JPS60151972A - Layer-built fuel cell - Google Patents

Layer-built fuel cell

Info

Publication number
JPS60151972A
JPS60151972A JP59007844A JP784484A JPS60151972A JP S60151972 A JPS60151972 A JP S60151972A JP 59007844 A JP59007844 A JP 59007844A JP 784484 A JP784484 A JP 784484A JP S60151972 A JPS60151972 A JP S60151972A
Authority
JP
Japan
Prior art keywords
flow path
gas
fuel cell
holes
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59007844A
Other languages
Japanese (ja)
Other versions
JPH0377625B2 (en
Inventor
Isao Nikai
勲 二階
Seiji Sato
誠二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59007844A priority Critical patent/JPS60151972A/en
Publication of JPS60151972A publication Critical patent/JPS60151972A/en
Publication of JPH0377625B2 publication Critical patent/JPH0377625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To simplify the structure of a layer-built fuel cell, make it small and increase its performance by supplying and exhausting a fuel gas and an oxidant gas through four gas inlet and outlet nozzles so that these gases flow in counter directions in the flow path unit. CONSTITUTION:A mainfold for gas supply and exhaust is formed by stacking flow path units 14. As the result, the size of a layer-built fuel cell is reduced by concentrating supply and exhaust holes in one section and the space for the fuel cell is reduced. Each flow path unit 14 is formed by providing flow paths on the upper and the lower ends of a diaphragm having four symmetrically arranged holes in its periphery and then providing electrode plates on the flow paths in such a manner as to cause the plates to be continuous with the diaphragm. A fuel gas and an oxidant gas are supplied and exhausted through four gas inlet and outlet nozzles so that these gases flow in counter directions in the flow path unit. Owing to the above constitution of each flow path unit 14, gases are homogeneously supplied from the manifold into unit cells. By the means mentioned above, it is possible to simplify the structure of a layer-built fuel cell, make it small and increase its performance.

Description

【発明の詳細な説明】 [fI:業トの利用分!Ilf] 水光明41 (6層燃料電池特に溶融塩積層燃料電池に
l3II!l−るものである。
[Detailed Description of the Invention] [fI: Utilization of work! Ilf] Suikomei 41 (13II!l- for six-layer fuel cells, especially molten salt stacked fuel cells).

[従来技術] 燃料電池の一単位(中ヒル)当りの起電力が低い為燃料
電池の出力を増大させるためには中ヒルを(9層して大
型化−りる必要がある。単ヒルを積層して大型化した場
合に要求される燃わ1電池の条件の1どしては、71 
F//−、’t’iの両側をlXjれる燃料ガスと酸化
剤ガスとを容易に各単セルに配分し14収集し得、両流
体による除熱効宋が人さく、史に構造が簡単であること
が葭求される。
[Prior art] Since the electromotive force per unit (medium hill) of a fuel cell is low, in order to increase the output of the fuel cell, it is necessary to increase the size of the medium hill (9 layers). One of the conditions for one combustion battery required when stacking and increasing the size is 71.
F//-, the fuel gas and oxidizer gas flowing on both sides of 't'i can be easily distributed to each single cell and collected. Simplicity is required.

従来のfIli層燃料電池どしでは、りi1図に示づ如
きものがある。
Conventional fIli layer fuel cells include those shown in Figure 1.

第1図に示されるfu h′!′i燃料電池の中ヒル1
は、電解質ターrル2の上下に電極3.4を密るさせ、
各電極3.4の3辺にシールパー5.6を取イ1(〕史
に該シールパー5.6に隔壁7.8を固るして構成して
あり、各電極3.4のM放された辺はLlに対峙した位
置となっており更にシールパー5,6の互に対角をなす
部分の角部が欠切されている。
fu h′! shown in FIG. 'i fuel cell middle hill 1
The electrodes 3.4 are densely arranged above and below the electrolyte tar 2,
A sealer 5.6 is installed on three sides of each electrode 3.4. The other side faces Ll, and the corner portions of the sealers 5 and 6 that are diagonal to each other are cut away.

上記構成の単セル1が所要層積十げられ、前記FI?’
欣さfLだ辺の−りに燃料ガスマニホールド9がIIM
 イ=Jけられ、他方の辺に酸化剤ガスマニホールド1
0が取(”J CJられる。又、−の欠切された角部に
は燃料カス排気マニホールド11、及び他りの角部には
酸化剤カスIJ「気マニホールド(図示せず)か取1」
(プられる。
The single cell 1 having the above configuration is stacked in required layers, and the FI? '
Fuel gas manifold 9 is IIM
I=J cut, oxidizer gas manifold 1 on the other side
0 is removed ("J CJ").Furthermore, a fuel waste exhaust manifold 11 is installed at the corner where the - mark is cut out, and an oxidizer waste IJ "air manifold (not shown) is installed at the other corner. ”
(It is pulled.

而し−で、燃料カスマニホールド9より流入した燃わ1
刀ス(Ll 2 、I−12+ G O2等)は各単セ
ル1に分配され、シールバー60形成される間隙、欠切
111!4通って燃料カス1ノ1気マニホールド11(
゛収集され−C外部に1出され、又酸化剤ガスマニホー
ルド10にり流入した酸化剤ガス(02、空気鋳)は上
記したと同様に各中セル1に分配され、シールバー5で
形成される間隙、欠切部を通つCM化剤刀カスノ[気マ
ニホールドで収集され外部に1J1出される。
Therefore, the fuel 1 flowing in from the fuel waste manifold 9
The gas (Ll 2 , I-12 + G O2, etc.) is distributed to each single cell 1, passes through the gap formed by the seal bar 60 and the notch 111!4, and the fuel scum (Ll 2 , I-12 + G O2, etc.) passes through the gap formed by the seal bar 60 and the notch 111!
The oxidizing gas (02, air casting) collected and discharged outside the oxidizing gas manifold 10 is distributed to each inner cell 1 in the same manner as described above, and is formed by the seal bar 5. The CM gas that passes through the gaps and cutouts is collected by the air manifold and discharged to the outside.

上記した従来の偵111燃オ′31電池では8膚への燃
料カス、酸化剤ガスの流用配分が不良で、又間隙を通過
りるカスかシールバーの角部で滞流して性能が十分得ら
れず、除熱効果も」−らない。
In the above-mentioned conventional 111 fuel cell, the distribution of fuel scum and oxidizing gas to the 8 cells is poor, and the scum passing through the gap stagnates at the corner of the seal bar, resulting in insufficient performance. There is no heat removal effect.

更に、積層燃料電池が大型になれば4する稈、各マニホ
ールドも大型化する、又各車セル間、中セルとマニホー
ルド間のシールか困難どなるで9の問題を有している、
Furthermore, as the stacked fuel cell becomes larger, the culm and each manifold also become larger, and there are nine problems such as difficulty in sealing between each vehicle cell and between the middle cell and the manifold.
.

[弁明の目的] 本発明は上記した実情を鑑み、41〜造が曲中で、小型
且性能のにい積層燃わI電池を提供することを目的とり
るものである。
[Object of Defense] In view of the above-mentioned circumstances, it is an object of the present invention to provide a laminated fuel I battery having a structure of 41 to 50, which is small in size and has good performance.

[弁明の構成] 本発明は、流路ユニツ1〜を偵fト1aることにJ、っ
てガス給排気のマニホールドが形成され、特にマニホー
ルドを設()る必要がなく10F? 4Jl気1]」を
一箇所に集約して小型化すると共に設置スベーl〜が少
なくてJむ様にし、更にマニホールドから単セルへのガ
ス分配も均一になる様にした心のrあり、周辺の41〆
、)所に対称的に孔を穿設した隔壁の上下両面に流路を
形成し、一方の流路により対峙する2の孔を連通さU゛
、他方の流路J:り残りの2の孔を連通さぜ、前記2の
流路の上下に電極板を隔壁と導通状態で設Gノて流路」
−ニラ1〜を構成し、該流路」−ニットを電解質板を介
在さけて積重ねるど共に下面を底藍ユニツI−にj、り
閉塞し、上面に前記4の孔位置と合致したカス出入1」
ノズルが設【ノられた上蓋ユニツl−を取f・」()、
該4のカス出入!」ノズルより燃料カスと酸化剤カスど
を流路ユニット内で対向流どなる様Kn IJ+気づる
様4114成した偵層燃オ°]1電池に係るしのである
[Configuration of Explanation] In the present invention, a gas supply/exhaust manifold is formed by rectifying the flow path units 1 to 1a, and there is no need to particularly install a manifold. 4 Jl air 1]' was consolidated in one place to make it more compact, the installation space was reduced, and the gas distribution from the manifold to the single cell was also uniform. 41〆,) Flow paths are formed on both the upper and lower sides of the partition wall in which holes are drilled symmetrically, and one flow path connects the two opposing holes U゛, and the other flow path J: the remainder. 2 holes in communication with each other, and electrode plates are placed above and below the 2 flow channels in a state of conduction with the partition walls to form a flow channel.
The flow path is formed by stacking the knits with the electrolyte plate interposed, and the bottom surface is closed by the bottom indigo unit I-, and the top surface is filled with holes that match the hole positions in 4 above. Entrance/exit 1”
Remove the upper lid unit with the nozzle installed (),
The 4th dregs come in and out! ``The fuel scum and oxidizer scum flow from the nozzle in counter-current flow within the channel unit.

[実 blh I列冒 以下図面を禽照してホyt明の実施例を説明リ−る。[Actual blh I list Embodiments of the invention will be explained below with reference to the drawings.

ガ)2図・〜第5図に於い(第1の実施例を説明りる。g) In Figures 2 to 5, the first embodiment will be explained.

f、t’+ Ii1燃別燃油電池13h路ユニット14
を電解質板15を介(1させてKQ’Aね、史に底部は
電解質板15を介しく°底玲−1ニッ1〜1Gを父上部
は電解質板15を介して上蓋ユニツ1へ17を取1」【
Jである。電解714反15の四角には3角形状の通孔
18a、 18b、 18c。
f, t'+ Ii1 fuel cell 13h road unit 14
Through the electrolyte plate 15 (1), the bottom part connects 1 to 1 G through the electrolyte plate 15, and the upper part connects 17 to the upper lid unit 1 through the electrolyte plate 15. Tori 1” [
It is J. Triangular through holes 18a, 18b, 18c are provided in the square 15 of the electrolysis 714.

18dを穿設し、流路ユニット14の四角に形成した3
角形状の空間19a、 19b、 19c、 19dと
共に燃料カス給気マニボール゛ド20、燃)l’lガス
JJ+気マニ小−ルド21及び酸化剤ガス給気マニホー
ルド23、酸化剤ガス排気マニホール1−22を構成1
!シめる。
18d and formed into a square of the channel unit 14.
Along with the square spaces 19a, 19b, 19c, and 19d, there is a fuel gas supply manifold 20, a fuel gas JJ+ gas manifold 21, an oxidant gas supply manifold 23, and an oxidant gas exhaust manifold 1-. 22 consists of 1
! Shrink.

前記底蓋ユニツ1−16の底蓋24は前記11のマニホ
ールド20,21.2−3.24を閉塞し、−[蓋ユニ
ツ1〜17の上M12には該4のマニホールド20,2
1,22.23に連通ずる燃料入口ノズル25、燃料出
口ノズル26、酸化剤ガス人ロノスル28、酸化剤カス
出口ノズル27を取イ」ける。
The bottom lid 24 of the bottom lid unit 1-16 closes the 11 manifolds 20, 21.2-3.24, and the upper M12 of the lid units 1-17 has the four manifolds 20, 2.
Remove the fuel inlet nozzle 25, fuel outlet nozzle 26, oxidizer gas outlet nozzle 28, and oxidizer scum outlet nozzle 27 that communicate with 1, 22, and 23.

第5図に於いて流路ユニツ1へ14を詳)ボする。In FIG. 5, the flow path unit 1 (14) is shown in detail.

4角に前記電解質板15の通孔18’a、 181+、
 18c。
Through holes 18'a, 181+ of the electrolyte plate 15 at the four corners,
18c.

Hltlと同形の孔29a、29b、29c、29dを
穿設した矩形の隔130の上面、下面にシールフレーム
31゜32を合着する。該一方のシールフレーム31の
対角を仕切板33.33によって三角形状に仕切り、仕
切板33.33によって仕切られた三角窓34a。
Seal frames 31 and 32 are attached to the upper and lower surfaces of a rectangular partition 130 having holes 29a, 29b, 29c, and 29d of the same shape as Hltl. Diagonal corners of the one seal frame 31 are partitioned into a triangular shape by partition plates 33.33, and a triangular window 34a partitioned by the partition plates 33.33.

34cがそれぞれ隔壁30の几2’9a、2ac及び前
記電解質板15の通孔18a、18cと連通し、シール
フレーム31の中央部の窓35が隔壁30の孔2911
.29d 。
34c communicate with the holes 2'9a, 2ac of the partition wall 30 and the through holes 18a, 18c of the electrolyte plate 15, respectively, and the window 35 in the center of the seal frame 31 communicates with the holes 2911 of the partition wall 30.
.. 29d.

電解質板15の通孔1ab、=iと連通する様にする。It communicates with the through hole 1ab,=i of the electrolyte plate 15.

又、曲プ)のシールフレーム32は前記シールフレーム
31どは異なる位首の対角を仕切板33..33ににつ
でイ」切つCおり、同様に三角窓3411.34dをそ
れぞれ孔29b、29d 、通孔18b、18dに連通
させ中央窓3にを孔2りa、29c及σ通孔IBa、1
8cに連通さ已る。
In addition, the seal frame 32 of the curved panel has partition plates 33. .. Similarly, triangular windows 3411.34d are connected to holes 29b, 29d, through holes 18b, 18d, respectively, and holes 2a, 29c and σ through holes IBa are connected to central window 3. ,1
It is connected to 8c.

前記+:ia檗30の−に面、下面には前記シールフレ
ーム:H,32の中央窓35 、3Gに1■装される流
路板37、38 ヲ固’a Jル。iU i/li路仮
37,384J !Jl ニ点対称形状C′あり、上面
に固へした流に′BBBr2次の形状を右しCいる。
On the - side of the +:ia box 30, on the lower side are the central windows 35 of the seal frames: H and 32, and flow passage plates 37 and 38 installed in 3G. iU i/li road temporary 37,384J! Jl There is a two-point symmetrical shape C', and the solid flow on the upper surface has a BBBr quadratic shape.

流路板31はシールル−ム31の残置された2の対角位
眉に(1する孔291+、2!Jdを閉塞しない様2対
角部分を欠切した6角形状をしてJ5す、その…1面は
9.U形波形状をしその凹凸によっ(流体流路39を形
成している。該流体流路3つはその中央かシールル−ム
31の長辺ど平fjな直路であり、両端部が仕切板33
.33と平行な別路であって、孔29bど29(1(空
間19bと19d、第4図参照)とを連通けしめる7字
状の流路である。又、該流路39に於いて流路各部分の
流路長が等しくなることは言うまでもない。
The flow passage plate 31 has a hexagonal shape with two diagonal portions cut out so as not to block the holes 291+, 2! One surface thereof has a 9.U-shaped wave shape, and its unevenness forms a fluid flow path 39.The three fluid flow paths are formed in the center or in the long side of the seal room 31 as a straight path fj. , and both ends are partition plates 33
.. 33, and is a 7-shaped flow path that connects the holes 29b and 29 (1 (spaces 19b and 19d, see FIG. 4). It goes without saying that the channel lengths of each section of the channel are equal.

次に、上下の流路板37,3aに、該流路板ど同外形形
状の上下電極板40.41を密着し流路ユニッ1へ14
を構成り−る。
Next, the upper and lower electrode plates 40 and 41 having the same external shape as the upper and lower flow channel plates 37 and 3a are closely attached to the upper and lower flow channel plates 37 and 3a, and the 14
consists of.

前記した底蓋ユニツ1〜16は底蓋24の上面にシール
フレーム42、流路板37を固着し、該tA回路板31
に上電極板40を密着せしめて構成したものであり、そ
の構造は前記流路ユ二ッ1−14の下半部に相当する。
The bottom lid units 1 to 16 described above have a seal frame 42 and a channel plate 37 fixed to the top surface of the bottom lid 24, and the tA circuit board 31.
The upper electrode plate 40 is brought into close contact with the upper electrode plate 40, and its structure corresponds to the lower half of the flow path unit 1-14.

又、上蓋ユニ・ント17は上蓋12の上面にシールフレ
ーム32、流路板38を固11jシ該流路板38に下電
極板41を密着したものであって、その構造は前記流路
」ニラ1−14の下半部に相当する。
The upper lid unit 17 has a seal frame 32 and a flow path plate 38 fixed to the upper surface of the upper lid 12, and a lower electrode plate 41 is tightly attached to the flow path plate 38, and its structure is similar to that of the flow path. It corresponds to the lower half of Chive 1-14.

上記した各1ニツl−1’4. IG、 17を電解質
板15を介在させて積重ねれば第2図に示した14層燃
料電池13が組上がる。
Each of the above 1 day l-1'4. By stacking the IGs 17 with the electrolyte plates 15 interposed, the 14-layer fuel cell 13 shown in FIG. 2 is assembled.

以下上記した積層燃料電池13の作用について説明する
The operation of the stacked fuel cell 13 described above will be explained below.

燃IIガスが燃料入口ノズル2!iJ、り燃わ1ガス給
気マニホールド20へfATh人し、各>ATh W8
ユニツ1〜14及び上蓋ユニツ1〜17の空間19aよ
り分配されて流路板38を通っC空間Mlcへ抜()燃
J”lカスIJI気マニホール1ミ21で収集され燃1
′1出ロノス′ル2Gより排出される。−万酸化剤刀又
は酸化剤ガス入l」ノズル28より酸化剤ガス給気マニ
ホールド23/\IAt人し、各流路ユニット14及び
下蓋ユニツ1〜1Gの空間19〔1より分配されて流路
板37を通つで空間191(へ抜り酸化剤ガス1ノドa
マニホールド22−(゛収集され0す化剤カス出ロノス
ル27J:すIJ)出される1゜ 隣設りる流路ユニツ1−間に於いCは燃料カスと酸化剤
ガスどが電解質板15の上面、下面を電(?+tai4
1,40を介しC:【)つて2Qれる為電気化学反応が
起って電解質板15の上下両面間に電位が発生りるど1
i−IJ時に電h7質仮15は反応の為発熱する。
Fuel II gas is at fuel inlet nozzle 2! iJ, burn 1 fATh person to gas supply manifold 20, each>ATh W8
The fuel is distributed from the spaces 19a of the units 1 to 14 and the upper lid units 1 to 17 and discharged through the channel plate 38 to the C space Mlc.
It is ejected from '1 out Ronosu' 2G. - The oxidizer gas is supplied from the oxidizer gas or oxidizer gas nozzle 28 to the oxidizer gas supply manifold 23/\IAt, and the flow is distributed from the spaces 19 [1] of each flow path unit 14 and the lower lid units 1 to 1G. Through the road plate 37, the space 191 (hollowed out oxidizing gas 1 no. a)
Between the manifold 22 (collected oxidizing agent sludge output 27J: IJ) and the adjacent flow path unit 1, the fuel scum and oxidizing gas are discharged from the electrolyte plate 15. Electrically connect the top and bottom surfaces (?+tai4
1 and 40 through C:[) and 2Q, an electrochemical reaction occurs and a potential is generated between the upper and lower surfaces of the electrolyte plate 15.
During i-IJ, the electron h7 substance 15 generates heat due to reaction.

上記lノだ燃オ′:1カスと酸化剤ガスが前記流路ユニ
ッ1〜14を流れる状態は対向;A;となり、電解質板
15で発生ずる熱が両流体によって効果的に除去できる
。史に流路ユニツ1〜14、底蓋ユニット1G、」ニ蓋
ユニツ1−17を積重ねCいる為、電解質板15は上下
の次の層の電W?質板と電極板40,41、)AL路根
板3738 、隔壁30、シールフレーム31.32を
介して導電状態にあり、電解質板15の上面と上層の電
解質板の下向とは同市(Oどなる。(、Lって積層によ
り重任を増加でき、所望の電力を1りることができる。
The above-mentioned combustion gas and the oxidizing gas flow through the flow path units 1 to 14 in a state where they are opposed to each other, and the heat generated in the electrolyte plate 15 can be effectively removed by both fluids. Since the flow channel units 1 to 14, the bottom cover unit 1G, and the two cover units 1 to 17 are stacked in the stack, the electrolyte plate 15 is connected to the next layer above and below. The upper surface of the electrolyte plate 15 and the downward direction of the upper electrolyte plate are connected to each other (O (L) can increase the number of layers by stacking them, and the desired power can be reduced by 1.

更に、各)ン(ホユニツ1〜14を)Aすれる両刀スは
滞留することがなく、単セルのもつ性能を十分発揮させ
1″、する。
Furthermore, the double-sided beams that pass through each unit (units 1 to 14) do not stagnate, allowing the performance of the single cell to be fully demonstrated.

又、燃料電池の構造に於いCも、流路ユニツ1〜自体を
積重ねることにJ、リマニ小−ルドかIM成され且給排
気のノズルは一面に集約できるので、燃料電池を設置1
γi−するに必児な空間はハしく少なくてにい。更に、
各7二ホールトを個別に製作する必要がないので414
造も簡単■小型であり、シールは各流路ユニット間を確
実に行えばJ、いのでシール性にも優れている。
In addition, in the structure of the fuel cell, the flow path units 1 to 1 are stacked together, and the remanufacturing small or IM is formed, and the supply and exhaust nozzles can be concentrated on one side, so it is easy to install the fuel cell 1.
γi - The necessary space is very small and small. Furthermore,
There is no need to manufacture each 72 hole individually, so 414
Easy to construct ■It is small and has excellent sealing properties as long as the seals are secured between each flow path unit.

第6図、第7図は他の実施例を示しており、隔壁30、
電解質板15、シールフレーム31.32に円形の通孔
を穿設してン二ホールド20,21,22゜23の1(
)1面形状を円形にしたものである。その他マニホール
ドの断面形状【J矩形であってもよいことは勿論Cある
FIG. 6 and FIG. 7 show other embodiments, in which the partition wall 30,
Circular through holes are bored in the electrolyte plate 15 and the seal frame 31, 32, and the holes 20, 21, 22, 23, 1 (
) One side has a circular shape. Other cross-sectional shapes of the manifold [C] Of course, the cross-sectional shape of the manifold may be rectangular.

又、第8図、第9図は他の実施例を示し、第8図は)、
1≧路:2ニツ1−14の部分1個、第9図は隔壁30
の斜視図であり、該実施例では前記流路板を省略し、隔
壁30に整FAt突条43,4/lを両面に突出させて
成形し、隔壁30に流路板の問能も兼ねさ1! 7.:
 Gの’C゛il/する。
In addition, FIGS. 8 and 9 show other embodiments, and FIG.
1≧Route: 2 pieces 1 part 1-14, Figure 9 shows the partition wall 30
In this embodiment, the flow path plate is omitted, and the partition wall 30 is formed with adjustable FAT protrusions 43, 4/l protruding from both sides, so that the partition wall 30 also functions as a flow path plate. Sa1! 7. :
G's 'Cil/do.

第10図、りj111ズ1は上記実施例の隔壁に関す“
る応用例であり、隔壁30に点状の突起45.46を形
成したしの(−ある。
In FIG.
This is an application example in which point-shaped projections 45 and 46 are formed on the partition wall 30 (-).

史に、i/IE k’B板を用い流体流路をZ状に構成
した例にjAいて、熱除去効果は流体流路の直路で顕茗
である。従っ“C1熱除去9)果を増大させる揚百は両
路が長くどれる4、l’i積層燃料電池の…i面形状を
長矩形とづるか、心根にねじり仮等を設り(,11°l
路を流れる流体を乱流状態として伝熱性の向、1を図つ
Cもよい。尚、ねじり板を設けることにJ:り電極を電
解質板に缶石さUる効果も1υJ持できる。
In the past, there was an example in which the i/IE k'B board was used to configure the fluid flow path in a Z-shape, but the heat removal effect was significant in a straight fluid flow path. Therefore, in order to increase the effect of "C1 heat removal 9), both paths can be extended for a long time. 4. The i-plane shape of the l'i stacked fuel cell can be called an elongated rectangle, or the core root can be twisted (, 11°l
C may also be used, in which the fluid flowing through the channel is brought into a turbulent state to improve the heat transfer property. Incidentally, the provision of the torsion plate also has the effect of twisting the electrode to the electrolyte plate by 1υJ.

その他、シールフレームと隔壁を一体]14造どする等
、本発明の要旨を逸脱しない範囲0種々の変更を加え得
ることは琶うまでもない。
It goes without saying that various other changes may be made without departing from the gist of the present invention, such as by making the seal frame and the partition wall integral.

[ブそ明の効果] 以上述べた如く本発明によれば下記の優れた効果を発揮
し得る。
[Effects of Lighting] As described above, according to the present invention, the following excellent effects can be exhibited.

(i) に6造が簡単で小型(・ある、。(i) A six-piece construction is easy and small (・there is one).

(f+) ?二ホールドを別に製作する必要がないので
安価となる。
(f+)? It is inexpensive because there is no need to separately manufacture the second hold.

ωO給排気が一箇所に集約できるので;9@スペースが
少なくてすむ、1 00 配管が容易である。
ωO Supply and exhaust can be concentrated in one place; 9 @ Less space required; 1 00 Piping is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のffi層燃料電池の分解斜視図、第2図
〜第5図は本発明の第1の実施例を示し、第2図は全体
斜視図、第3図は断面図、第4図は流路ユニツ1〜関係
の分解斜視図、第5図は流路1ニツ1−の分解斜視図、
第6図、第7図は他の実施例を示し、第6図は全体斜視
図、第7図は?AL路Iニット関係の分vr斜祝図、第
8図は更に他の実Xi1例の流路ユニットの部分図、第
9図は該実施例に71” LJるVt:+壁の斜視図、
第10図は隔壁の他の形状を示す斜視図、第11図は第
10図の△−A tA?J、!図である。 13は積層燃わ]電池、14は流路ユニット、15は電
解質板、16は底蓋ユニツ1〜.17は上蓋ユニツI〜
、25は燃料入口ノズル、26は燃籾出ロノズル、27
1、L酸化剤カス出1」ノズル、28は酸化剤ガス人l
二1ノズル、29a、29b、29c、2りdは孔、3
0は隔壁、37.311は流路板、4(1,41は電極
板を承り。 ’II ;’I 出 願 人 イ+ II+ 12播磨Φ[業(1、式会社第5図 Ln 第6 rMl 17 第7図
FIG. 1 is an exploded perspective view of a conventional FFI layer fuel cell, FIGS. 2 to 5 show a first embodiment of the present invention, FIG. 2 is an overall perspective view, FIG. 3 is a sectional view, and FIG. Figure 4 is an exploded perspective view of the flow path unit 1~, Figure 5 is an exploded perspective view of the flow path unit 1-,
Figures 6 and 7 show other embodiments, with Figure 6 being an overall perspective view and Figure 7 being a general perspective view. Figure 8 is a partial view of the flow path unit of another example of Xi1, and Figure 9 is a perspective view of the Vt: + wall of the example with 71" LJ.
FIG. 10 is a perspective view showing another shape of the partition wall, and FIG. 11 is the Δ-A tA? of FIG. 10. J,! It is a diagram. 13 is a laminated battery, 14 is a channel unit, 15 is an electrolyte plate, and 16 is a bottom cover unit 1 to . 17 is upper lid unit I~
, 25 is a fuel inlet nozzle, 26 is a fuel outlet nozzle, 27
1. L oxidant gas output 1" nozzle, 28 is oxidant gas nozzle
21 nozzle, 29a, 29b, 29c, 2d is hole, 3
0 is the partition wall, 37.311 is the channel plate, 4 (1, 41 is the electrode plate. rMl 17 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1) 周辺の/′1箇所にλ・]称的に孔を穿設した隔
壁の上下両面に流路を形成し、一方の流路により9.J
 配’i IIる2の孔を連通ざV1他方の流路により
残りの2の孔を連通させ、前記2の流路の1−1;に電
(N tuを隔1yと導通状態で設けて流路−1ニット
を構成し、該流路ユニツl−を電解質(kを介在さI!
η拍重ねると共に下面を底凶」=ニットにより閉塞し、
上面に前記4の孔位ifZど合独したガス出入[−1ノ
ズルが設けられた上蓋ユニツ1へ4取fすt)、該11
のガス出入口ノズルJ、り燃わ1ガスど酸化剤ガスとを
流路ユニッ1〜内で対向流となる様給排気することを特
徴どMる(^層燃第31電池。
1) A flow path is formed on both the upper and lower sides of a partition wall in which holes are drilled λ·] at one location around the periphery.9. J
The remaining two holes are connected to each other through the other flow path, and an electric current (Ntu is provided in conduction with the gap 1y) to 1-1 of the two flow paths. Flow path unit 1 is constructed, and the flow path unit l- is connected to electrolyte (k interposed I!
η As the beats pile up, the bottom surface is blocked by the knit,
On the top surface, there are 4 holes for joint gas inflow and outflow [-1 to the upper lid unit 1 provided with the nozzle], said 11
The gas inlet/outlet nozzle J is characterized by supplying and exhausting the reburning gas and the oxidizer gas so as to form counterflows within the channel units 1 to 1 (31st layer fuel cell).
JP59007844A 1984-01-19 1984-01-19 Layer-built fuel cell Granted JPS60151972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59007844A JPS60151972A (en) 1984-01-19 1984-01-19 Layer-built fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007844A JPS60151972A (en) 1984-01-19 1984-01-19 Layer-built fuel cell

Publications (2)

Publication Number Publication Date
JPS60151972A true JPS60151972A (en) 1985-08-10
JPH0377625B2 JPH0377625B2 (en) 1991-12-11

Family

ID=11676920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007844A Granted JPS60151972A (en) 1984-01-19 1984-01-19 Layer-built fuel cell

Country Status (1)

Country Link
JP (1) JPS60151972A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208559A (en) * 1986-03-10 1987-09-12 Ishikawajima Harima Heavy Ind Co Ltd Separator for fuel cell
US5045413A (en) * 1989-05-03 1991-09-03 Institute Of Gas Technology Fully internal mainfolded fuel cell stack
US5077148A (en) * 1989-05-03 1991-12-31 Institute Of Gas Technology Fully internal manifolded and internal reformed fuel cell stack
GR900100646A (en) * 1990-04-10 1992-07-30 Inst Gas Technology Fully internal manifolded fuel cell stuck
WO1994027334A1 (en) * 1993-05-19 1994-11-24 Stichting Energieonderzoek Centrum Nederland Molten carbonate fuel cell stack
JP2005093095A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4026302B2 (en) * 2000-07-06 2007-12-26 トヨタ自動車株式会社 Separator for fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160775A (en) * 1980-05-16 1981-12-10 Hitachi Ltd Partition plate for fuel cell
JPS585976A (en) * 1981-07-01 1983-01-13 Agency Of Ind Science & Technol Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160775A (en) * 1980-05-16 1981-12-10 Hitachi Ltd Partition plate for fuel cell
JPS585976A (en) * 1981-07-01 1983-01-13 Agency Of Ind Science & Technol Fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208559A (en) * 1986-03-10 1987-09-12 Ishikawajima Harima Heavy Ind Co Ltd Separator for fuel cell
US5045413A (en) * 1989-05-03 1991-09-03 Institute Of Gas Technology Fully internal mainfolded fuel cell stack
US5077148A (en) * 1989-05-03 1991-12-31 Institute Of Gas Technology Fully internal manifolded and internal reformed fuel cell stack
GR900100646A (en) * 1990-04-10 1992-07-30 Inst Gas Technology Fully internal manifolded fuel cell stuck
WO1994027334A1 (en) * 1993-05-19 1994-11-24 Stichting Energieonderzoek Centrum Nederland Molten carbonate fuel cell stack
NL9300870A (en) * 1993-05-19 1994-12-16 Stichting Energie Fuel cell construction.
JP2005093095A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Fuel cell

Also Published As

Publication number Publication date
JPH0377625B2 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
US5503945A (en) Separator plate for a fuel cell
US3833424A (en) Gas fuel cell battery having bipolar graphite foam electrodes
JPS63279574A (en) Temperature distribution improving method for fuel cell
JPS624833B2 (en)
MXPA04004279A (en) Fuel cell fluid flow field plates.
JPS5912572A (en) Fuel cell
US5508128A (en) Fuel cell system and fuel cells therefor
US6649296B1 (en) Unitized cell solid oxide fuel cells
US5350642A (en) Solid-electrolyte fuel cell system
JPH0238377Y2 (en)
JPS60151972A (en) Layer-built fuel cell
US5750280A (en) Fuel cell system
JPS58155669A (en) Reaction-gas supplying and exhausting device provided in fuel cell
JPS6276260A (en) Separator for fuel cell
JPS63119166A (en) Fuel battery
JPS62163264A (en) Separator for fuel cell
JP3098619B2 (en) Fuel cell
JPS5893170A (en) Molten carbonate type fuel cell
JPH01251562A (en) Flat plate type solid electrolyte fuel cell
JP2554114B2 (en) Fuel cell separator
JPS59217955A (en) Phosphoric-acid-type fuel cell
JP2569541B2 (en) Separator for fuel cell
JP2569540B2 (en) Separator for fuel cell
JPS624834B2 (en)
JPS6286670A (en) Fuel cell