燃料電池スタックの9気ガス流路お平行
な側壁とケース内壁との間に空気の流通を実質的に阻止
する仕切部材を設けてケース内空間を部分し、空気ガス
を一方の空間から燃料電池スタックの各バイポーラプレ
ートの空気供給溝を通して他方の空間に送り込み、一方
、燃料しない位置において貫通する給排路を介して給排
するように構成することによって達成される。
This object, according to the invention, is to provide a fuel cell of the type mentioned at the outset with a partition that substantially prevents the flow of air between the parallel side walls of the nine gas flow channels of the fuel cell stack and the inner wall of the case. A member is provided to divide the interior space of the case, and air gas is sent from one space to the other space through the air supply groove of each bipolar plate of the fuel cell stack, while the air gas is sent through the supply and exhaust passage passing through the fuel cell stack at the non-fuel position. This is achieved by configuring the system to supply and discharge.

本発明の好適な実施態様によれば、上記仕切部材は燃料
電池スタックの側壁に設けた溝に喰い込むように配置す
るのがよく、かくすれば仕切部材が燃料電池スタックの
保持部材を兼用する効果が得られ名。
According to a preferred embodiment of the present invention, the partition member is preferably arranged so as to fit into a groove provided in the side wall of the fuel cell stack, so that the partition member also serves as a holding member for the fuel cell stack. The effect is obtained.

また本発明の他の好適な実施態様によれば、燃料電池ス
タックはその頂部とケース内壁との間に空気の流通を阻
止する断熱材を有するのがよく。
According to another preferred embodiment of the present invention, the fuel cell stack may include a heat insulating material that prevents air from flowing between the top of the fuel cell stack and the inner wall of the case.

かくすれば反応用の空気ガスの無駄な側路をなくすこと
ができる効果が得られる。
In this way, an effect can be obtained in which unnecessary bypass of reaction air gas can be eliminated.

本発明の他の特徴ないしは実施態様は以下に述べる本発
明の詳細な説明において明らカ1にする。
Other features and embodiments of the invention will become apparent in the detailed description of the invention that follows.

W、x図は本発明の実施例の一部切欠斜視図であり、本
発明の原理構造を説明するためのものである。
Figures W and X are partially cutaway perspective views of an embodiment of the present invention, and are for explaining the principle structure of the present invention.

第1図において、lはケースであり実施例ではほぼ直方
体の形状をなしている。ケースlはその内部の説明のた
めにノ\ツチングを付した部分で切り欠かれて示されて
いる。名は燃料電池スタック(以下単にスタックという
)で、ケースlの架台3の上に載置され、バイポーラプ
レート4とノ(イボ−2プレート間に挾持された燃料電
極、電解液含浸iトリックスおよび空気電極のサンドイ
ツチ体5とから成る燃料電池セル6を複数個種重ねたも
のから構成されている。より厳密に云えば燃料電池セル
はiつのバイポーラプレートの下面と上記サンドインチ
体と他のバイポーラプレートの上面とでセルとしての機
能を発揮することになる。
In FIG. 1, l indicates a case, which in the embodiment has a substantially rectangular parallelepiped shape. Case I is shown cut away at the notched portion for the purpose of explaining its interior. The name is a fuel cell stack (hereinafter simply referred to as a stack), which is placed on a pedestal 3 of a case 1, and includes a fuel electrode sandwiched between a bipolar plate 4 and a 2-plate, an electrolyte-impregnated i-trix, and an air It is composed of a plurality of stacked fuel cells 6 each consisting of a sandwich body 5 as an electrode.More strictly speaking, the fuel cell consists of the lower surface of i bipolar plates, the sandwich body 5, and another bipolar plate. It functions as a cell with the top surface of the cell.

燃料電池スタック7は最下部に絶縁板7を、頂部に端板
8を備えており1種重ねられた状態で端板8と架台7と
の間をボルト(図示せず)で固定するようになっている
。9はノ(イボ−ラブレートの上面に設けられた空気供
給溝で1図では簡単のために1枚につき4個の溝が示さ
れているが、実際には数多くの溝が設けられている。
The fuel cell stack 7 includes an insulating plate 7 at the bottom and an end plate 8 at the top, and the end plate 8 and the frame 7 are fixed with bolts (not shown) in a stacked state. It has become. Reference numeral 9 denotes air supply grooves provided on the upper surface of the plate. Although FIG. 1 shows four grooves per plate for simplicity, there are actually a large number of grooves.

10a、10bは本発明の特徴である仕切部材で、絶縁
材にて作られスタック名の空気ガス流路である空気供給
#$9と平行な側壁とケース内壁11との間に設けられ
ている。12はケースlに固着され仕切部材10aを保
持する断面コ字状の保持部材である。仕切部材1Obf
(N応する保持部材は図示されていない。13は断熱材
で、スタックlの頂部とケースlの上部内壁との間に充
填され、空気の流通を阻止する役割を果す。14は空気
ガス供給口、15は空気ガス排出口、16は燃料ガス供
給0.17は燃料ガス排出口である。
10a and 10b are partition members that are a feature of the present invention, and are made of an insulating material and are provided between the side wall parallel to the air supply #$9, which is the air gas flow path in the stack name, and the case inner wall 11. . Reference numeral 12 denotes a holding member having a U-shaped cross section, which is fixed to the case l and holds the partition member 10a. Partition member 1Obf
(A corresponding holding member is not shown. 13 is a heat insulating material, which is filled between the top of the stack l and the upper inner wall of the case l, and serves to prevent air flow. 14 is an air gas supply. 15 is an air gas discharge port, 16 is a fuel gas supply port, and 17 is a fuel gas discharge port.

第1図の構成から明らかなように、ケースlの内部空間
は仕切部材10a、lObにより(厳密にはさらにスタ
ックlと断熱材13により)二つの空間に部分されてい
るので、空気ガスは一方の空間に開口された空気供給口
14からスタックlのバイポーラプレート4の空気供給
溝9を通して他方の空間に開口された空気排出口15へ
送り込まれることになる。
As is clear from the configuration shown in FIG. 1, the internal space of the case l is divided into two spaces by the partition members 10a and lOb (more precisely, by the stack l and the heat insulating material 13), so air gas flows from one side to the other. The air is sent from the air supply port 14 opened to the other space through the air supply groove 9 of the bipolar plate 4 of the stack 1 to the air discharge port 15 opened to the other space.

一方、燃料ガスは燃料ガス供給口16からスタック内部
に設けられた買通孔を経て各バイポーラプレートの燃料
ガス供給溝に送られ、最終的には端板8の排出口18か
ら一部破断して示された管19を介して燃料ガス排出口
17へ戻される。
On the other hand, the fuel gas is sent from the fuel gas supply port 16 to the fuel gas supply groove of each bipolar plate through the through hole provided inside the stack, and is finally partially broken off from the discharge port 18 of the end plate 8. The fuel gas is returned to the fuel gas outlet 17 via a pipe 19 shown in FIG.

この燃料ガス給排機構は第2図に示すスタックの要部展
開図に現われている。
This fuel gas supply and discharge mechanism is shown in the exploded view of the main parts of the stack shown in FIG.

第2図において、第1図と同一の部分は同一の符号を付
しである。端板8には仕切部材10a、10bが喰い込
む$8a・8bと、保持部材12が入り込む$8c、8
dとが切られている。またノ(イボ−ラブレート4.4
ならびに絶縁板7には仕切部材lObが喰い込む#14
b、10bが切られている。ここでは仕切部材10aに
対する溝4a等は図示されていない。
In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. The end plate 8 has holes 8a and 8b into which the partition members 10a and 10b fit, and holes 8c and 8 into which the holding member 12 fits.
d is cut off. Mata no (Iborabrate 4.4
Also, the partition member lOb bites into the insulating plate 7 #14
b, 10b is cut off. The groove 4a and the like for the partition member 10a are not shown here.

21は燃料電極、22は電解液含浸マトリックス、23
は空気電極で、これらが二つのバイポーラプレート4.
4に挾持されて燃料電池セル6を形成する。
21 is a fuel electrode, 22 is an electrolyte-impregnated matrix, 23
are air electrodes and these are two bipolar plates 4.
4 to form a fuel cell 6.

24は集電板で、これに対応するものが端板8の下に絶
縁板を挾んで設けられるが1図では主として燃料ガスの
給排機構を説明するために図示を省略している。
Reference numeral 24 denotes a current collector plate, and a corresponding one is provided under the end plate 8 with an insulating plate interposed therebetween, but illustration thereof is omitted in FIG. 1 mainly to explain the fuel gas supply/discharge mechanism.

燃料ガスは第1図の燃料ガス供給口16から絶縁板7の
貫通孔7 c r集電板24の孔24C,バイポーラプ
レート4の貫通孔4Cのごとく、スタックとして組立て
られた場合に一つの貫通孔を形成する各孔部を通して送
り込まれ、各バイポーラプレート4の燃料ガス供給#I
25に導かれる。
The fuel gas is supplied from the fuel gas supply port 16 to the through hole 7 of the insulating plate 7 in FIG. The fuel gas supply #I of each bipolar plate 4 is fed through each hole forming a hole.
25.

第3図はバイポーラプレート4を第2図に示す位置(イ
)とこれの鏡儂位置(ロ)とに分けて示すもので、貫通
孔4cから燃料ガス供給#125に導かれた燃料ガスは
他端において非貫通孔26に到達し、Uターンして再び
他の燃料ガス供給#127を介して逆戻りし貫通孔4d
に到る。かかる燃料ガスの通流が各バイポーラプレート
毎に行なわれ、最終的には第2図の端板8の排出部8e
に集められて排出口18から第1図に一部を示す管19
を介して燃料ガス排出口17より排出される。
FIG. 3 shows the bipolar plate 4 in the position shown in FIG. At the other end, it reaches the non-penetrating hole 26, makes a U-turn, returns again via another fuel gas supply #127, and returns to the through-hole 4d.
reach. This flow of fuel gas is performed for each bipolar plate, and finally reaches the discharge portion 8e of the end plate 8 in FIG.
from the outlet 18 to the pipe 19, a portion of which is shown in FIG.
The fuel gas is discharged from the fuel gas outlet 17 through the fuel gas.

このように1本発明においては燃料ガスはスタックlの
内部を空気供給溝と連通しない位置で貫通する給排路を
介して給排するようにしているため、従来のようなwニ
ホルドによる給排が不要となり、また空気ガスは圧力損
失の少ないケース内部空間そのものを給排空間として活
用しているので、同様にマニホルドによる給排が不要と
なる利点を有する。
In this way, in the present invention, the fuel gas is supplied and discharged through the supply and discharge passage that penetrates the inside of the stack l at a position that does not communicate with the air supply groove, so that the fuel gas is supplied and discharged through the supply and discharge passage that does not communicate with the air supply groove. Moreover, since the internal space of the case itself, which has little pressure loss, is utilized as the air supply/discharge space, there is also the advantage that there is no need for supply/discharge using a manifold.

また組立にあたっても、ケースlの頂部を開口可能にし
ておいて、仕切板10a、 fobを案内板として絶縁
板7j集電板24・・の順に下から積上げていくだけで
容易にスタックを形成することができ、簡単で組立容易
な構造とすることができる。
In addition, when assembling, the top of the case l can be opened, and a stack can be easily formed by simply stacking the insulating plates 7j, current collecting plates 24, etc. from the bottom using the partition plate 10a and the fob as guide plates. This allows for a simple and easy-to-assemble structure.

また燃料電池は比較的高温状態で運転される必要がある
が、空気ガスの流通阻止用の断熱材13を設ける場合に
は発生熱の損失を少なくできる効果がある。
Further, although the fuel cell needs to be operated at a relatively high temperature, providing the heat insulating material 13 for blocking the flow of air gas has the effect of reducing the loss of generated heat.

なお1本発明の技術的思想の範囲内において5上述した
実施例は種々の変形が可能である。
Note that various modifications can be made to the embodiments described above within the scope of the technical idea of the present invention.

たとえば燃料ガスの供給路を#!3図では非貫通孔26
によりバイポーラプレート毎に閉ループで戻るように構
成しているが、これは貫通孔4Cのようにスタック内部
全体を貫通させるようにして全体としてUターン構成と
することも可能である。
For example, the fuel gas supply route #! In Figure 3, the non-through hole 26
Although the structure is such that each bipolar plate returns in a closed loop, it is also possible to make a U-turn structure as a whole by penetrating the entire inside of the stack like the through hole 4C.

また燃料ガスの供給路(」奉賀的にはスタック内部を貫
通する貫通孔によればよいから、図示構成と異なる流w
?構成とすることも本発明の範囲内である。
In addition, since the fuel gas supply path (in terms of fuel gas supply path) may be a through hole penetrating the inside of the stack, the flow differs from the illustrated configuration.
? It is also within the scope of the present invention to configure.

談た、仕切部材の構成も板状でなく奥行方向に幅を持っ
た部材を用いたりないしはケース内壁を内側に突出させ
て仕切作用を行なわせるなど種々の変形が可能である。
As mentioned above, various modifications can be made to the structure of the partition member, such as using a member having a width in the depth direction instead of a plate shape, or making the inner wall of the case protrude inward to perform a partitioning effect.

本発明は水素ガスと空気ガスとを用いたりん酸型の燃料
電池に用いて好適なるものであるが、W頭に述べた様式
の燃料電池であれば他の型のものにも適用可能である。
Although the present invention is suitable for use in phosphoric acid type fuel cells that use hydrogen gas and air gas, it is also applicable to other types of fuel cells as long as they are of the type described above. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の一部切欠斜視図5第2図はそ
の要部展開図、第3図(イ)、(ロ)はバイポーラプレ
ートの斜視図2よびその鏡面図である。 1・・ケース、2・・・燃料電池スタック、4・・・バ
イポーラプレート、6・・・燃料電池セル、 10a、
10b・・・T 1 目 7zi
FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention. FIG. 2 is a developed view of the main part thereof. FIGS. 3A and 3B are a perspective view 2 and a mirror view thereof of a bipolar plate. 1... Case, 2... Fuel cell stack, 4... Bipolar plate, 6... Fuel cell, 10a,
10b...T 1st 7zi

Claims (1)

【特許請求の範囲】 l)空気ガスと燃料ガスとを供給する溝を異なる面に互
いに非連通状態で直交するよう配設してなるバイポーラ
プレートならびに該バイポーラプレート間に挾持された
燃料電極と電解液含浸!トリックスと空気電極とからな
る燃料電池セルを豪数個種重ねて燃料電池スタックとな
し、これをケース内に載置してなる燃料電池において、
燃料電池スタックの9気ガス流路と平行な側壁とケース
内壁との間に、空気の流通を実質的に阻止する仕切部材
を設けてケース内空間を二分し、空気ガスを一方の空間
から燃料電池スタックの各バイポーラプレートの空気供
給溝を通して他方の空間に送り込み、一方、燃料ガスは
燃料電池スタック内部を空気供給溝と連通しない位置に
おいて貫通する給排路を介して給排するようにしたこと
を特徴とする燃料電池の反応ガス給排装置。 2、特許請求の範囲第1項記載の装置において、仕切部
材を燃料電池スタックの当I*側壁に設けた溝に喰い込
菫せて燃料電池スタックの保持部材と兼用させたことを
特徴とする燃料電池の反応ガス給排装置。 3)特許請求の範囲第1項記載の装置において、燃料電
池スタックはその頂部とケース内壁との間に空気の流通
を阻止する断熱材を有することを特徴とする燃料電池の
反応ガス給排装置。
[Claims] l) A bipolar plate in which grooves for supplying air gas and fuel gas are disposed on different surfaces so as to be perpendicular to each other in a non-communicating state, and a fuel electrode and an electrolyzer sandwiched between the bipolar plates. Liquid impregnation! In a fuel cell, a fuel cell stack is formed by stacking several fuel cells each consisting of Trix and an air electrode, and this stack is placed inside a case.
A partition member that substantially prevents air flow is provided between the side wall parallel to the gas flow path of the fuel cell stack and the inner wall of the case to divide the space inside the case into two, allowing the air gas to flow from one space to the fuel. The air supply groove of each bipolar plate of the cell stack is fed into the other space, while the fuel gas is supplied and discharged through a supply/discharge passage that penetrates the inside of the fuel cell stack at a position that does not communicate with the air supply groove. A reaction gas supply and discharge device for a fuel cell characterized by: 2. The device according to claim 1, characterized in that the partition member is cut into a groove provided on the I* side wall of the fuel cell stack so as to serve also as a holding member for the fuel cell stack. Fuel cell reaction gas supply and exhaust system. 3) A reactant gas supply/discharge device for a fuel cell in the apparatus according to claim 1, wherein the fuel cell stack has a heat insulating material that prevents air flow between the top of the fuel cell stack and the inner wall of the case. .
JP57038362A 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell Granted JPS58155669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038362A JPS58155669A (en) 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038362A JPS58155669A (en) 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell

Publications (2)

Publication Number Publication Date
JPS58155669A true JPS58155669A (en) 1983-09-16
JPS6240831B2 JPS6240831B2 (en) 1987-08-31

Family

ID=12523165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038362A Granted JPS58155669A (en) 1982-03-11 1982-03-11 Reaction-gas supplying and exhausting device provided in fuel cell

Country Status (1)

Country Link
JP (1) JPS58155669A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246569A (en) * 1984-05-22 1985-12-06 Agency Of Ind Science & Technol Fuel cell
JPS60254568A (en) * 1984-05-30 1985-12-16 Fuji Electric Corp Res & Dev Ltd Fuel cell
JPS61148766A (en) * 1984-12-21 1986-07-07 Toshiba Corp Fused carbonate type fuel cell
JPS6332470U (en) * 1986-08-18 1988-03-02
WO1992010009A2 (en) * 1990-11-23 1992-06-11 Vickers Shipbuilding And Engineering Limited Application of fuel cells to power generation systems
JPH04127965U (en) * 1991-05-13 1992-11-20 三洋電機株式会社 shielded fuel cell
US5238754A (en) * 1991-09-03 1993-08-24 Sanyo Electric Co., Ltd. Solid oxide fuel cell system
JPH0644987A (en) * 1989-06-16 1994-02-18 Osaka Gas Co Ltd Cell structure for fuel cell
JP2008234906A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Fuel cell stack as well as its manufacturing method and inspection method
KR100875579B1 (en) 2007-10-10 2008-12-23 주식회사 효성 Fuel cell stack assembling device
WO2015174386A1 (en) * 2014-05-13 2015-11-19 住友精密工業株式会社 Fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246569A (en) * 1984-05-22 1985-12-06 Agency Of Ind Science & Technol Fuel cell
JPS60254568A (en) * 1984-05-30 1985-12-16 Fuji Electric Corp Res & Dev Ltd Fuel cell
JPS61148766A (en) * 1984-12-21 1986-07-07 Toshiba Corp Fused carbonate type fuel cell
JPS6332470U (en) * 1986-08-18 1988-03-02
JPH0644987A (en) * 1989-06-16 1994-02-18 Osaka Gas Co Ltd Cell structure for fuel cell
WO1992010009A2 (en) * 1990-11-23 1992-06-11 Vickers Shipbuilding And Engineering Limited Application of fuel cells to power generation systems
US5401589A (en) * 1990-11-23 1995-03-28 Vickers Shipbuilding And Engineering Limited Application of fuel cells to power generation systems
JPH04127965U (en) * 1991-05-13 1992-11-20 三洋電機株式会社 shielded fuel cell
US5238754A (en) * 1991-09-03 1993-08-24 Sanyo Electric Co., Ltd. Solid oxide fuel cell system
JP2008234906A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Fuel cell stack as well as its manufacturing method and inspection method
KR100875579B1 (en) 2007-10-10 2008-12-23 주식회사 효성 Fuel cell stack assembling device
WO2015174386A1 (en) * 2014-05-13 2015-11-19 住友精密工業株式会社 Fuel cell

Also Published As

Publication number Publication date
JPS6240831B2 (en) 1987-08-31

Similar Documents

Publication Publication Date Title
US6159629A (en) Volume effecient layered manifold assembly for electrochemical fuel cell stacks
US4761349A (en) Solid oxide fuel cell with monolithic core
US4476197A (en) Integral manifolding structure for fuel cell core having parallel gas flow
JPH0131270B2 (en)
JPH0286071A (en) Solid polymer fuel cell
JPH0560235B2 (en)
JPH06218275A (en) Member for being incorporated in process control apparatus
JPS58155669A (en) Reaction-gas supplying and exhausting device provided in fuel cell
EP0706229B1 (en) Multi-layered fuel cell assembly
EP0568991B1 (en) Solid-electrolyte fuel cell system
JPH0845520A (en) Solid high polymer type fuel cell
US5286579A (en) Fuel cell
JPH0443566A (en) Solid electrolyte type fuel cell
JP3098619B2 (en) Fuel cell
JPS58163181A (en) Layer-built fuel cell
JPH05275092A (en) Solid electrolyte type fuel cell
JPH10302818A (en) Fuel cell
JPS60151972A (en) Layer-built fuel cell
JP3995778B2 (en) Solid electrolyte fuel cell and stack structure of solid oxide fuel cell
JPH08124592A (en) Fuel cell
JPS624834B2 (en)
JPH0752653B2 (en) Lower holder for fuel cell
JPH0143818Y2 (en)
JPH033958Y2 (en)
JPH0237739U (en)