JPS61260551A - Air cooling type fuel cell - Google Patents

Air cooling type fuel cell

Info

Publication number
JPS61260551A
JPS61260551A JP60101959A JP10195985A JPS61260551A JP S61260551 A JPS61260551 A JP S61260551A JP 60101959 A JP60101959 A JP 60101959A JP 10195985 A JP10195985 A JP 10195985A JP S61260551 A JPS61260551 A JP S61260551A
Authority
JP
Japan
Prior art keywords
air
fuel cell
heat
heat pipe
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60101959A
Other languages
Japanese (ja)
Inventor
Norio Izumikawa
泉川 則雄
Izumi Azuma
東 泉
Toshihiro Sugiyama
杉山 智弘
Masatsuru Umemoto
梅本 真鶴
Takashi Ouchi
崇 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60101959A priority Critical patent/JPS61260551A/en
Publication of JPS61260551A publication Critical patent/JPS61260551A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To acquire a simple structure, a compact size, and a compact auxiliary driver of a fuel cell, by installing cylindrical heat pipes with heat exchanging fins, at the end of a box type heat pipe group, and combining them to the box type hat pipes. CONSTITUTION:At the end surface of box type heat pipes 2, are installed plural cylindrical heat pipes 3 projecting from the unit cell members, and both heat pipes 2 and 3 are combined within the system. At the outer periphery of a heat pipe 3 are furnished heat exchanging fins 4. At the ceiling of the stack case 16 is furnished a fan 7, which blows in hot air or cool air to a ventilation duct 6a of the stack case 6, blows air to the cylindrical pipes and the heat exchanging fins to heat or cool them, and exhausts the sir through the bottom of the stack case 6.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は燃料!極、醸解買酸化剤極とからなる単位セ
ルを“積層し空冷式とした燃料電池に係り、とくに単位
セルを槓j−シた燃料11!池スタックの加熱−冷却構
造に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention is a fuel! The present invention relates to an air-cooled fuel cell in which unit cells are stacked, each consisting of an oxidizer electrode and an oxidizer electrode, and particularly relates to a heating-cooling structure of a fuel cell stack in which the unit cells are stacked.

〔従来技術とその問題点〕[Prior art and its problems]

燃料電池(ま燃料の有する化学エネルギーを直接電気エ
ネルギーIC!換する装置で熱効率が高く、騒音、@ス
的ノイズや有g排出9)が少ないというような利点があ
るために新しい発1!Lieとして注目されている。し
かし、この燃料電池には作動温度が低温になるほど特性
が低下するという住貿がある。したがって燃料電池の単
位セルを所定の温度にあげてやらねばならない。
Fuel cells (a device that directly converts the chemical energy of fuel into electric energy IC!) are a new type of fuel cell because they have the advantages of high thermal efficiency, low noise, and low emissions9). He is attracting attention as Lie. However, there is a problem with this fuel cell that its characteristics deteriorate as the operating temperature decreases. Therefore, the unit cell of the fuel cell must be raised to a predetermined temperature.

一般に燃料電池が′IIt@とじて使用される場合は急
速な発電が要求される。したがってスイッチ投入後なる
べく短時間で定格出力をとり出せる状態にしてやらなけ
ればならない。
Generally, when a fuel cell is used as an 'IIt@, rapid power generation is required. Therefore, it is necessary to make it possible to obtain the rated output as quickly as possible after turning on the switch.

普通は単位セルに電解液と燃料とi他剤を供給し、負荷
を接続して、定格以下の発電を続けさせ、単位セルの内
部抵抗による発熱により単位セルの温度が所定値まで上
昇するのを待つという方法や、外部で温めた電解液を供
給して、単位セルの温度を上昇させるという方法がとら
れるが、いずれも定格出力が得られる状態になるまでに
長時間を要するという問題がある。
Normally, electrolyte, fuel, and other chemicals are supplied to the unit cell, a load is connected, and power generation below the rated value is continued until the temperature of the unit cell rises to a predetermined value due to heat generated by the internal resistance of the unit cell. There are two methods: waiting for the unit cell to reach its rated output, or supplying an externally heated electrolyte to raise the temperature of the unit cell, but both methods have the problem that it takes a long time to reach the rated output. be.

この問題に対処して単位セル面を外部から暖めて温度が
所定値まで上昇するのを促進し、急運に定格出力が得ら
れるようにした方法が開発された。
To address this problem, a method was developed in which the surface of the unit cell is heated from the outside to promote the temperature rise to a predetermined value, thereby quickly achieving the rated output.

この方法を採った一つに空冷式燃料電池がある。One example of this method is an air-cooled fuel cell.

この種の空冷式燃料電池の構造を5g6図および第7図
に示す用視図に基づいて説明する。まず第6図の燃料電
池スタック1は単位セル1aの間に冷却板1bが挾持さ
れた姿で槓j−され、冷却へ1bには冷却用空気を流通
させる複数本の冷却空気#ICが穿たれ、単位セル1a
の表面には複数本の反応空fi溝1dが設けられるとと
もに4面には前記反応空気溝1dと直角方向に複数本の
燃料(水素)供給溝1eが設けられている。第7図の場
合には反応空気溝1dと燃料供給溝】eと同方向に設げ
られ、これと直角方向に冷却空気溝が穿たれたものであ
る。
The structure of this type of air-cooled fuel cell will be explained based on the perspective views shown in FIG. 5g6 and FIG. First, the fuel cell stack 1 shown in FIG. 6 is mounted with a cooling plate 1b sandwiched between the unit cells 1a, and a plurality of cooling air #ICs are drilled in the cooling plate 1b to circulate cooling air. Sauce, unit cell 1a
A plurality of reaction air grooves 1d are provided on the surface thereof, and a plurality of fuel (hydrogen) supply grooves 1e are provided on the fourth surface in a direction perpendicular to the reaction air grooves 1d. In the case of FIG. 7, the reaction air groove 1d and the fuel supply groove 1e are provided in the same direction, and the cooling air groove is bored in a direction perpendicular thereto.

何れの構造の場合でも発電効率を高めるために、この冷
却空気溝ICに大量の空気を流して冷却臣気入口側と出
口費との温度差をできるだけ少くし、冷却空気の平均温
度を、たとえば燐鹸形燃料電池の場合百数十度にして、
単位セル面内の温度を均一にするという方法が採られて
いる。これには高温の排気を一部戻して常温の外気と混
合して送風機で循環供給する方法と、排気を一度熱交換
器を通して所定の温度まで下げて循環する方法とがある
。この構成を第5図に示す。図において燃料電池スタッ
ク1には太斐矢印で示す方向に燃料(水素)が供給され
るが、この燃料電池スタック1を加温(または冷却)す
る空気は循環ダクト2内をm線矢印で示す方向に流れる
。この循環ダクト2には加熱用ヒータ3.送風機4.熱
交換器5.ダ/バ6などが取付けられている。
In order to increase power generation efficiency in any structure, a large amount of air is allowed to flow through this cooling air groove IC to minimize the temperature difference between the cooling air inlet side and the outlet side, and the average temperature of the cooling air is In the case of phosphorous fuel cells, the temperature is over 100 degrees,
A method has been adopted in which the temperature within the unit cell surface is made uniform. There are two methods for this: a method in which a portion of the high-temperature exhaust gas is returned, mixed with ambient temperature outside air, and then circulated and supplied using a blower; and a method in which the exhaust gas is cooled to a predetermined temperature through a heat exchanger and then circulated. This configuration is shown in FIG. In the figure, fuel (hydrogen) is supplied to the fuel cell stack 1 in the direction shown by the Taihi arrow, but the air that heats (or cools) the fuel cell stack 1 flows inside the circulation duct 2, shown by the m-line arrow. flow in the direction. This circulation duct 2 has a heating heater 3. Blower 4. Heat exchanger5. D/B 6 etc. are installed.

周知のとと(流路の圧力損失は取扱流体の温度が高くな
るほど大きくなり、送風機の動力は送風量と流路圧力損
失に比例して大きくなるので、前述したような高温流体
を大賞′に流すということは、それだけ大きくなること
になる。しかも高温流体を送風するために、送風機も耐
熱性を要求され耐熱形の脣殊送)iL機を採用しなけれ
ばならぬという問題があった。また熱’2Hm#1MJ
熱用ヒーター。
It is well known that the pressure loss in the flow path increases as the temperature of the fluid being handled increases, and the power of the blower increases in proportion to the amount of air blown and the pressure loss in the flow path. Flowing means increasing the size.Furthermore, in order to blow the high-temperature fluid, the blower was also required to be heat resistant, so a heat-resistant type IL machine had to be used. Also heat '2Hm#1MJ
Heater for heat.

自動弁、ダクトなどを装備していることから構造的に複
雑で寸法も太き−くなるという欠点があり、車輌搭載用
などで寸伍の制約が厳しい用途に対しては不適当であっ
た。
Because it is equipped with automatic valves, ducts, etc., it has the disadvantage of being structurally complex and large in size, making it unsuitable for applications with strict size restrictions such as mounting on vehicles. .

〔発明の目的〕[Purpose of the invention]

この考案は上述した事情に鑑み、#4遣が簡単で寸法も
小さり、シかも補助動力も小さくて済む空冷式燃料電池
を提供することを目的とする。
In view of the above-mentioned circumstances, the purpose of this invention is to provide an air-cooled fuel cell that is simple to use, has a small size, and requires only a small amount of auxiliary power.

〔発明の要点〕[Key points of the invention]

この考案では単位セル形状に・合わせて平角形に形成さ
れた箱形ヒートパイプの少なくとも一端面より複数本の
円筒形ヒートパイプを突出させてそれぞれ箱形ヒートパ
イプに連通させ、円筒形ヒートパイプの外通には犠数枚
の熱交換用フィンを取付けるとともに、前箱形ヒートパ
イプを単位セルからなる燃料電池スタックで挾むように
して組合わせ、これを容器に収納して容器の一方面より
熱風または冷風を送り込み、前記円筒形ヒートパイプお
よび熱交換用ヒートパイプに通風し、加温または冷却し
たのち容器の他方面より排気するようにした。すなわち
箱形ヒートパイプの端部に、熱交換用フィンを有する円
筒形ヒートパイプを連通させて取付けることにより、熱
風または冷風の入口−出口温度差を大きくしながらも、
ヒートパイプの均熱作用により単位セル面内および積層
方向の単位セル間の温度差を小さくし、発電効呂を上げ
さらに送風量が少なくて済み1通風抵抗が小さいことか
ら送風機動力の低減を図ろうとするものである。
In this invention, a plurality of cylindrical heat pipes are made to protrude from at least one end surface of a box-shaped heat pipe that is formed into a rectangular shape to match the shape of a unit cell, and each of the cylindrical heat pipes is connected to the box-shaped heat pipe. In addition to attaching several heat exchange fins to the outside, the front box-shaped heat pipe is sandwiched between fuel cell stacks consisting of unit cells, and this is housed in a container to blow hot or cold air from one side of the container. was fed into the container, ventilated through the cylindrical heat pipe and the heat exchange heat pipe, heated or cooled, and then exhausted from the other side of the container. In other words, by connecting and attaching a cylindrical heat pipe with heat exchange fins to the end of a box-shaped heat pipe, it is possible to increase the temperature difference between the inlet and outlet of hot or cold air.
The heat-uniforming effect of the heat pipe reduces the temperature difference within the unit cell plane and between the unit cells in the stacking direction, increasing the power generation efficiency and reducing the blower power because the amount of air flow is small and the ventilation resistance is small. It is something that we try to do.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を丞す側面断面図で、燃料
電池スタ、クエは単位セル形状に合わせて平角状に形匝
された箱形ヒートパイプ2で挟むようにして組合わされ
蹄付板11で締付けられ、断熱材5を介してスタックケ
ース6に収納される。
FIG. 1 is a side cross-sectional view of an embodiment of the present invention, in which a fuel cell star and a fuel cell star are sandwiched between box-shaped heat pipes 2 which are rectangularly shaped to match the shape of the unit cell. 11 and housed in a stack case 6 via a heat insulating material 5.

箱形ヒートパイプ2は端面に単位セル部より突出して複
数本の円筒形ヒートバイ13が設けられ、両ヒートパイ
プ2,3は内部で連」している口また円筒形ヒートパイ
プ3の外周には複数枚の熱交換用フィン4が取付けであ
る。このスタックケース6の天井面rこ送風機7が設け
られ、この送風機7により熱風または冷風をスタックク
ース6の通風ダクト111に送り込み、前記円筒形ヒー
トパイプおよび熱交換用フィンを通風して加温または冷
却し、スタ、ククース6の底面より排気するという通風
構造である。なおこの通風構造は図示する方向とは逆、
すなわち送K(i 7 fよスタ、ククース6の底面に
設けて通風ダク1−6aでの通風方向は下から上に向か
いスタックケース6の天井面より排気させるという構成
でも差し支えない。
A plurality of cylindrical heat pipes 13 are provided on the end surface of the box-shaped heat pipe 2, protruding from the unit cell part. A plurality of heat exchange fins 4 are attached. A blower 7 is provided on the ceiling of the stack case 6, and the blower 7 sends hot or cold air into the ventilation duct 111 of the stack case 6 to pass through the cylindrical heat pipe and heat exchange fins for heating or cooling. It has a ventilation structure that cools and exhausts air from the bottom of the star 6. This ventilation structure is opposite to the direction shown in the diagram.
That is, a configuration may also be used in which the air supply K (i7f) is provided on the bottom surface of the stack case 6, and the ventilation direction in the ventilation duct 1-6a is from the bottom to the top, and the air is exhausted from the ceiling surface of the stack case 6.

熱風を通風する場合は送A機7の吸気側に図示しない加
熱用ヒータを設け、送lL機7による吸気をこの加熱用
ヒーターを通過させればよく、極めて簡単な設備で熱風
が得られる。冷風を通風する場合は前記加熱用ヒーター
を不動作(熱しない)状態にして送風機7を運転すれば
冷い外気がi!i風される。
When hot air is to be ventilated, it is sufficient to provide a heating heater (not shown) on the intake side of the blower A machine 7, and to pass the intake air from the blower IL machine 7 through this heater, and hot air can be obtained with extremely simple equipment. When blowing cold air, the heater is inactive (does not heat) and the blower 7 is operated to blow cold outside air. i-style.

前述した箱形ヒートパイプ2の構造を第3図に示す平面
断面図および第3図のA −A矢視断面を示す第4図に
基づいて説明する。箱形ヒートパイプ2は均熱板2aで
囲まれた平角状のもので、燃料電池スタック1の単位セ
ルに接触し、相対向する均熱板2aはウイック材2Cを
介して改版2bにて支えられる。この波板2bは一枚も
のでなく、wca図で明らかなように途中で切られてい
る(第3図で底部のウイック材2Cが見える場所)。こ
れは波板2bによって区分された空間の上部空気と下部
空気が入れ替るようにするためである。すなわち箱形ヒ
ートパイプ2の端面より突出して設けられた円筒形ヒー
トパイプ3は内部は箱形ヒートパイプ2の内部と連通し
ており、円筒形トートバイブ3内部の加温された空気あ
るいは冷却された空気は箱形ヒートパイプ2内部の波板
2bで区分された上部空間、下部空間の何れかに流動し
、それが前記波板2bの設けられてない空間くおいて入
れ替るようにして空気加温または空気冷却による@度を
均一化しようとするものである。
The structure of the box-shaped heat pipe 2 described above will be explained based on a plan sectional view shown in FIG. 3 and FIG. 4 showing a cross section taken along the line A--A in FIG. 3. The box-shaped heat pipe 2 is a rectangular one surrounded by a heat equalizing plate 2a, and is in contact with a unit cell of the fuel cell stack 1, and the opposing heat equalizing plate 2a is supported by a modified version 2b via a wick material 2C. It will be done. This corrugated sheet 2b is not a single piece, but is cut in the middle as shown in the wca diagram (the place where the wick material 2C at the bottom is visible in Figure 3). This is to ensure that the upper air and lower air in the space divided by the corrugated plate 2b are exchanged. In other words, the cylindrical heat pipe 3 protruding from the end surface of the box-shaped heat pipe 2 communicates with the inside of the box-shaped heat pipe 2, and the heated air or cooled air inside the cylindrical tote vibe 3 is connected to the interior of the box-shaped heat pipe 2. The air flows into either the upper space or the lower space divided by the corrugated plate 2b inside the box-shaped heat pipe 2, and the air is replaced in the space where the corrugated plate 2b is not provided. The aim is to equalize the temperature by heating or air cooling.

第2図はこの発明の他の実施例を示す平面断面図で、第
1図と同じ構成の部分には同一の符号を付し説明な/4
1略する。図中の12は反応ガス供給マニホールド、1
3はシール材であり、第1図と異なる虞は、送風機7を
スタックケース6の左右何れかの側面に殿付けたことで
、第1図の場合積層方向の単位セル間で熱風または冷風
の入口−出口の温度差に相当する積層方向セル間の温度
差が生じるが、第2図の場合PkJv71方向の熱風ま
たは冷風の温度は一様であり、たとえ人口−出口の温度
差がありでもヒートパイプの均熱作用により単位セル面
内の温度差はほとんどなくせいぜい1’C程度の状態に
することができる。
FIG. 2 is a plan sectional view showing another embodiment of the present invention, in which parts having the same configuration as those in FIG.
1 omitted. 12 in the figure is a reaction gas supply manifold, 1
3 is a sealing material, and the difference from FIG. 1 is that the blower 7 is attached to either the left or right side of the stack case 6, so in FIG. There is a temperature difference between cells in the stacking direction that corresponds to the temperature difference between the inlet and the outlet, but in the case of Figure 2, the temperature of the hot air or cold air in the PkJv71 direction is uniform, and even if there is a temperature difference between the population and the outlet, there is no heat difference. Due to the heat-uniforming effect of the pipe, there is almost no temperature difference within the plane of the unit cell, and the temperature difference can be maintained at about 1'C at most.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、様数単位セルよりなる燃料電池スタ
ックK、外周圧熱交換用フィンを有する複数本の円筒形
ヒートパイプを端部に備えた箱形ヒートパイプを組合わ
せてスタックケースに収納し、スタックケースの一方面
に設けた送風機で熱風または冷風を前記円筒形ヒートパ
イプおよび熱交換用フィンに送風し、スタックケースの
他方面より排気させるという構造にしたので空冷式燃料
電池の装置全体の構造が簡単であり、寸法小さくコ/バ
クトKまとめることができる。また21風あるいは冷風
の入口−出口温度差を大きくとっても差支えないので通
風量を小さくし、通風抵抗を極めて小さくすることがで
きる。その結果送Jt機動力を小さくできる。
According to the present invention, a fuel cell stack K consisting of a uniform number of unit cells and a box-shaped heat pipe each having a plurality of cylindrical heat pipes each having peripheral pressure heat exchange fins at the ends are combined and housed in a stack case. However, the structure is such that a blower installed on one side of the stack case blows hot or cold air to the cylindrical heat pipe and heat exchange fins, and the air is exhausted from the other side of the stack case, so the entire air-cooled fuel cell device The structure is simple, and the dimensions are small and it is possible to put together a small size. Furthermore, since there is no problem even if the temperature difference between the inlet and the outlet of the 21 wind or cold air is made large, the amount of ventilation can be reduced and the ventilation resistance can be made extremely small. As a result, the transport Jt mobility can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である空冷式燃料電池の一
面断iii図、第2図はこの発明の他の実施例である空
冷式燃料!池の平面断面図、第3図は第1図および第2
図に示す空冷式燃料電池に用いられている箱形ヒートパ
イプの平面断面図、第4図は第3図のA−A矢視断面図
、第5図は従来構造の9冷式燃料篭池の系統図、第a因
は従来構造の空冷式燃料電池スタックのff?+視図、
第7図は従来構造の他の空冷式燃料電池スタックの斜視
図である。 1:燃料電池スタック、2:箱形ヒートパイプ、3:円
筒形ヒートパイプ、4:熱交換用フィン、6:容器(ス
タックケース)。 ↓ 第1図111 第2図 第3図 第4 図
FIG. 1 is a cross-sectional view of an air-cooled fuel cell according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an air-cooled fuel cell according to another embodiment of the present invention. A cross-sectional plan view of the pond, Figure 3 is similar to Figures 1 and 2.
A cross-sectional plan view of a box-shaped heat pipe used in the air-cooled fuel cell shown in the figure, FIG. 4 is a cross-sectional view taken along the line A-A in FIG. 3, and FIG. 5 is a 9-cooled fuel cage with a conventional structure. In the system diagram, cause a is ff? of the air-cooled fuel cell stack with the conventional structure. +View,
FIG. 7 is a perspective view of another air-cooled fuel cell stack having a conventional structure. 1: fuel cell stack, 2: box-shaped heat pipe, 3: cylindrical heat pipe, 4: heat exchange fin, 6: container (stack case). ↓ Figure 1 111 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)単位セルの形状に合わせて平角形に形成された箱形
ヒートパイプの少なくとも一端面より複数本の円筒形ヒ
ートパイプを突出させてそれぞれ箱形ヒートパイプに連
通させ、前記円筒形ヒートパイプの外周には複数枚の熱
交換用フィンを取付けるとともに、前記箱形ヒートパイ
プを単位セルの積層からなる燃料電池スタックで挾むよ
うにして組合わせ、これを容器に収納して容器の一方面
より熱風または冷風を送り込み、容器の通風ダクト内に
位置する前記円筒形ヒートパイプおよび熱交換用フィン
を通風したのち容器の他方面より排気させることを特徴
とする空冷式燃料電池。 2)特許請求の範囲第1項記載のものにおいて;箱形ヒ
ートパイプは均熱板で囲まれた平角形のもので、燃料電
池スタックの単位セルに接触し相対向する二面はウイッ
クを介して波板にて支えられる構造なることを特徴とす
る空冷式燃料電池。
[Scope of Claims] 1) A plurality of cylindrical heat pipes are made to protrude from at least one end surface of a box-shaped heat pipe formed in a rectangular shape to match the shape of a unit cell, and communicate with each of the box-shaped heat pipes, A plurality of heat exchange fins are attached to the outer periphery of the cylindrical heat pipe, and the box-shaped heat pipe is sandwiched between a fuel cell stack consisting of stacked unit cells, and this is housed in a container. An air-cooled fuel cell characterized in that hot air or cold air is sent in from one side, passed through the cylindrical heat pipe and heat exchange fins located in the ventilation duct of the container, and then exhausted from the other side of the container. 2) In the product described in claim 1, the box-shaped heat pipe is a rectangular one surrounded by a heat-uniforming plate, and the two opposing sides that contact the unit cells of the fuel cell stack are connected via a wick. An air-cooled fuel cell characterized by a structure supported by corrugated plates.
JP60101959A 1985-05-14 1985-05-14 Air cooling type fuel cell Pending JPS61260551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60101959A JPS61260551A (en) 1985-05-14 1985-05-14 Air cooling type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60101959A JPS61260551A (en) 1985-05-14 1985-05-14 Air cooling type fuel cell

Publications (1)

Publication Number Publication Date
JPS61260551A true JPS61260551A (en) 1986-11-18

Family

ID=14314404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60101959A Pending JPS61260551A (en) 1985-05-14 1985-05-14 Air cooling type fuel cell

Country Status (1)

Country Link
JP (1) JPS61260551A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011616A1 (en) * 1996-09-11 1998-03-19 Forschungszentrum Jülich GmbH Plate- or rod-like fuel cell cooling element and fuel cell stack with one or more fuel cell cooling elements
US5804326A (en) * 1996-12-20 1998-09-08 Ballard Power Systems Inc. Integrated reactant and coolant fluid flow field layer for an electrochemical fuel cell
FR2827427A1 (en) * 2001-07-12 2003-01-17 Commissariat Energie Atomique Solid electrolyte fuel cell with temperature regulation has thermally conducting supports of varying conductivity removing and dissipating excess heat
KR20030042633A (en) * 2001-11-23 2003-06-02 (주)세티 Fuel Cell Stack with Cooling Plates between Unit Cells for Cooling with Air
JP2005005080A (en) * 2003-06-11 2005-01-06 Honda Motor Co Ltd Fuel cell and temperature control system
JP2009043669A (en) * 2007-08-10 2009-02-26 Nippon Oil Corp Fuel cell system, and vaporizing method of raw material to be reformed
FR2945377A1 (en) * 2009-05-11 2010-11-12 Commissariat Energie Atomique FUEL CELL WITH REDUCED SIZE.
WO2014198778A1 (en) * 2013-06-13 2014-12-18 Compagnie Generale Des Etablissements Michelin Battery pack for a motor vehicle
WO2015107106A1 (en) * 2014-01-15 2015-07-23 Siemens Aktiengesellschaft Battery with temperature control
US9728825B2 (en) 2013-04-26 2017-08-08 Hyundai Motor Company Device for indirectly cooling battery module of eco-friendly vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011616A1 (en) * 1996-09-11 1998-03-19 Forschungszentrum Jülich GmbH Plate- or rod-like fuel cell cooling element and fuel cell stack with one or more fuel cell cooling elements
US5804326A (en) * 1996-12-20 1998-09-08 Ballard Power Systems Inc. Integrated reactant and coolant fluid flow field layer for an electrochemical fuel cell
FR2827427A1 (en) * 2001-07-12 2003-01-17 Commissariat Energie Atomique Solid electrolyte fuel cell with temperature regulation has thermally conducting supports of varying conductivity removing and dissipating excess heat
KR20030042633A (en) * 2001-11-23 2003-06-02 (주)세티 Fuel Cell Stack with Cooling Plates between Unit Cells for Cooling with Air
JP4629961B2 (en) * 2003-06-11 2011-02-09 本田技研工業株式会社 Fuel cell and temperature control system
JP2005005080A (en) * 2003-06-11 2005-01-06 Honda Motor Co Ltd Fuel cell and temperature control system
JP2009043669A (en) * 2007-08-10 2009-02-26 Nippon Oil Corp Fuel cell system, and vaporizing method of raw material to be reformed
FR2945377A1 (en) * 2009-05-11 2010-11-12 Commissariat Energie Atomique FUEL CELL WITH REDUCED SIZE.
WO2010130630A1 (en) * 2009-05-11 2010-11-18 Commissariat à l'énergie atomique et aux énergies alternatives Compact fuel cell
JP2012526366A (en) * 2009-05-11 2012-10-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Compact fuel cell
US8679693B2 (en) 2009-05-11 2014-03-25 Commissariat à l′énergie atomique et aux énergies alternatives Compact fuel cell
US9728825B2 (en) 2013-04-26 2017-08-08 Hyundai Motor Company Device for indirectly cooling battery module of eco-friendly vehicle
WO2014198778A1 (en) * 2013-06-13 2014-12-18 Compagnie Generale Des Etablissements Michelin Battery pack for a motor vehicle
FR3007211A1 (en) * 2013-06-13 2014-12-19 Michelin & Cie BATTERY PACK FOR MOTOR VEHICLE
US9692092B2 (en) 2013-06-13 2017-06-27 Compagnie Generale Des Etablissements Michelin Battery pack for a motor vehicle
WO2015107106A1 (en) * 2014-01-15 2015-07-23 Siemens Aktiengesellschaft Battery with temperature control
WO2015106758A1 (en) * 2014-01-15 2015-07-23 Cornelia Neidl-Stippler Passive temperature control of rechargeable batteries

Similar Documents

Publication Publication Date Title
WO2018040902A1 (en) Battery module, traction battery pack and automobile
CN103053068B (en) Battery temp regulating system and battery temp adjusting part
US5974803A (en) Thermogenerator for power production in conjunction with a heating device
US9653762B2 (en) Battery temperature regulation system and battery temperature regulation unit
US20010040025A1 (en) Heat exchanger element
JP2008034297A (en) Power supply device
DE69705322T2 (en) FLOW ARRANGEMENT FOR THE REACTANTS OF A POWER PLANT FROM SEVERAL FUEL CELL STACKS WITH INTERNAL REFORMING
JPS61260551A (en) Air cooling type fuel cell
JP2005537126A5 (en)
JP4698344B2 (en) Assembled battery
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
BRPI0714145A2 (en) fuel cell system and process for influencing the thermal equilibrium of a fuel cell system
JP3138118B2 (en) Package type fuel cell power generator
US7374834B2 (en) Gas flow panels integrated with solid oxide fuel cell stacks
KR102588375B1 (en) Fuel cell system providing thermal solution
US20060216559A1 (en) Co-generation of electricity by the seebeck effect within a fuel cell
JPH07106640A (en) Thermoelectric cooling unit
JPS60254568A (en) Fuel cell
JP2009266584A (en) Power supply device
WO2019062966A1 (en) Battery device and vehicle
JP2005533359A (en) Fuel cell stack comprising a counter-flow cooling system and a plurality of coolant accumulation ducts arranged parallel to the stack axis
KR102574693B1 (en) hybrid battery thermal management system for electric vehicles
WO2023054719A1 (en) Cogeneration system
JPS61243662A (en) Cooling device for fuel cell
CN213147489U (en) Heat energy recovery air interchanger