JPS60254568A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS60254568A
JPS60254568A JP59110359A JP11035984A JPS60254568A JP S60254568 A JPS60254568 A JP S60254568A JP 59110359 A JP59110359 A JP 59110359A JP 11035984 A JP11035984 A JP 11035984A JP S60254568 A JPS60254568 A JP S60254568A
Authority
JP
Japan
Prior art keywords
case
air
stack
cell
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59110359A
Other languages
Japanese (ja)
Inventor
Heishiro Goto
後藤 平四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59110359A priority Critical patent/JPS60254568A/en
Publication of JPS60254568A publication Critical patent/JPS60254568A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make temperature distribution of a cell stack uniform by forming an air passage in a stack case which is used for supplying oxygen necessary for reaction and for air-cooling heat of reaction so that the passage can freely pass in the circumferences of both ends of the cell stack. CONSTITUTION:A cell stack 1 comprising unit cells is accommodated into a stack case 2 serving as a manifold for supplying oxygen necessary for cell reaction and for air-cooling heat of reaction generating during power generation, and fuel gas is supplied in and exhausted from ducts 5 and 6 respectively to form a fuel cell. Introduced air is supplied to the cell stack 1 through a heat exchanger 10, and exhausted air is divided into upper and lower directions to flow through air passages 2c and 2d. Thereby, decrease in operation temperature of unit cells located on both ends of cell stack 1 is prevented and air is circulated. Temperature distribution in a stacked direction of the cell stack 1 is made uniform, and output voltage performance is increased.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は単電池の積層体としてなるセルスタックをス
タックケース内に収容し、該ケースを空気マニホールド
として外部から送り込んだ空気をセルスタックの各単電
池に配分し、同時にこの空気でセルスタックの冷却を行
うようにした空冷式の燃料電池に関する。
This invention houses a cell stack, which is a stack of single cells, in a stack case, and uses the case as an air manifold to distribute air sent from the outside to each single cell in the cell stack, and at the same time cool the cell stack with this air. The present invention relates to an air-cooled fuel cell that performs the following steps.

【従来技術とその問題点】[Prior art and its problems]

まず第4図により、従来におけるこの種の空冷式燃料電
池の構成を示す。図において、1は単電池の積層体とし
てなるセルスタック、2はセルスタック1を収容するス
タックケース、3,4はセルスタック1を中央に挟んで
その両側でスタックケース2の底面に開口接続された空
気の入口、出口ダクト、5.6はセルスタックの図示さ
れてない燃料ガスマニホールドに接続された燃料ガス供
給用の入口、出口ダクトであり、セルスタック1は上下
両端に絶縁板7を介してスタックケース内に支持されて
いる。なお8はセルスタックの左右両側面とケースとの
間の空隙を仕切る空気のバイパス防止用の仕切板、9は
ケース1の外周を覆う保温材である。かかる構成で運転
時には空気供給ダクトを通じて発電に必要な空気と空冷
用の空気がスタックケース内に押し込み導入される。ケ
ース内に導入された空気は、スタックケースを空気マニ
ホールドとしてその入口側の室2aからセルスタック1
の各単電池に配分され、発電に必要な酸素の供給と発電
に伴う反応熱の除熱を行った後に、ケース内の出口側室
2bを経由して出口ダクト4を通じて外部へ排出される
。一方燃料ガスはガス供給用の入口ダクト5を通じてセ
ルスタック1の各単電池へ供給され、発電反応を行った
残り分が出口ダクト6を通じて図示されてないプラント
のガス改質装置へ送出される。 ところで上記従来の構成では、セルスタックIの上下両
端部に位置する単電池はその片側の端間がスタックケー
ス2の上面、底面の壁面に接しているのに対して、セル
スタックの中央部に位置する単電池はその両面が隣接す
る単電池に接している。このためにセルスタックを構成
している各単電池のうち、セルスタックの上下両端の単
電池はケース壁を通じて放熱が行われるので、セルスタ
ックの中央部に位置する単電池と比べて電池の温度が低
く、セルスタック全体として積層方向の温度分布が均一
でなくなる。さらに低温度の冷却空気はケース2の底面
側から導入される場合には、セルスタック1の下端部に
位置する単電池はセルスタックの中央に位置する単電池
との温度差がさらに拡大する傾向を示す、また燃料ガス
は低温のままセルスタック1に供給されるので、各単電
池はその面方向において燃料ガスの入口に近い部分と出
口側に近い部分との間で温度差が生じる。一方、りん酸
形燃料電池の場合の運転温度は170〜200℃が適正
温度であるが、前記のようにセルスタックの積層方向で
単電池間に温度差があると各単電池の出力電圧にばらつ
きが生じ、セルスタック全体として正常な高い出力電圧
を得ることができない。第5図は従来の燃料電池につい
て行ったテストから得たセルスタックの積層方向の温度
。 出力電圧分布図である。この図からも明らかなように、
セルスタックの上下両端部では中央部と比べて温度、出
力電圧が低下し、セルスタック全体としての出力電圧は
定格値よりも5〜10%の減少となる。しかもこのよう
にセルスタックの積層方向で温度分布にばらつきが生じ
ることは、実際の燃料電池の運転時の温度制御を困難に
する。
First, FIG. 4 shows the configuration of a conventional air-cooled fuel cell of this type. In the figure, 1 is a cell stack consisting of a stack of single cells, 2 is a stack case that houses the cell stack 1, and 3 and 4 are open connections to the bottom of the stack case 2 on both sides with the cell stack 1 in the center. The air inlet and outlet ducts 5.6 are fuel gas supply inlets and outlet ducts connected to a fuel gas manifold (not shown) of the cell stack. and is supported within the stack case. Note that 8 is a partition plate for preventing air bypass and partitions a gap between the left and right side surfaces of the cell stack and the case, and 9 is a heat insulating material that covers the outer periphery of the case 1. With this configuration, during operation, air necessary for power generation and air for cooling are forced into the stack case through the air supply duct. The air introduced into the case is passed from the chamber 2a on the inlet side to the cell stack 1 using the stack case as an air manifold.
After supplying oxygen necessary for power generation and removing reaction heat accompanying power generation, it is discharged to the outside through the outlet duct 4 via the outlet side chamber 2b in the case. On the other hand, fuel gas is supplied to each unit cell of the cell stack 1 through an inlet duct 5 for gas supply, and the remaining amount after the power generation reaction is sent through an outlet duct 6 to a gas reformer of a plant (not shown). By the way, in the above-mentioned conventional configuration, the single cells located at both the upper and lower ends of the cell stack I are in contact with the top and bottom walls of the stack case 2 between the ends of one side, whereas the cells located in the center of the cell stack I are Both sides of the placed cell are in contact with adjacent cells. For this reason, among the cells that make up the cell stack, the cells at the upper and lower ends of the cell stack radiate heat through the case wall, so the temperature of the cells is lower than that of the cells located in the center of the cell stack. is low, and the temperature distribution in the stacking direction is not uniform throughout the cell stack. Furthermore, when low-temperature cooling air is introduced from the bottom side of the case 2, the temperature difference between the cells located at the lower end of the cell stack 1 and the cells located at the center of the cell stack tends to further increase. In addition, since the fuel gas is supplied to the cell stack 1 at a low temperature, a temperature difference occurs in each unit cell between a portion near the inlet of the fuel gas and a portion near the exit side in the surface direction of each unit cell. On the other hand, the appropriate operating temperature for a phosphoric acid fuel cell is 170 to 200°C, but as mentioned above, if there is a temperature difference between cells in the stacking direction of the cell stack, the output voltage of each cell will vary. Variations occur, making it impossible to obtain a normal high output voltage for the entire cell stack. Figure 5 shows the temperature in the stacking direction of the cell stack obtained from tests conducted on conventional fuel cells. It is an output voltage distribution diagram. As is clear from this figure,
At both the upper and lower ends of the cell stack, the temperature and output voltage are lower than at the center, and the output voltage of the cell stack as a whole is reduced by 5 to 10% from the rated value. Moreover, such variations in temperature distribution in the stacking direction of the cell stack make it difficult to control the temperature during actual operation of the fuel cell.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、そ
の目的は燃料電池運転時におけるセルスタックの上下両
端部に位置する単電池の温度低下を巧みに補償してセル
スタックの温度分布を均一化し、出力電圧特性の改善を
図った燃料電池を提供することにある。
This invention was made in consideration of the above points, and its purpose is to skillfully compensate for the temperature drop of the single cells located at both the upper and lower ends of the cell stack during fuel cell operation, and to equalize the temperature distribution of the cell stack. The object of the present invention is to provide a fuel cell with improved output voltage characteristics.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明はセルスタックを
収容したスタックケース内に、セルスタックから吐き出
た高温の排気空気をセルスタックの両端面周域に通流さ
せる排気空気通風路を画成し、運転時には電池内を通過
する過程で反応熱を奪って昇温した高温の排気空気でセ
ルスタックの上下両端部に位置する単電池を加温し、こ
れによりセルスタック全域の温度分布の均一化を図るよ
うにしたものである。
In order to achieve the above object, the present invention defines an exhaust air ventilation path in a stack case housing a cell stack, which allows high-temperature exhaust air discharged from the cell stack to flow around both end surfaces of the cell stack. During operation, the high-temperature exhaust air that removes reaction heat as it passes through the cell heats the single cells located at both the upper and lower ends of the cell stack, thereby ensuring uniform temperature distribution throughout the cell stack. It was designed to make the

【発明の実施例】[Embodiments of the invention]

第1図はこの発明の実施例の全体構成を、第2図、第3
図はそれぞれ第1図における導入空気と高温の排気空気
との間の熱交換部、燃料ガス予熱器の構造を示すもので
あり、まず第1図においてスタックケース2は、一端面
に熱交換部10.入口弁11を介して空気入口ダクト3
が連通接続され、かつ他方の端面が開放された内ケース
録と、内ケース2Aおよび前記熱交換部10を包囲する
外ケース2Bとからなる内外二重構造のケースとして構
成されており、セルスタック1は前記内ケース2Aの内
部に収容設置されている。一方、空気出口ダクト4は外
ケース2Bにおける前記入口ダクト3の引出し側と同じ
側から引き出して配管されている。これにより内ケース
2Aの外面と外ケース2Bの内面との間には、内ケース
2への開放出口面から内ケースの上下面を迂回して空気
出口ダクト4に至る排気空気通風路2c、 2dが画成
されることになる。さらにケース内の底面側にて内ケー
スと外ケースとの間に画成された排気空気通風路2dの
途中には、セルスタック1へ供給する燃料ガスの予熱器
12が配備されている。ここで前記の熱交換部1oの構
造を示すと第2図の如くであり、空気入口ダクト3に連
なる空気供給管10aの外周には外ケース2B内の排気
空気通風路側に張り出す螺旋状の熱交換フィン10bが
取り付けである。なお空気供給管10aの先端には符号
13.14.15で示すように、内ケース2A内に収容
されているセルスタックlの上部、中央部、下部に向け
て開口する空気供給ノズルが接続しである。この構造で
外部からケース内に導入された低温空気は空気供給管1
0aの内部を通流し、一方セルスタック内から流出する
高温の排気空気は空気供給管10aの外側を螺旋状の放
熱フィン10bに沿って流れ、両者の間で熱交換を行い
、高温の排気空気で外部からの導入空気を予熱する。 次に先記の燃料ガス予熱器12の構造を第3図に示す。 予熱器12は燃料ガス供給ダクト5.6とセルスタック
との間にまたがり、内ケース2^を外ケース2Bの底部
に支持する支持脚16の内方に引き回して配管された熱
交換バイブ17として構成されている。なお符号18は
熱交換バイブ17とセルスタック側の燃料ガスマニホー
ルドとの間の接続フランジである。セルスタックから出
た排気空気は排気空気通風路2dを通流する過程で燃料
交換パイプ17の中を点線矢印のように流れる燃料ガス
と熱交換してセルスタックに供給される燃料ガスを予熱
する。そのほかに、第1図に戻ってケース2内の排気空
気通風路2c、 2dの一方2cには排気空気の分配通
風量を調節する流量調節弁19、外ケース2Bに取り付
けた外部に開放する安全弁20、内ケース2Aの空気導
入側に配備した空気温度センサ21、および排気空気通
風路2dと空気出口ダクト4との間にまたがって熱交換
部10を短絡するバイパス制御弁22付きのバイパス路
23等を装備している。さらに外ケース2Bの出口端と
空気の、入口ダクト3との間にまたがって空気循環路2
4が配管されており、該空気循環路内に空気循環プロア
25.循環空気予熱器26、循環空気制御弁27が介挿
設置されている。なお28はケース2の据付用の支持脚
である。 次に上記構成による燃料電池運転時の空気供給動作につ
いて述べる。まず燃料電池の起動時には、空気人口弁1
1.循環空気制御弁27を開き、かつ空気循環ブロア2
5. m環空気予熱器26を運転した状態で流量、圧力
を調整して入口ダクト3を通じて供給された比較的少量
の空気をスタックケース2゜空気循環路24を経由して
予熱器26で加熱しながら循環通風し、温度センサ21
で供給空気温度を検出しながらセルスタック1がを予め
設定された起動温度に達するまで昇温加熱する。燃料電
池の起動温度条件が整い、次いで発電開始になると、運
転に必要な空気量と燃料ガスがそれぞれ供給され、セル
スタック1は発電反応を開始する。この状態になると、
セルスタック1の反応熱を奪って昇温した排気空気は、
内ケース2Aを出たところで排気空気通風路2c、 2
dに分流してセルスタック1の上下両端部の単電池を加
温しつつ、さらに燃料ガス予熱器12で燃料ガスを予熱
した後に、熱交換部10に合流してここでセルスタック
への導入空気を予熱し、その後排気空気の一部は空気循
環路24を通じて循環し、残りの空気が空気出口ダクト
4を通じて外部へ排出される。 そしてセルスタック1が所定の運転温度に達すると、循
環空気予熱器26が停止され、以後はセルスタックの自
己発熱による予熱方式に変わり、セルスタックへの導入
空気を熱交換部10で予熱しながら燃料電池の運転をm
続する。またこの自己発熱による予熱方式でもセルスタ
ックへの供給空気温度が所定の温度以上に上昇した場合
には、バイパス弁22を開いて排気空気の一部を直接出
口ダクト4に排出し、熱交換部10に流れる高温の排気
空気量を減少して温度調節を行うよう制御される。 なお排気空気通風路2cに設置された空気流量制御弁1
9は、セルスタック1の上下両端部の単電池の温度がほ
ぼ均一な温度となるように排気空気の排気空気通風路2
c、 2dへの分配調節を行う。また運転中に不測の事
態が発生してスタックケース内の内圧が異常に上昇した
場合には安全弁21が作動し、内圧を外部へ放圧して保
護する。 上記の構成によれば、まず燃料電池の運転時にセルスタ
ック1の各単電池内部を通流する過程で電池の反応熱を
奪って昇温した排気空気は、内ケース2Aから流出した
後に上下に分流して排気空気通風路2c、 2dを流れ
る。これにより従来のようにセルスタック1の上下両端
部に位置する単電池がケース壁を通じ外部へ熱放散され
ることがなくなり、さらに第2図で述べたように導入空
気はセルスタックに対して空気供給ノズル13,14.
15より分散供給される効果も加わって、第6図に示す
ようにセルスタックの単電池積層方向での温度分布が第
5図に比べて大幅に改善され、この結果として出力電圧
特性も改善され、かつセルスタックの温度制御もより的
確に行うことができることになる。 また燃料ガス予熱器12により、燃料ガスを予熱して供
給するので、単電池の面方向での温度分布も改善される
。さらに高温排気空気の保有熱を利用してセルスタック
への導入空気を熱交換部10で熱交換して熱回収するこ
とにより、発電プラント全体としての熱効率1発電効率
の向上が図れる等の利点が得られる。
FIG. 1 shows the overall configuration of an embodiment of the present invention, and FIGS.
The figures show the structure of the heat exchange section between the introduced air and the high temperature exhaust air and the fuel gas preheater in FIG. 1, respectively. First, in FIG. 1, the stack case 2 has a heat exchange section on one end surface. 10. Air inlet duct 3 via inlet valve 11
The cell stack is constructed as an inner/outer double structure case consisting of an inner case 2A and an outer case 2B surrounding the heat exchanger 10, and an inner case 2A with the other end open. 1 is housed and installed inside the inner case 2A. On the other hand, the air outlet duct 4 is drawn out and piped from the same side of the outer case 2B as the drawer side of the inlet duct 3. As a result, between the outer surface of the inner case 2A and the inner surface of the outer case 2B, there are exhaust air ventilation paths 2c, 2d that extend from the open outlet surface to the inner case 2, bypassing the upper and lower surfaces of the inner case, and reaching the air outlet duct 4. will be defined. Furthermore, a preheater 12 for fuel gas to be supplied to the cell stack 1 is disposed in the middle of an exhaust air ventilation path 2d defined between the inner case and the outer case on the bottom side of the case. Here, the structure of the heat exchange section 1o is shown in FIG. 2, and the outer periphery of the air supply pipe 10a connected to the air inlet duct 3 has a spiral shape extending toward the exhaust air ventilation path inside the outer case 2B. Heat exchange fins 10b are attached. Note that air supply nozzles that open toward the top, center, and bottom of the cell stack l housed in the inner case 2A are connected to the tip of the air supply pipe 10a, as shown by reference numerals 13, 14, and 15. It is. With this structure, the low-temperature air introduced into the case from the outside is supplied to the air supply pipe 1.
0a, while high-temperature exhaust air flowing out from inside the cell stack flows outside the air supply pipe 10a along the spiral heat radiation fins 10b, exchanging heat between them, and the high-temperature exhaust air flowing out from inside the cell stack. to preheat the air introduced from the outside. Next, the structure of the aforementioned fuel gas preheater 12 is shown in FIG. The preheater 12 straddles between the fuel gas supply duct 5.6 and the cell stack, and serves as a heat exchange vibe 17 that is routed and piped inward of support legs 16 that support the inner case 2^ at the bottom of the outer case 2B. It is configured. Note that reference numeral 18 is a connecting flange between the heat exchange vibe 17 and the fuel gas manifold on the cell stack side. In the process of flowing through the exhaust air ventilation path 2d, the exhaust air coming out of the cell stack exchanges heat with the fuel gas flowing in the fuel exchange pipe 17 as shown by the dotted arrow, thereby preheating the fuel gas supplied to the cell stack. . In addition, returning to FIG. 1, one of the exhaust air ventilation passages 2c and 2d in the case 2 includes a flow rate control valve 19 for adjusting the distributed ventilation amount of the exhaust air, and a safety valve that opens to the outside and is attached to the outer case 2B. 20, an air temperature sensor 21 disposed on the air introduction side of the inner case 2A, and a bypass passage 23 with a bypass control valve 22 that spans between the exhaust air ventilation passage 2d and the air outlet duct 4 and short-circuits the heat exchange section 10. Equipped with etc. Further, an air circulation path 2 is provided between the outlet end of the outer case 2B and the air inlet duct 3.
4 is piped, and an air circulation proar 25.4 is installed in the air circulation path. A circulating air preheater 26 and a circulating air control valve 27 are installed. Note that 28 is a support leg for installing the case 2. Next, the air supply operation during fuel cell operation with the above configuration will be described. First, when starting up the fuel cell, air population valve 1
1. Open the circulating air control valve 27 and open the air circulating blower 2.
5. While the flow rate and pressure are adjusted while the m-ring air preheater 26 is in operation, a relatively small amount of air supplied through the inlet duct 3 is heated in the preheater 26 via the air circulation path 24 in the stack case 2. Circulating ventilation and temperature sensor 21
While detecting the supply air temperature, the cell stack 1 is heated until it reaches a preset startup temperature. When the starting temperature conditions for the fuel cell are set and power generation starts, the amount of air and fuel gas necessary for operation are supplied, and the cell stack 1 starts the power generation reaction. In this state,
The exhaust air whose temperature has increased by taking away the reaction heat of cell stack 1,
Exhaust air ventilation passages 2c, 2 after exiting the inner case 2A
d to heat the unit cells at both the upper and lower ends of the cell stack 1, and after further preheating the fuel gas in the fuel gas preheater 12, it flows into the heat exchange section 10 where it is introduced into the cell stack. After preheating the air, a part of the exhaust air is circulated through the air circulation path 24 and the remaining air is discharged to the outside through the air outlet duct 4. When the cell stack 1 reaches a predetermined operating temperature, the circulating air preheater 26 is stopped, and from then on, the preheating method is changed to the self-heating of the cell stack. Operation of fuel cell
Continue. Even with this self-heating preheating method, if the temperature of the air supplied to the cell stack rises above a predetermined temperature, the bypass valve 22 is opened and a part of the exhaust air is directly discharged to the outlet duct 4. Control is performed to adjust the temperature by reducing the amount of high-temperature exhaust air flowing through the air pump 10. Note that the air flow control valve 1 installed in the exhaust air ventilation path 2c
9 is an exhaust air ventilation passage 2 for exhaust air so that the temperature of the cells at both the upper and lower ends of the cell stack 1 is almost uniform.
Adjust the distribution to c and 2d. Further, if an unexpected situation occurs during operation and the internal pressure inside the stack case rises abnormally, the safety valve 21 is activated and the internal pressure is released to the outside for protection. According to the above configuration, first, during the operation of the fuel cell, the exhaust air, which has been heated by removing the reaction heat of the cells during the process of flowing inside each unit cell of the cell stack 1, flows upward and downward after flowing out from the inner case 2A. The exhaust air is divided and flows through the exhaust air ventilation paths 2c and 2d. This eliminates heat dissipation from the cells located at both the upper and lower ends of the cell stack 1 to the outside through the case wall, as in the conventional case, and furthermore, as described in Figure 2, the introduced air is Supply nozzles 13, 14.
In addition to the effect of distributed supply from 15, the temperature distribution in the direction of cell stacking of the cell stack is significantly improved as shown in Figure 6 compared to Figure 5, and as a result, the output voltage characteristics are also improved. , and temperature control of the cell stack can also be performed more accurately. Further, since the fuel gas preheater 12 preheats the fuel gas before supplying it, the temperature distribution in the surface direction of the unit cell is also improved. Furthermore, by using the heat retained in the high-temperature exhaust air to exchange heat with the air introduced into the cell stack in the heat exchange section 10 and recover the heat, there are advantages such as improving the thermal efficiency 1 power generation efficiency of the entire power plant. can get.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、スタックケース内
に、セルスタックから吐き出た高温の排気空気をセルス
タックの両端面周域に通流させる排気空気通風路を画成
したことにより、従来の構成で問題となっていたセルス
タックの両端部に位置する単電池の運転温度の低下を防
止して、セルスタックの単電池積層方向の温度分布の均
一化、したがって出力電圧特性の向上を図ることができ
る。
As described above, according to the present invention, an exhaust air ventilation path is defined in the stack case that allows the high temperature exhaust air discharged from the cell stack to flow around both end surfaces of the cell stack, thereby improving the efficiency of the present invention. This prevents a drop in the operating temperature of the cells located at both ends of the cell stack, which was a problem with the structure of be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の全体の構成断面図、第2図
、第3図はそれぞれ第1図における熱交換部、燃料ガス
予熱器の構成図、第4図は従来における燃料電池の構成
断面図、第5図および第6図はそれぞれ従来およびこの
発明による燃料電池運転時におけるセルスタックの単電
池積層方向の温度分布、出力電圧分布図である。 1:セルスタック、2ニスタツクケース、2A;スタッ
クケースの内ケース、2Bニスタツクケースの外ケース
、2c、2d:排気空気通風路、3,4:空気供給ダク
ト、5.6:燃料ガス供給ダクト、10:熱交換部、1
2:燃料ガス予熱器。 才1図 才5図 →gL度 →出力宅凪 才6図
FIG. 1 is a cross-sectional view of the entire configuration of an embodiment of the present invention, FIGS. 2 and 3 are configuration diagrams of the heat exchange section and fuel gas preheater in FIG. 1, respectively, and FIG. 4 is a diagram of a conventional fuel cell. The cross-sectional view of the structure, FIG. 5, and FIG. 6 are temperature distribution and output voltage distribution diagrams in the direction of cell stacking of the cell stack during fuel cell operation according to the conventional technology and the present invention, respectively. 1: Cell stack, 2 stack case, 2A; inner case of stack case, 2B outer case of stack case, 2c, 2d: exhaust air ventilation path, 3, 4: air supply duct, 5.6: fuel gas supply Duct, 10: Heat exchange section, 1
2: Fuel gas preheater. Sai 1 figure Sai 5 → gL degree → Output home calm Sai figure 6

Claims (1)

【特許請求の範囲】 1)単電池の積層体としてなるセルスタックをスタック
ケース内に収容し、該ケース自身を空気マニホールドと
して外部からケース内に送り込んだ空気をセルスタック
の各単電池へ配分して流すことにより、電池反応に必要
な酸素の供給と発電時に生じる反応熱の空冷除熱を行う
燃料電池において、セルスタックから吐き出た高温の排
気空気をセルスタックの両端面周域に通流させる排気空
気通風路を前記スタックケース内に画成したことを特徴
とする燃料電池。 2、特許請求の範囲第1項に記載の燃料電池において、
スタックケースは、一方の端面に空気入口ダクトが連通
接続され、かつ反対側の端面が開放されてなるセルスタ
ック収容の内ケースと、該内ケースを包囲し、かつ内ケ
ースの前記開放面とケースの空気出口との間に内ケース
の上下を迂回する排気空気通風路がケース内に画成され
た外ケースとからなる内外二重構造のケースであること
を特徴とする燃料電池。 3)特許請求の範囲第1項に記載の燃料電池において、
スタックケース内に、セルスタ・;・りへの導入空気と
排気空気との間で熱交換を行う熱交換部が構成されてい
ることを特徴とする燃料電池。 4)特許請求の範囲第1項に記載の燃料電池において、
スタックケース内の排気空気通風路の途中にセルスタッ
クへ供給する燃料ガスの予熱器が配備されていることを
特徴とする燃料電池。
[Scope of Claims] 1) A cell stack consisting of a stack of unit cells is housed in a stack case, and the case itself serves as an air manifold to distribute air fed into the case from the outside to each unit cell of the cell stack. In fuel cells, the high-temperature exhaust air discharged from the cell stack is passed around the area around both end faces of the cell stack in a fuel cell that supplies the oxygen necessary for cell reactions and removes the reaction heat generated during power generation by air cooling. A fuel cell characterized in that an exhaust air ventilation path is defined within the stack case. 2. In the fuel cell according to claim 1,
The stack case includes an inner case for accommodating a cell stack, which has an air inlet duct connected to one end face and an open end face on the opposite side, and a case that surrounds the inner case and is connected to the open face of the inner case and the case. What is claimed is: 1. A fuel cell characterized in that the case has an inside-outside double structure, consisting of an outer case and an outer case defined within the case, and an exhaust air ventilation path that bypasses the upper and lower parts of the inner case between the case and the air outlet of the case. 3) In the fuel cell according to claim 1,
A fuel cell characterized in that a heat exchange section for exchanging heat between air introduced into a cell star and exhaust air is configured in a stack case. 4) In the fuel cell according to claim 1,
A fuel cell characterized in that a preheater for fuel gas to be supplied to the cell stack is provided in the middle of an exhaust air ventilation path in a stack case.
JP59110359A 1984-05-30 1984-05-30 Fuel cell Pending JPS60254568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110359A JPS60254568A (en) 1984-05-30 1984-05-30 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110359A JPS60254568A (en) 1984-05-30 1984-05-30 Fuel cell

Publications (1)

Publication Number Publication Date
JPS60254568A true JPS60254568A (en) 1985-12-16

Family

ID=14533775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110359A Pending JPS60254568A (en) 1984-05-30 1984-05-30 Fuel cell

Country Status (1)

Country Link
JP (1) JPS60254568A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889537A1 (en) * 1997-07-03 1999-01-07 Siemens Aktiengesellschaft High-temperature fuel cell installation
WO2001003218A1 (en) * 1999-07-05 2001-01-11 Siemens Aktiengesellschaft Htm fuel cell facility and method for operating an htm fuel cell facility
WO2002093673A1 (en) * 2001-05-11 2002-11-21 Cellex Power Products, Inc. Fuel cell thermal management system and method
WO2002091509A3 (en) * 2001-05-04 2003-10-02 Bayerische Motoren Werke Ag System consisting of a fuel cell and of a heat exchanger
JP2005158526A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly and its operating method
CN100369306C (en) * 2004-01-28 2008-02-13 三星Sdi株式会社 Fuel cell system
US7485384B2 (en) 2004-01-26 2009-02-03 Samsung Sdi Co., Ltd. Cooling apparatus for fuel cell and fuel cell system having the same
JP2009070664A (en) * 2007-09-12 2009-04-02 Toshiba Corp Fuel cell and fuel cell system
WO2012166040A1 (en) * 2011-05-30 2012-12-06 Metacon Ab Energy generation using a stack of fuel cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157470A (en) * 1981-03-23 1982-09-29 Sanyo Electric Co Ltd Air-cooled fuel cell
JPS58142769A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Fuel battery
JPS58155669A (en) * 1982-03-11 1983-09-16 Kansai Electric Power Co Inc:The Reaction-gas supplying and exhausting device provided in fuel cell
JPS5975573A (en) * 1982-10-21 1984-04-28 Toshiba Corp Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157470A (en) * 1981-03-23 1982-09-29 Sanyo Electric Co Ltd Air-cooled fuel cell
JPS58142769A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Fuel battery
JPS58155669A (en) * 1982-03-11 1983-09-16 Kansai Electric Power Co Inc:The Reaction-gas supplying and exhausting device provided in fuel cell
JPS5975573A (en) * 1982-10-21 1984-04-28 Toshiba Corp Fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889537A1 (en) * 1997-07-03 1999-01-07 Siemens Aktiengesellschaft High-temperature fuel cell installation
WO2001003218A1 (en) * 1999-07-05 2001-01-11 Siemens Aktiengesellschaft Htm fuel cell facility and method for operating an htm fuel cell facility
WO2002091509A3 (en) * 2001-05-04 2003-10-02 Bayerische Motoren Werke Ag System consisting of a fuel cell and of a heat exchanger
WO2002093673A1 (en) * 2001-05-11 2002-11-21 Cellex Power Products, Inc. Fuel cell thermal management system and method
US6649290B2 (en) 2001-05-11 2003-11-18 Cellex Power Products, Inc. Fuel cell thermal management system and method
JP2005158526A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly and its operating method
US7485384B2 (en) 2004-01-26 2009-02-03 Samsung Sdi Co., Ltd. Cooling apparatus for fuel cell and fuel cell system having the same
CN100369306C (en) * 2004-01-28 2008-02-13 三星Sdi株式会社 Fuel cell system
US7514170B2 (en) 2004-01-28 2009-04-07 Samsung Sdi Co., Ltd. Fuel cell system
JP2009070664A (en) * 2007-09-12 2009-04-02 Toshiba Corp Fuel cell and fuel cell system
WO2012166040A1 (en) * 2011-05-30 2012-12-06 Metacon Ab Energy generation using a stack of fuel cells

Similar Documents

Publication Publication Date Title
TWI575806B (en) Heat exchanger and cathod recuperator uni-shell
EP1836126B1 (en) High performance internal reforming unit for high temperature fuel cells
US6326095B1 (en) Integrated manifold/reformer for fuel cell systems
JP2003282110A (en) Storage battery comprising fuel cell having integral heat exchanger
JP3823181B2 (en) Fuel cell power generation system and waste heat recirculation cooling system for power generation system
JPH04349357A (en) Simultaneously heat supplying fuel cell
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JP2010067352A (en) Fuel cell system
JPS61168876A (en) Operation system of fuel cell
JP6550814B2 (en) Air preheater and power generator
JPS60254568A (en) Fuel cell
CN112952163B (en) Modularized fuel processor and application
JP3138118B2 (en) Package type fuel cell power generator
JP2005078859A (en) Fuel cell system
JP2007053006A (en) Fuel cell power generation system
JPH097624A (en) Solid electrolytic fuel cell
US10957921B2 (en) SOFC with cathode exhaust partial bypass of the ATO and additional air cooling of a hotbox
JPS61260551A (en) Air cooling type fuel cell
JP2002008687A (en) Fuel cell power generator
JPH09289030A (en) Solid electrolyte fuel cell module
JP5242933B2 (en) Fuel cell module
JPH0777132B2 (en) Fuel cell power generator
JP7186147B2 (en) fuel cell module
JPS63128559A (en) Solid electrolyte fuel cell module
JP2007103034A (en) Fuel cell system and its starting method