JPS59217955A - Phosphoric-acid-type fuel cell - Google Patents

Phosphoric-acid-type fuel cell

Info

Publication number
JPS59217955A
JPS59217955A JP58093608A JP9360883A JPS59217955A JP S59217955 A JPS59217955 A JP S59217955A JP 58093608 A JP58093608 A JP 58093608A JP 9360883 A JP9360883 A JP 9360883A JP S59217955 A JPS59217955 A JP S59217955A
Authority
JP
Japan
Prior art keywords
base material
electrode base
flow path
fuel cell
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58093608A
Other languages
Japanese (ja)
Other versions
JPH0311058B2 (en
Inventor
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58093608A priority Critical patent/JPS59217955A/en
Publication of JPS59217955A publication Critical patent/JPS59217955A/en
Publication of JPH0311058B2 publication Critical patent/JPH0311058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To extend the active ranges of both electrodes and improve the utilization rates of catalyst layers by forming an undulation on the surface of each electrode base material opposite to its surface having reaction gas flow paths and installing the catalyst layers along the undulations. CONSTITUTION:An undulation is formed on the surface of a cathode base material 22 opposite to its surface having air flow paths 23. An undulation is also formed on the surface of an anode base material 27 opposite to its surface having fuel flow paths 28. A cathodic catalyst layer 24, an electrolyte material 25 and an anodic catalyst layer 26 are installed along these undulations. Internal reservoirs 29 are installed in one of the base materials 22 and 27. When the internal reservoirs 29 are installed in the concave areas 27b of the anode, anodic catalyst layers 26 are installed only on the convex areas 27a of the anode. Gas separators 1 are installed in the same manner as in the conventional fuel cell. According to such a phosphoric-acid-type fuel cell, gas reaction can be improved by effectively utilizing the catalyst layers 24 and 26, thereby realizing an excellent cell characteristic.

Description

【発明の詳細な説明】 この発明は、リン酸形燃料電池に関するものであり、も
う少し詳しくいうと、空気極、電解質マトリクスおよび
燃料極とからなる単電池と、反応ス ガ淳流路を設けた電極基材およびこれらを挟むガス分離
板とを備えたリン酸形燃料電池に関するものである。
[Detailed Description of the Invention] The present invention relates to a phosphoric acid fuel cell, and more specifically, a unit cell consisting of an air electrode, an electrolyte matrix, and a fuel electrode, and an electrode provided with a reaction gas flow path. The present invention relates to a phosphoric acid fuel cell including a base material and gas separation plates sandwiching the base material.

従来周知のリン酸形燃料電池は、対向して配置された燃
料極(アノード)と空気極(カソード)の間に、リン酸
を電解質として保持した電解質マトリクスを配し、燃料
極および空気極にそれぞれ燃料ガスおよび空気を供給し
て運転される。このとき、反応ガスを供給するだめの供
給溝をガス分離板に設けるか、電極基材に設けるかによ
ってコ通り処分けられ、前者は一般にペーパ形と呼ばれ
、後者は一般にリブ付電極形と呼ばれている。特にリプ
付電極形においては、電極基材に電解質の体積の制御を
司る機構である内部リザーバを設けることができ、電池
の長期安定性に有利であるとして注目されている。
A conventionally well-known phosphoric acid fuel cell has an electrolyte matrix containing phosphoric acid as an electrolyte placed between a fuel electrode (anode) and an air electrode (cathode) that are arranged opposite each other. Each is operated by supplying fuel gas and air. At this time, the supply groove for supplying the reaction gas can be disposed of in two ways depending on whether it is provided in the gas separation plate or in the electrode base material.The former is generally called the paper type, and the latter is generally called the ribbed electrode type. being called. In particular, the electrode type with a lip can be provided with an internal reservoir, which is a mechanism for controlling the volume of the electrolyte, in the electrode base material, and is attracting attention as being advantageous for long-term stability of the battery.

第1図は、内部リザーバを備えた従来のリプ付−ド触媒
層ケが配設され、カソード触媒層lに接して配置された
電解質マトリクスSに接するアノード触媒層6を備えた
アノード電極基材7に燃料流路gが形成されている。ま
た、アノード電極基材7には内部リザーバ9が配置され
ている。
FIG. 1 shows an anode electrode substrate having a conventional lipped catalyst layer with an internal reservoir and an anode catalyst layer 6 in contact with an electrolyte matrix S disposed in contact with a cathode catalyst layer 1. A fuel flow path g is formed at 7. Further, an internal reservoir 9 is arranged in the anode electrode base material 7.

かかる構成において、燃料と空気とは第2図に示すよう
に互いに直交するように単電池内に流される。すなわち
、第2図において、空気は、空気入口側マニホルド10
がら空気量口側マニホルドl/へコ点鎖線で示すように
流され、燃料は、燃料入口側マニホルド12から燃料リ
ターン側マニホルド13、さらに燃料出口側マニホルド
/qへ一点鎖線で示すように空気流と直交して流される
In such a configuration, fuel and air flow into the cell orthogonally to each other as shown in FIG. That is, in FIG. 2, air is supplied to the air inlet side manifold 10.
The fuel flows from the fuel inlet side manifold 12 to the fuel return side manifold 13, and then to the fuel outlet side manifold /q as shown by the dotted chain line. flow perpendicular to.

燃料を燃料リターン側マニホルド/3によってリターン
させるのは、単に反応ガスを直交させただけでは、単電
池内で反応ガスが消費されることによって空気の最も希
薄になる部位と燃料の最も希薄になる部位とが同一部位
に形成され、単電池面内の電流分布が不均一となり、望
ましい電池特性が得られなくなるのを防ぐためで、燃料
ガスをリターンさせることによって電流分布の均一化を
図ったものである。
The reason why the fuel is returned through the fuel return side manifold/3 is that if the reaction gas is simply crossed at right angles, the reaction gas will be consumed within the single cell, and the air will be the most diluted and the fuel will be the most diluted. This is to prevent desired battery characteristics from being achieved due to non-uniform current distribution within the cell surface due to the formation of the same part as the cell, and by returning the fuel gas, the current distribution is made uniform. It is.

ここで、反応ガスの流れについてさらに考察する。第3
図はカソード側を部分的に拡大したもので、空気流路3
を流れる空気は、多孔質なカソード電極基材コを通過し
てカソード触媒層弘に達し反応する。このカソード電極
基材コを通過するとき、空気流はかなり大きな拡散抵抗
を受け、これによって局所的な電流密度の低下を生じ、
電池の効率を下げることになる。この現象は、肉厚の薄
いペーパー形に比べてリプ付電極形において顕著にアラ
われる。第3図において示した矢印は空気流路3からカ
ソード触媒層ダへの空気の流れであるが、カソード電極
基材コの最も肉薄な矢印aを通る空気に比べ、肉厚部分
を通る矢印す、5の空気はより大きな拡散抵抗を受ける
ことになる。したがってカソード触媒層弘の全面に関し
て、矢印aのよ5に空気流路3直下の部位では空気が効
率よく反応し、矢印す、cのように空気流路3にはさま
れた部位では拡散抵抗により空気の利用率が低下する。
Here, the flow of the reaction gas will be further considered. Third
The figure is a partially enlarged view of the cathode side, showing the air flow path 3.
The air flowing through the cathode electrode substrate passes through the porous cathode electrode base material, reaches the cathode catalyst layer, and reacts. When passing through this cathode electrode substrate, the airflow experiences a fairly large diffusion resistance, which causes a local reduction in current density.
This will reduce battery efficiency. This phenomenon is more noticeable in the lipped electrode type than in the thin paper type. The arrows shown in FIG. 3 indicate the flow of air from the air flow path 3 to the cathode catalyst layer, but compared to the air that passes through the thinnest arrow a of the cathode electrode base material, the arrows that pass through the thickest part of the cathode electrode base material , 5 will experience greater diffusion resistance. Therefore, regarding the entire surface of the cathode catalyst layer, air reacts efficiently in the area directly below the air flow path 3 as shown by arrow a, and diffusion resistance occurs in the area sandwiched between the air flow paths 3 as shown by arrows a and c. This reduces the air utilization rate.

前者の活性な触媒層域/Sを活性域、後者の死角に入っ
た触媒層域/6を死角域と称する。
The former active catalyst layer area/S is referred to as an active area, and the latter catalyst layer area/6 that has entered the blind spot is referred to as a blind spot area.

第を図はアノード側の内部リザーバ?付近を拡大して示
したものである。内部リザーバ9は簡単にいうと、アノ
ード電極基材7に炭化珪素粉末のようなリン酸に対して
湿潤性の高い物質を充填し、これによってリン酸を含浸
し7たものであるが、この内部リザーバデの付近ではア
ノード触媒層乙に死角域は形成されず、死角域/6は電
解質マトリクスSに直結されている。これは、電解質マ
) IJクスS内におけるリン酸の体積変化を内部リザ
ーバ?によって制御するためであるが、そのために第9
図で見る限り、アノード触媒層6は半減している。
The figure shows the internal reservoir on the anode side? This is an enlarged view of the vicinity. Simply put, the internal reservoir 9 is made by filling the anode electrode base material 7 with a substance that is highly wettable to phosphoric acid, such as silicon carbide powder, and impregnating it with phosphoric acid. No blind area is formed in the anode catalyst layer B near the internal reservoir, and the blind area /6 is directly connected to the electrolyte matrix S. Is this due to the change in the volume of phosphoric acid in the electrolyte (IJ) internal reservoir? This is to control the 9th
As far as the figure shows, the anode catalyst layer 6 has been reduced by half.

以上のリブ付電極の構造について、第S図によりさらに
詳しく説明する。第S図は上記の活性域と死角域の分布
を示し、活性域/Sと死角域16を、カソード側とアノ
ード側を重ね合わせて見たもので、活性域/Sはカン〜
ド側とアノード側で互いに逆向きの斜λ・丑で示した。
The structure of the above ribbed electrode will be explained in more detail with reference to FIG. FIG.
The negative side and the anode side are shown with oppositely oriented slants λ and ox.

この図で明らかなように、カソード、アノード共に活性
域になる両活性域/7と、カソード、アノード共に死角
域になる両死角域/gが生じる。そうして両活性域/7
では反応ガスが最も効率よく反応し、これに反し両死角
域/gでは反応ガスの効率は最も低い。ここで内部リザ
ーバ9は両死角域/gを用いて円形に形成されている。
As is clear from this figure, a dual active region /7, in which both the cathode and the anode are active regions, and a double blind region /g, in which both the cathode and the anode are blind regions, are generated. Then both active areas/7
In this case, the reaction gas reacts most efficiently, and on the other hand, in the double blind area/g, the reaction gas has the lowest efficiency. Here, the internal reservoir 9 is formed into a circular shape using both blind areas/g.

両死角域/gは反応ガス流路を直交させたため和牛じる
ものであるが、仮りに、第6図に示すように空気流路3
と燃料流路gとを平行流にすると、両死角域が生じない
ことになるが、両活性域もなくなってしまう。
Both blind areas/g are unique because the reaction gas flow paths are orthogonal to each other, but if the air flow path 3 is
If the fuel flow path g and the fuel flow path g are made to flow in parallel, both blind areas will not occur, but both active areas will also disappear.

従来のリプ付電極形燃料電池は以上のよう忙構成されて
いたので、単電池の平面の全面積に対してiyaもの両
死角域があり、それだけ触媒層を有効に利用できないと
いう欠点があった。また、この両死角域は内部リザーバ
に利用されてはいたものの、この内部リザーバは局在化
し℃いて、外部からリン酸を補給できる構造になつ℃い
ないという問題もあった。
Conventional lip-equipped electrode fuel cells had the above-mentioned busy configuration, and had the disadvantage that they had a blind spot area of 20,000 yen compared to the entire planar area of the single cell, which meant that the catalyst layer could not be used effectively. . In addition, although these blind areas were used as internal reservoirs, there was a problem in that these internal reservoirs were localized and did not have a structure that could supply phosphoric acid from the outside.

この発明は、以上の事情に着目してl^されIこもので
、電極基材の反応ガス流路を形成した向と反対の面に反
応ガス流路単位の起伏を殴り、この起伏に沿って触媒層
を設けた構成により両活性域を拡大し、触媒層の利用を
著しく向上シフ1こリン62形燃料を池を提供すること
を目的とするものでA−る。
This invention was developed by focusing on the above-mentioned circumstances, and by creating undulations in units of reaction gas flow paths on the opposite surface of the electrode base material to the direction in which the reaction gas flow paths were formed, and by forming undulations along these undulations. The purpose of this invention is to provide a Schiff 1/62 type fuel tank which expands both active regions and significantly improves the utilization of the catalyst layer by using a structure provided with a catalyst layer.

また、この発明の目的をよ、電極基材の反応ガス流路を
設けた面と反別側の起伏面に、その山部に触媒層を、谷
部に内部リザーバを形成することにより、両活性域を単
電池平面の全面)ノ(の//2に拡大し、両死角域を皆
無として甫池特性を1ijJ l t−、たリン酸形燃
料電池を提供することである。
Furthermore, in accordance with the object of the present invention, a catalyst layer is formed in the peaks of the electrode base material and an internal reservoir is formed in the valleys of the undulating surface of the electrode base material on the side opposite to the surface on which the reaction gas flow path is provided. It is an object of the present invention to provide a phosphoric acid fuel cell in which the active area is expanded to 1/2 of the entire surface of the unit cell plane, the blind areas are completely eliminated, and the battery characteristics are 1 ij J lt-.

さらに、この発明の目的は、11?81々の内部・リザ
ーバを連通して外部からのリン酸補給を可能とし、醒池
の長期女定性に対して有効IL内部リザーバ構造をもつ
リン酸形燃料電池を提供ずイ)ことである。
Furthermore, it is an object of the present invention to connect the internal reservoirs of 11 to 81 to enable phosphoric acid replenishment from the outside, and to provide a phosphoric acid fuel with an IL internal reservoir structure that is effective for long-term maintenance of the pond. B) No batteries are provided.

以下、この発明の一実施例を図面を参照1−7て説明す
る。第7図はこの一実施例のリブ付電極を示し、カソー
ド1ti、極基拐、2.2の空気流路23を形成した面
と反対面に、空気流路23単位の起伏、すなわち7つの
空気流路、23についてlっの起伏を形成する。−2a
はカソード山部、22bはカソード谷部を示1゜アノー
ドを種基材27にも、燃料流路2gを形成した面と反対
面に、カソード山部、2コaおよびカソード名・部−一
すにそれぞれ対向するフッ−1゛谷部り7bお、よびア
ノード山部、27aを有する起伏を形成し、双方の起伏
間に、この起伏に沿ってカソード触蛭層、2ヶ、電解質
7トリクス、2b、アノード触媒層、2乙を配設する。
An embodiment of the present invention will be described below with reference to the drawings 1-7. FIG. 7 shows a ribbed electrode of this embodiment, in which the cathode 1ti, the pole base, and the surface opposite to the surface on which the air flow path 23 of 2.2 is formed have undulations in units of air flow path 23, that is, seven The air flow path 23 forms undulations. -2a
22b indicates the cathode peak, and 22b indicates the cathode valley. 1° The anode is also placed on the seed base material 27, and on the opposite side to the surface on which the fuel flow path 2g is formed, the cathode peak, 2 cores a, and cathode name/part-1 are formed. Forms undulations having valleys 7b and anode peaks 27a facing each other, and between both undulations, along these undulations, a cathode contact layer, 2 layers, and an electrolyte 7 matrix are formed. , 2b, an anode catalyst layer, and 2B are arranged.

内部リザーバJ9は、この例では、フ、′−ド谷部;り
bに設りられており、アノード慰媒層ユ6はアノード山
部」γaにのみ配設されている。ガス分離板/は従来と
同様である。
In this example, the internal reservoir J9 is provided in the valley part b, and the anode consolation layer 6 is provided only in the anode peak part .gamma.a. The gas separation plate/is the same as the conventional one.

次に作用、効果について説明する。第g図、第q図は反
応カスの流れを示し、第3図において白矢印は空気の流
れ、黒矢印は燃料ガスの流れを示している。空気は、ガ
ス分離板/に形成し7た空気入口側内部マニホルド3o
から入って空気流路、23に沿って流れ空気出口側内部
マニホルド31へ導かれる。燃料ガスは、燃料入口側内
部マニホルド32から燃料流路2gを通り燃料出口側内
部マニホルド33へ導出される。3qは外部リザーバで
ある。これを第9図の平面図でみると、/点fA腺は燃
料ガスの流れを、2点鎖線は空気の流れを示し、空気は
空気入口側マニホルド3sがら空気出口側マニホルド3
6へ、燃料ガスは燃料入口側マー4#)’J?、燃料入
口側内部マニホルド3λ、燃料出口側内部マニホルド3
3から燃料出口側マニホルド3gへと導かれる。3qa
は外部リザーバ3ダの電解質供給口である。第り図で示
すように空気流と燃料ガス流とは互いに平行な流れとな
るが、従来のような両死角域は生じない。この点につい
て、さらに詳しく説明する。
Next, the action and effect will be explained. Figures g and q show the flow of reaction scum, and in Figure 3, white arrows indicate the flow of air, and black arrows indicate the flow of fuel gas. Air is supplied to the air inlet side internal manifold 3o formed on the gas separation plate/7.
The air flows along the air flow path 23 and is guided to the internal manifold 31 on the air outlet side. The fuel gas is led from the fuel inlet side internal manifold 32 to the fuel outlet side internal manifold 33 through the fuel flow path 2g. 3q is an external reservoir. Looking at this in the plan view of FIG. 9, the /point fA gland indicates the flow of fuel gas, and the two-dot chain line indicates the flow of air.Air flows from the air inlet side manifold 3s to the air outlet side manifold 3s.
6, the fuel gas is on the fuel inlet side mark 4#)'J? , fuel inlet side internal manifold 3λ, fuel outlet side internal manifold 3
3 to the fuel outlet side manifold 3g. 3qa
is the electrolyte supply port of the external reservoir 3da. As shown in the figure, the air flow and the fuel gas flow flow parallel to each other, but there is no blind spot between the two sides as in the conventional case. This point will be explained in more detail.

第10図はカソード側の一部を拡大して示したもので矢
印は空気流路23からカソード触W:層JQへの空気の
流れを示し、矢印a、t)、cでは、空気はカソード電
極基材、2.2の最も肉厚の薄い部位を通る。したがっ
て、広い活性域39が得られる。
FIG. 10 is an enlarged view of a part of the cathode side, and the arrows indicate the flow of air from the air flow path 23 to the cathode contact layer W:JQ. It passes through the thinnest part of the electrode base material 2.2. Therefore, a wide active region 39 is obtained.

これに対して矢印dで示すようにカソード電極基材j、
2の肉厚の厚い部位を通る死角域yoは活性域39の約
//3となり、大幅に減少する。
On the other hand, as shown by the arrow d, the cathode electrode base material j,
The blind area yo passing through the thick portion of No. 2 is approximately 1/3 of the active area 39, which is significantly reduced.

第1/図はアノード側の一部を拡大して示したもので、
死角域lIoを利用して内部リザーバ、29を配設して
なり、活性域39はカソード側と同様に拡大されている
Figure 1 shows an enlarged view of a part of the anode side.
An internal reservoir 29 is provided using the blind area lIo, and the active area 39 is enlarged similarly to the cathode side.

第1コ図は以上の構成でなるカソード側とアノード側を
重ねた状態を示す平面図で、死角域aOと両活性域9/
で占められ、両死角域は全く存在せずして両活性域4t
lは平面でみた全面積の約//コ忙なっている。白矢印
は空気流、黒矢印は燃料ガス流の方向を示している。
Figure 1 is a plan view showing the cathode side and anode side of the above configuration stacked together, and shows the blind area aO and both active areas 9/
, the blind spot area does not exist at all, and the active area is 4t.
l is approximately // the total area seen on a plane. White arrows indicate the air flow, and black arrows indicate the direction of the fuel gas flow.

かようにして、以上の実施例によるときは、従来装置に
比べて両活性域が約2倍に増大し、それだけガス反応の
効率が向上する。また、内部リザーバはアノード側の死
角域に設けたことにより、従来のように内部リザーバが
局在化しないで直線上に配置されるので、第7図に示し
たように外部リザーバを用いて各内部リザーバを連通さ
せ、外部からリン酸の供給を行うことができ、内部リザ
ーバの機能を格段と向上することになる。
In this way, when the above embodiment is used, both active regions are approximately doubled compared to the conventional device, and the efficiency of gas reaction is improved accordingly. In addition, by providing the internal reservoir in the blind area on the anode side, the internal reservoir is not localized as in the conventional case but is arranged in a straight line. The internal reservoir can be communicated and phosphoric acid can be supplied from the outside, which greatly improves the function of the internal reservoir.

なお、上記実施例では、アノード側に内部リザーバを形
成したが、これをカソード側の死角域を利用して形成し
てもよ(、さらにはアノード9カソードの両者に設けて
もよい。
In the above embodiment, the internal reservoir is formed on the anode side, but it may also be formed using the blind area on the cathode side (or furthermore, it may be provided on both the anode and the cathode.

また、内部マニホルドは、必らずしもガス分離板に設け
る要はなく、電極基材側に設けてもよ(、同様の効果を
奏する。外部リザーバについても同様である。
Further, the internal manifold does not necessarily need to be provided on the gas separation plate, but may be provided on the electrode base material side (the same effect can be achieved. The same applies to the external reservoir.

以上の説明から明らかなように、この発明は、触媒層を
有効に利用してガス反応を向上してすぐれた電池特性を
具現し、また、内部リザーバの機能を向上する等、格別
の効果を有するものである。
As is clear from the above description, the present invention effectively utilizes the catalyst layer to improve the gas reaction and realize excellent battery characteristics, and also has exceptional effects such as improving the function of the internal reservoir. It is something that you have.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は従来のものの要部側断面図、第2図は同じ(従
来のものの反応ガスの流れを示す平面図、第3図は同じ
(従来のもののカソードの拡大正断面図、第7図は同じ
〈従来のもののアノードの拡大側断面図、第S図、第6
図はそれぞれ同じ〈従来のものの活性域と死角域を示す
平面図、第7図はこの発明の一実施例の要部側断面図、
第3図。 第9図はその反応ガスの流れを示すそれぞれ正断面図と
平面図、第io図、第1/図はこの実施例によるそれぞ
れカソードおよびアノードの拡大側断面図、第72図は
この実施例の活性域と死角域を示す平面図である。 /・・ガス分離板1.2.2・・カソード電極基材、2
3・・空気流路5.21I・・カソード触媒層1.2よ
・・電解質マトリクス1.26・・アノード触媒層、2
7・・アノード電極基材、2g・・燃料流路1.2q・
・内部リザーバ、3θ・・空気入口側内部マニホルド、
31・・空気出口側マニホルド、3.2・・燃料人口側
内部マニホルド、33・・燃料出口側内部マニホルド、
3弘・・外部リザーバ、3S・・空気入白側マニホルド
、36・・空気出口側マニホルド、37・・燃料入口側
マニホルド、3g・・燃料出口側マニホルド、39・・
活性域、弘θ・・死角域、F/・・両活性域。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人  大  岩  増  雄 先10図 熱11図
Figure 7 is a side sectional view of the main part of the conventional model, Figure 2 is the same (a plan view showing the flow of reaction gas in the conventional model, and Figure 3 is the same (an enlarged front sectional view of the cathode of the conventional model, Figure 7 is the same). are the same (enlarged side sectional view of the conventional anode, Figure S, Figure 6).
The figures are the same (a plan view showing the active area and blind area of the conventional device, and FIG. 7 is a side sectional view of the main part of an embodiment of the present invention).
Figure 3. FIG. 9 is a front sectional view and a plan view showing the flow of the reaction gas, FIG. io and FIG. FIG. 3 is a plan view showing an active area and a blind area. /... Gas separation plate 1.2.2... Cathode electrode base material, 2
3... Air flow path 5.21I... Cathode catalyst layer 1.2... Electrolyte matrix 1.26... Anode catalyst layer, 2
7. Anode electrode base material, 2g.. Fuel flow path 1.2q.
・Internal reservoir, 3θ・・Air inlet side internal manifold,
31... Air outlet side manifold, 3.2... Fuel population side internal manifold, 33... Fuel outlet side internal manifold,
3Hiroshi...External reservoir, 3S...Air intake white side manifold, 36...Air outlet side manifold, 37...Fuel inlet side manifold, 3g...Fuel outlet side manifold, 39...
Active area, Hiro θ...Blind area, F/...Both active area. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa Yusaki 10th figure fever 11th figure

Claims (1)

【特許請求の範囲】 (1)  電解質マトリクスと、カンード触媒層と空気
流路を有するカソード電極基材と、7ノ一ド触媒層と燃
料流路を有するアノード電極基材と、リン酸が供給され
る作用領域をなし前記カソード電極基材および前記アノ
ード電極基材のいずれかに形成された内部リザーバと、
前記カソード電極基材および前記アノード電極基材それ
ぞれの外側に配置されたガス分離板を備えたリン酸形燃
料電池において、 前記カソード電極基材および前記アノード電極基材の互
いに平行に配置された前記空気流路および前記燃料流路
が形成された面とそれぞれ反対の面に形成された前記空
気流路および前記燃料流路ごとの起伏を備え℃なること
を特徴とするリン酸形燃料電池。 (2)  カソード電極基材の起伏の山部および谷部に
それぞれカンード触媒層および内部リザーバを形成した
特許請求の範囲第7項記載のリン酸形燃料電池。 (3)アノード電極基材の起伏の山部および谷部にそれ
ぞれアノード触媒層および内部リザーバを形成した特許
請求の範囲第1項記載のリン酸形燃料電池。 <4’)  内部リザーバがガス分離板に設けた外部リ
ザーバに連通してなる特許請求の範囲第2項または第3
項記載のリン酸形燃料電池。 (3)空気流路および燃料流路が、それぞれカソード電
極基材およびアノード電極基材にそれぞれ設けた内部マ
ニホルドに連通してなる特許請求の範囲第7項記載のリ
ン酸形燃料電池。 (6)空気流路および燃料流路が、それぞれカソード電
極基材側およびアノード電極基材側のガス分離板にそれ
ぞれ設けた内部マニホルドに連通してなる特許請求の範
囲第1項記載のリン酸形燃料電池。
[Scope of Claims] (1) An electrolyte matrix, a cathode electrode base material having a cand catalyst layer and an air passage, an anode electrode base material having a seven-node catalyst layer and a fuel passage, and phosphoric acid is supplied. an internal reservoir formed in either the cathode electrode base material or the anode electrode base material, and
In a phosphoric acid fuel cell comprising a gas separation plate disposed outside each of the cathode electrode base material and the anode electrode base material, the gas separation plate disposed on the outside of each of the cathode electrode base material and the anode electrode base material, A phosphoric acid fuel cell characterized in that the air flow path and the fuel flow path each have undulations formed on a surface opposite to a surface where the air flow path and the fuel flow path are formed. (2) The phosphoric acid fuel cell according to claim 7, wherein a canned catalyst layer and an internal reservoir are formed in the undulating peaks and valleys of the cathode electrode base material, respectively. (3) The phosphoric acid fuel cell according to claim 1, wherein an anode catalyst layer and an internal reservoir are formed in the undulating peaks and valleys of the anode electrode base material, respectively. <4') Claim 2 or 3, in which the internal reservoir communicates with an external reservoir provided in the gas separation plate.
The phosphoric acid fuel cell described in . (3) The phosphoric acid fuel cell according to claim 7, wherein the air flow path and the fuel flow path communicate with internal manifolds provided on the cathode electrode base material and the anode electrode base material, respectively. (6) The phosphoric acid according to claim 1, wherein the air flow path and the fuel flow path communicate with internal manifolds provided in the gas separation plates on the cathode electrode base material side and the anode electrode base material side, respectively. shaped fuel cell.
JP58093608A 1983-05-25 1983-05-25 Phosphoric-acid-type fuel cell Granted JPS59217955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093608A JPS59217955A (en) 1983-05-25 1983-05-25 Phosphoric-acid-type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093608A JPS59217955A (en) 1983-05-25 1983-05-25 Phosphoric-acid-type fuel cell

Publications (2)

Publication Number Publication Date
JPS59217955A true JPS59217955A (en) 1984-12-08
JPH0311058B2 JPH0311058B2 (en) 1991-02-15

Family

ID=14087043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093608A Granted JPS59217955A (en) 1983-05-25 1983-05-25 Phosphoric-acid-type fuel cell

Country Status (1)

Country Link
JP (1) JPS59217955A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343263A (en) * 1986-08-06 1988-02-24 Mitsubishi Electric Corp Fuel cell
US4981763A (en) * 1988-12-14 1991-01-01 Mitsubishi Denki Kabushiki Kaisha Electrochemical single battery and method for producing the same
WO2000002269A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Internal support structure for an undulate membrane electrode assembly in an electrochemical fuel cell
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
WO2003041199A2 (en) 2001-11-07 2003-05-15 Intelligent Energy Limited Fuel cell fluid flow field plates
JP2006294596A (en) * 2005-04-08 2006-10-26 Samsung Sdi Co Ltd Fuel cell stack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343263A (en) * 1986-08-06 1988-02-24 Mitsubishi Electric Corp Fuel cell
US4981763A (en) * 1988-12-14 1991-01-01 Mitsubishi Denki Kabushiki Kaisha Electrochemical single battery and method for producing the same
WO2000002269A3 (en) * 1998-07-01 2000-04-13 British Gas Plc Internal support structure for an undulate membrane electrode assembly in an electrochemical fuel cell
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
WO2003041199A2 (en) 2001-11-07 2003-05-15 Intelligent Energy Limited Fuel cell fluid flow field plates
WO2003041199A3 (en) * 2001-11-07 2003-11-27 Intelligent Energy Ltd Fuel cell fluid flow field plates
JP2005509260A (en) * 2001-11-07 2005-04-07 インテリジェント エナジー リミテッド Fuel cell flow field plate
JP4700910B2 (en) * 2001-11-07 2011-06-15 インテリジェント エナジー リミテッド Fuel cell flow field plate
US8304139B2 (en) 2001-11-07 2012-11-06 Intelligent Energy Limited Fuel cell fluid flow field plates
JP2006294596A (en) * 2005-04-08 2006-10-26 Samsung Sdi Co Ltd Fuel cell stack

Also Published As

Publication number Publication date
JPH0311058B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
CN107658480B (en) A kind of fuel-cell single-cell and pile of the enhancing of temperature and humidity uniformity
US6756149B2 (en) Electrochemical fuel cell with non-uniform fluid flow design
US5922485A (en) Solid polymer electrolyte fuel cell
JP4205774B2 (en) Fuel cell
CN109904484B (en) Fuel cell bipolar plate structure and fuel cell
JP4516229B2 (en) Solid polymer cell assembly
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP4917755B2 (en) Fuel cell
US20050244702A1 (en) Separator and fuel cell using that separator
US20050255367A1 (en) Fuel cell, separator unit kit for fuel cell, and fuel cell generating unit kit
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JPH08138692A (en) Fuel cell
JP3459300B2 (en) Polymer electrolyte fuel cell
JP2006202570A (en) Fuel cell and fuel cell distribution plate
JP2002358986A (en) Fuel cell
JPS61227370A (en) Fuel battery assembly
JPH09283162A (en) Solid high molecular fuel cell
JPS59217955A (en) Phosphoric-acid-type fuel cell
JPH08111230A (en) Operating method for solid high polymer type fuel cell
JPS63119166A (en) Fuel battery
JP2011119061A (en) Fuel cell
JP3691141B2 (en) Fuel cell
JPH08287934A (en) Fuel cell
JPS60189868A (en) Reaction fluid feed structure to fuel cell electrode layer
JP4390513B2 (en) Fuel cell