JPH08111230A - Operating method for solid high polymer type fuel cell - Google Patents

Operating method for solid high polymer type fuel cell

Info

Publication number
JPH08111230A
JPH08111230A JP6245813A JP24581394A JPH08111230A JP H08111230 A JPH08111230 A JP H08111230A JP 6245813 A JP6245813 A JP 6245813A JP 24581394 A JP24581394 A JP 24581394A JP H08111230 A JPH08111230 A JP H08111230A
Authority
JP
Japan
Prior art keywords
cell
temperature
fuel cell
polymer electrolyte
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6245813A
Other languages
Japanese (ja)
Inventor
Hiroshi Kusunoki
啓 楠
Saneji Otsuki
実治 大槻
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP6245813A priority Critical patent/JPH08111230A/en
Publication of JPH08111230A publication Critical patent/JPH08111230A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To establish a high power generating performance stably for a long period of time by accomplishing an operating method for fuel cell which generates such an under-the-cell-surface temp. distribution that the oxidator gas water vapor pressure distribution in an oxidizer gas supply path is in equilibrium with the saturated vapor pressure distribution on a catalyst layer reaction part. CONSTITUTION: A fuel cell of solid high polymer type requires preventing drying and product water condensation in electrochemical reactions on the surface of an electrolyte film, and therefore, humidity management is conducted by generating an apropriate temp. distribution on the cell surface. The under-the- cell-surface optimum temp. distribution to give max. output voltage under the operating conditions including the current density, reaction gas total pressure, inlet air dew point, rate of air utilization, the rate of exhaustion of product water, etc., is established by controlling the under-the-cell-surface upper part temp. and under-the-cell-surface temp. difference between above and below to their optimum values or the neighborhoods. The under-the-cell-surface temp. distribution is controlled by adjusting the temp. of the cooling medium and the rate of flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、平板型の固体高分子
型燃料電池のセル面内温度分布を適切に制御して、固体
高分子電解質膜の乾燥及び過度の濡れを防止し、固体高
分子型燃料電池の安定した運転を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention appropriately controls the temperature distribution within the cell surface of a flat plate type solid polymer electrolyte fuel cell to prevent the solid polymer electrolyte membrane from being dried and excessively wetted, and to improve the solid high temperature. The present invention relates to a method for stable operation of a molecular fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、これに使用される電解質の
種類や動作温度により、固体高分子型燃料電池,りん酸
型燃料電池,溶融炭酸塩型燃料電池,固体電解質型燃料
電池などに大別される。燃料電池は直流電気を発生させ
る電気化学的反応において熱が発生するので、温度を許
容される動作温度に維持するために、冷却手段が設けら
れている。
2. Description of the Related Art Fuel cells are classified into solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, etc., depending on the type of electrolyte used and the operating temperature. Be separated. Since fuel cells generate heat in the electrochemical reactions that produce direct current electricity, cooling means are provided to maintain the temperature at an acceptable operating temperature.

【0003】従来採用されている固体高分子型燃料電池
は、例えば特開平5 ─144451号公報に開示されているよ
うに、内部に冷却部を持ち、この冷却部に冷却媒体を循
環させ燃料電池を所定の温度に保つようにしている。図
7,図8に従来の固体高分子型燃料電池の構成の一例を
示す。図7(a) はスタックの側面図を示すもので、図7
(a) において、9はスタックでありセルとセパレータと
から成る単電池8を複数個積層し、さらにその両端部に
発生した直流電力をスタック9から取り出すための集電
板91A,91Bと、単電池8,集電板91A,91B
を構造体から電気的に絶縁するための電気絶縁板92
A,92Bと、単電池8,集電板91A,91B、電気
絶縁板92A,92Bを積層したスタック9の両外端部
に配設される締付板93A,93Bとを順次積層し、締
付板93A,93Bにその両外側面側から締付けボルト
94により適度の加圧力を与えるようにして構成されて
いる。
A polymer electrolyte fuel cell that has been conventionally used has a cooling unit inside and a cooling medium is circulated in this cooling unit as disclosed in, for example, Japanese Patent Laid-Open No. 144451/1993. Is kept at a predetermined temperature. 7 and 8 show an example of the configuration of a conventional polymer electrolyte fuel cell. Figure 7 (a) shows a side view of the stack.
In (a), 9 is a stack, in which a plurality of unit cells 8 each composed of a cell and a separator are stacked, and further, current collecting plates 91A and 91B for taking out DC power generated at both ends thereof from the stack 9, Battery 8, collector plates 91A, 91B
Insulating plate 92 for electrically insulating the structure from the structure
A and 92B and the tightening plates 93A and 93B arranged at both outer ends of the stack 9 in which the unit cells 8, the current collecting plates 91A and 91B, and the electric insulating plates 92A and 92B are stacked are sequentially stacked and tightened. The attachment plates 93A and 93B are configured so that a proper amount of pressure is applied from both outer side surfaces thereof by tightening bolts 94.

【0004】図7(b) は単電池の側面断面図を示すもの
で、図7(b) において、それぞれの単電池8は、セル7
と、このセル7の一方の側面に配されて燃料ガス流路6
1aを多数有し、ガスを透過せず熱および電気伝導性に
優れた材料からなるセパレータ6Aと、セル7の他方の
側面に配されて酸化剤ガス流路61b(以下、燃料ガス
流路と酸化剤ガス流路を併せて反応ガス流路と呼ぶこと
がある)を多数有し、セパレータ6Aと同様の材料から
なるセパレータ6Bとで構成されている。セル7は、薄
い矩形状をなしており、固体高分子電解質膜からなる電
解質層71と、電解質層71の一方の主面側に配設され
た燃料ガスの供給を受ける燃料電極膜72と、電解質層
71の他方の主面側に配設された酸化剤ガスの供給を受
ける酸化剤電極膜73とで構成されている。燃料電極膜
72および酸化剤電極膜73は、共に触媒活物質を含む
触媒層74a,74bと、この触媒層74a,74bを
支持すると共に,反応ガスを触媒層に供給および触媒層
から排出し、しかも集電体としての機能を有する多孔質
の電極膜基材75a,75bからなり、それぞれの触媒
層74a,74bを電解質層71と密着させている。電
解質層71としては、パ−フルオロスルフォン酸樹脂膜
(例えば、米国のデュポン社製、商品名ナフィオン膜)
が用いられ、飽和に含水させることにより良好なプロト
ン導電性電解質として機能する。
FIG. 7 (b) is a side sectional view of a unit cell. In FIG. 7 (b), each unit cell 8 is a cell 7
And the fuel gas flow path 6 is disposed on one side surface of the cell 7.
A separator 6A that has a large number of 1a and is made of a material that is impermeable to gas and is excellent in heat and electrical conductivity; and an oxidant gas flow channel 61b (hereinafter referred to as a fuel gas flow channel) that is disposed on the other side surface of the cell 7. The separator 6B is made up of a material similar to the separator 6A. The cell 7 has a thin rectangular shape and includes an electrolyte layer 71 made of a solid polymer electrolyte membrane, a fuel electrode film 72 disposed on one main surface side of the electrolyte layer 71 and supplied with fuel gas, It is composed of an oxidant electrode film 73 which is provided with an oxidant gas and is disposed on the other main surface side of the electrolyte layer 71. The fuel electrode film 72 and the oxidant electrode film 73 both support the catalyst layers 74a and 74b containing a catalyst active material and the catalyst layers 74a and 74b, and supply the reaction gas to the catalyst layer and discharge it from the catalyst layer, Moreover, it is composed of porous electrode film base materials 75a and 75b having a function as a current collector, and the respective catalyst layers 74a and 74b are brought into close contact with the electrolyte layer 71. As the electrolyte layer 71, a perfluorosulfonic acid resin film (for example, Nafion film manufactured by DuPont, USA)
Is used, and it functions as a good proton conductive electrolyte when it is saturated with water.

【0005】図8(b) はセル面内冷却構成のうち、セパ
レータ6Aについて示すもので、反応ガス流路61aが
設けられたセパレータ6Aの他方の面には、冷却媒体5
を通流させる冷媒流路65が形成されている。冷媒流路
65は、反応ガス流路61a,61b方向に平行に設け
られ複数冷媒流路が並列に配設された並行部分65a
と、この平行部65aを一方の端部で一括する一方の冷
媒流路端末部65bと、平行部65aを他方の端部で束
ねる冷媒流路端末部65cとで構成されている。冷媒流
路65のそれぞれの端末部65b,65cは貫通孔66
と67とに連通し、該貫通孔66,67は、共にマニホ
ールドとして機能する。
FIG. 8B shows the separator 6A in the in-plane cooling structure of the cell, and the cooling medium 5 is provided on the other surface of the separator 6A provided with the reaction gas passage 61a.
A coolant channel 65 is formed to allow the fluid to flow therethrough. The coolant channel 65 is a parallel portion 65a in which a plurality of coolant channels are arranged in parallel and provided in parallel with the directions of the reaction gas channels 61a and 61b.
And one refrigerant channel terminal portion 65b that bundles the parallel portion 65a at one end portion and a refrigerant channel terminal portion 65c that bundles the parallel portion 65a at the other end portion. Each of the terminal portions 65b and 65c of the coolant channel 65 has a through hole 66.
And 67, and the through holes 66 and 67 both function as a manifold.

【0006】スタック9の一方の端部にある単電池8で
は、貫通孔66は、冷却媒体5の流入口93aに連通さ
せて形成された冷媒通流口に接続され、一方、貫通孔6
7は封じられる。また、他方の端部にある単電池8で
は、貫通孔67は締付板93Bが備える冷却媒体5の流
出口93bに連通させて形成された冷媒通流口に接続さ
れ、一方、貫通孔66は封じられる。スタック9では、
単電池8内に構成される冷却媒体5の通流路は互いに並
列に接続されることになるが、これはスタック9の積層
方向に配置された単電池8間での冷却媒体5の温度差を
少なくするためである。
In the unit cell 8 at one end of the stack 9, the through hole 66 is connected to the refrigerant flow port formed in communication with the inlet 93a for the cooling medium 5, while the through hole 6 is provided.
7 is sealed. Further, in the unit cell 8 at the other end, the through hole 67 is connected to the refrigerant flow port formed in communication with the outlet 93b of the cooling medium 5 provided in the tightening plate 93B, while the through hole 66 is provided. Is sealed. In stack 9,
The flow paths of the cooling medium 5 formed in the unit cells 8 are connected in parallel with each other, but this is due to the temperature difference of the cooling medium 5 between the unit cells 8 arranged in the stacking direction of the stack 9. This is to reduce

【0007】図8(a) は、スタック9の冷却構造の一例
をその主要な周辺装置と共に模式的に示したものであ
る。冷媒供給経路は、冷却媒体5を循環させるのに必要
な圧力を供給する加圧ポンプ97と,冷却媒体5の流量
(以下、冷媒流量と呼ぶことがある)を制御する制御弁
98と,放熱装置96と,これらの間を接続する配管9
9とを備えている。流入口93aから導入されスタック
9において発生した熱を吸収することで高温となった冷
却媒体5は、流出口93bから流出され、冷媒供給経路
中を放熱装置96に循環され除熱されて、その温度(以
下、冷媒温度と呼ぶことがある)を所望の温度にまで降
下させ、再び流入口93aからスタック9に還流され
る。
FIG. 8 (a) schematically shows an example of the cooling structure of the stack 9 together with its main peripheral devices. The refrigerant supply path includes a pressurizing pump 97 that supplies a pressure necessary to circulate the cooling medium 5, a control valve 98 that controls the flow rate of the cooling medium 5 (hereinafter, also referred to as a refrigerant flow rate), and heat dissipation. Device 96 and piping 9 that connects between them
9 and 9. The cooling medium 5 introduced from the inflow port 93a and having a high temperature by absorbing the heat generated in the stack 9 flows out from the outflow port 93b and is circulated to the heat dissipation device 96 in the refrigerant supply path to be removed of heat. The temperature (hereinafter sometimes referred to as the refrigerant temperature) is lowered to a desired temperature, and the gas is recirculated to the stack 9 from the inflow port 93a again.

【0008】ところで、セル7に供給された燃料ガスお
よび酸化剤ガスは、それぞれの触媒層74a,74b内
の触媒と固体高分子電解質とで形成された三相界面にお
いて、以下の電気化学反応で消費される。
By the way, the fuel gas and the oxidant gas supplied to the cell 7 undergo the following electrochemical reaction at the three-phase interface formed by the catalyst and the solid polymer electrolyte in the respective catalyst layers 74a and 74b. Consumed.

【0009】[0009]

【化1】 H2 → 2H+ + 2e- アノード[Chemical formula 1] H 2 → 2H + + 2e - anode

【0010】[0010]

【化2】 (1/2)O2 + 2H+ + 2e- → H2O カソード 上記のように、全体反応として水を生成する。発電効率
を高く維持するには、固体高分子電解質膜に飽和状態に
含水させてやることが必要であるため、反応ガスは予め
加湿してからセルに供給される。
Embedded image (1/2) O 2 + 2H + + 2e → H 2 O cathode As described above, water is produced as a whole reaction. In order to maintain high power generation efficiency, it is necessary to hydrate the solid polymer electrolyte membrane in a saturated state, so the reaction gas is humidified in advance and then supplied to the cell.

【0011】[0011]

【発明が解決しようとする課題】固体高分子型燃料電池
において、電気化学反応はすなわち水の生成反応であ
り、その生成水は主にカソード側の酸化剤ガス流路へ排
出されるため、酸化剤ガス中の水蒸気流量はセルの入口
側が最も少なく、セルの出口側になるにつれ増加するこ
とになる。
In the polymer electrolyte fuel cell, the electrochemical reaction is a water production reaction, and the produced water is mainly discharged to the oxidant gas flow path on the cathode side. The flow rate of water vapor in the agent gas is the smallest on the inlet side of the cell and increases as it approaches the outlet side of the cell.

【0012】しかし、酸化剤電極基材内を透過した酸化
剤ガスを触媒層内に拡散させ、酸化剤ガスと,触媒と,
固体高分子電解質との三相界面を形成して電気化学反応
させるに当たり、水の凝縮によって触媒層が過度に濡れ
ることにより、多孔質酸化剤電極基材内の反応ガスの拡
散する毛管を塞いでしまうことは好ましくない。生成水
排出の駆動力となるのは反応ガスと固体高分子電解質膜
の水蒸気圧力差であるが、セル面内温度が均一であると
固体高分子電解質膜の水蒸気圧力は一定であるのに対
し、反応ガスの水蒸気圧分布がガス流路出口側へ行くほ
ど高圧になり生成水排出を妨げる。しかし、これを防ぐ
ために反応ガスの加湿量を減らすと、固体高分子電解質
膜が乾燥し電池特性が低下してしまう。
However, the oxidant gas that has permeated through the oxidant electrode substrate is diffused into the catalyst layer, and the oxidant gas, the catalyst, and
When forming a three-phase interface with the solid polymer electrolyte to cause an electrochemical reaction, the catalyst layer is excessively wetted by the condensation of water, blocking the capillary in which the reaction gas in the porous oxidizer electrode substrate diffuses. It is not preferable to store it. The driving force for the generated water discharge is the difference in water vapor pressure between the reaction gas and the solid polymer electrolyte membrane, whereas when the in-cell temperature is uniform, the water vapor pressure in the solid polymer electrolyte membrane is constant. The distribution of the water vapor pressure of the reaction gas becomes higher as it goes to the outlet side of the gas flow path, and the generated water is prevented from being discharged. However, if the humidification amount of the reaction gas is reduced in order to prevent this, the solid polymer electrolyte membrane will dry and the battery characteristics will deteriorate.

【0013】この発明の目的は、前述の従来技術の問題
点に鑑み、固体高分子電解質膜表面における乾燥および
生成水凝縮を防ぐための、適切な固体高分子型燃料電池
の運転制御方法を提供することにある。
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide an appropriate operation control method of a solid polymer electrolyte fuel cell for preventing drying and condensation of produced water on the surface of the solid polymer electrolyte membrane. To do.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、燃料ガス及び酸化剤ガスの供給を受け
て直流電力を発生するセルが、セパレータを介して複数
積層されたスタックと、該スタック内に、前記セル毎あ
るいは複数のセル毎に設けられセルで発生した熱を除去
する冷却部とを備え、前記セルは、固体高分子膜からな
る電解質層と、該電解質層を挟んでそれぞれ配設された
燃料電極(アノード)と酸化剤電極(カソード)とを有
し、前記冷却部は、冷却媒体を通流させる冷媒流路を有
し、前記セル面内は、酸化剤ガス入口側温度(セル面内
上部温度)より、酸化剤ガス出口側温度(セル面内下部
温度)の方が高く形成されて成る固体高分子型燃料電池
の運転方法を、電流密度,反応ガス全圧,入口空気露
点,空気利用率,生成水排出率とから、セル出力電圧が
最大となる前記セル面内上部温度の最適値および該セル
面内上部温度とセル面内下部温度との差(セル面内上下
温度差)の最適値とを求め、前記冷却媒体の温度および
流量を調整することにより、前記最適セル面内上部温度
の最適値またはその近傍およびセル面内上下温度差の最
適値またはその近傍となるように制御することにより達
成される。
In order to solve the above-mentioned problems, the present invention provides a stack in which a plurality of cells, which receive a supply of a fuel gas and an oxidant gas and generate a direct current power, are laminated with a separator interposed therebetween. The stack includes a cooling unit that is provided for each of the cells or for each of the plurality of cells and removes heat generated in the cells, and the cells sandwich an electrolyte layer formed of a solid polymer membrane and the electrolyte layer. And a oxidant electrode (cathode), respectively, and the cooling section has a coolant channel for allowing a cooling medium to flow therethrough. The operating method of a polymer electrolyte fuel cell, in which the oxidant gas outlet side temperature (lower temperature in the cell surface) is formed higher than the inlet side temperature (upper surface temperature in the cell surface), Pressure, inlet air dew point, air utilization rate, raw From the water discharge rate, the optimum value of the upper temperature in the cell surface where the cell output voltage becomes maximum and the optimum value of the difference between the upper temperature in the cell surface and the lower temperature in the cell surface (difference in vertical temperature in the cell surface). By adjusting the temperature and flow rate of the cooling medium, by controlling to be the optimum value of the optimum upper temperature in the cell plane or its vicinity and the optimum value of the vertical temperature difference in the cell surface or its vicinity. To be achieved.

【0015】また、固体高分子型燃料電池の運転方法に
おいて、前記セル面内上部温度を該温度の最適値±3
℃,前記セル面内上下温度差を該温度差の最適値±1℃
の範囲内に制御することが好適である。さらに、固体高
分子型燃料電池の運転方法において、前記セル面内上部
温度を該温度の最適値±1℃,前記セル面内上下温度差
を該温度差の最適値±1℃の範囲内に制御することが最
も好適である。
Further, in the method of operating a polymer electrolyte fuel cell, the upper temperature in the cell plane is set to an optimum value ± 3 of the temperature.
℃, the upper and lower temperature difference in the cell plane is the optimum value of the temperature difference ± 1 ℃
It is preferable to control within the range. Further, in the operating method of the polymer electrolyte fuel cell, the upper temperature in the cell plane is within the optimum value of ± 1 ° C., and the temperature difference between the upper and lower sides in the cell plane is within the optimum value of the temperature difference of ± 1 ° C. Most preferably, it is controlled.

【0016】[0016]

【作用】固体高分子型燃料電池において、反応ガス流路
を通流する反応ガス中には反応によって生成した水が水
蒸気として放出されるため、通流過程で反応ガス中の水
蒸気濃度が徐々に上昇する。このガス流通方向がセル面
内温度分布の低い部分側から反応ガス流路に流入し、セ
ル面内温度分布の高い部分側から排出されるように、冷
媒温度と冷媒流量を制御し最適セル面内温度分布を形成
することにより、反応ガスの水蒸気圧と触媒層反応部の
低温側で低く高温側で高い飽和水蒸気圧とが互いに適切
に平衡した状態となる。最適状態においては、セル面内
のどの部分においても、水の生成と排出のバランスが取
れた状態となるので、固体高分子電解質膜の乾燥,およ
び生成水の凝縮に起因する触媒層の過度の濡れによる反
応ガス拡散の阻害を防止することができ、また触媒層反
応部を飽和状態に保ちプロトン伝導性の低下も抑えら
れ、電池特性の低下を防止することができる。
In the polymer electrolyte fuel cell, the water produced by the reaction is released as water vapor into the reaction gas flowing through the reaction gas flow path, so that the water vapor concentration in the reaction gas gradually increases during the flow process. To rise. The gas flow direction is controlled so that the refrigerant temperature and the refrigerant flow rate are controlled so that the gas flows into the reaction gas flow path from the side where the temperature distribution in the cell surface is low and is discharged from the side where the temperature distribution in the cell surface is high. By forming the internal temperature distribution, the water vapor pressure of the reaction gas and the saturated water vapor pressure that is low on the low temperature side and high on the high temperature side of the reaction portion of the catalyst layer are appropriately balanced. In the optimum state, since the generation and discharge of water are balanced in any part of the cell surface, excessive drying of the solid polymer electrolyte membrane and excessive formation of the catalyst layer due to condensation of the generated water. It is possible to prevent the inhibition of the reaction gas diffusion due to the wetting, keep the reaction part of the catalyst layer in a saturated state, and suppress the decrease of the proton conductivity, and prevent the deterioration of the battery characteristics.

【0017】[0017]

【実施例】以下この発明の実施例を図面を参照して詳細
に説明する。 実施例1;図1(a),図1(b) は、この発明の固体高分子
型燃料電池の運転方法の一実施例を示したものである。
固体高分子型燃料電池のセル面内に適切な温度分布を形
成するに当たり、温度分布の状態は冷媒温度と冷媒流量
とから制御できる。すなわち、冷媒流量を増加させると
セル面内上下温度差は縮小し、逆に冷媒流量を減少させ
るとセル面内上下温度差は拡大する。
Embodiments of the present invention will be described in detail below with reference to the drawings. Embodiment 1; FIGS. 1 (a) and 1 (b) show one embodiment of the method for operating the polymer electrolyte fuel cell of the present invention.
In forming an appropriate temperature distribution in the cell surface of the polymer electrolyte fuel cell, the state of the temperature distribution can be controlled by the refrigerant temperature and the refrigerant flow rate. That is, when the refrigerant flow rate is increased, the vertical temperature difference in the cell plane is reduced, and conversely, when the refrigerant flow rate is reduced, the vertical temperature difference in the cell plane is increased.

【0018】本実施例における運転条件を表1に示す。Table 1 shows the operating conditions in this embodiment.

【0019】[0019]

【表1】 [Table 1]

【0020】図1(a) は、上記表1の条件における運転
に際して冷媒温度と冷媒流量を制御し、セル面内上下温
度差を一定(5℃)に保ちながらセル面内上部温度を変
化させ、セル出力の電圧変化をプロットした実験結果で
ある。また、図1(b) は、上記表1の条件における運転
に際して冷媒温度と冷媒流量を制御し、セル面内上部温
度を一定(71℃)に保ちながらセル面内上下温度差を
変化させ、セル出力の電圧変化をプロットした実験結果
である。これらの実験結果より、前記運転条件におい
て、セル出力電圧が最大となるセル面内上部温度の最適
値およびセル面内上下温度差の最適値が存在し、好まし
くは、セル面内上部温度71℃±3 ℃( 最も好ましくは±
1 ℃),セル面内上下温度差は5℃±1 ℃であることが認
められた。
FIG. 1 (a) shows that when operating under the conditions shown in Table 1 above, the refrigerant temperature and the refrigerant flow rate are controlled to change the upper temperature in the cell surface while keeping the temperature difference between the upper and lower surfaces in the cell surface constant (5 ° C.). , Is an experimental result in which the voltage change of the cell output is plotted. In addition, FIG. 1 (b) shows that the temperature and the flow rate of the refrigerant are controlled during the operation under the conditions shown in Table 1, and the temperature difference between the upper and lower sides of the cell surface is changed while keeping the upper temperature inside the cell surface constant (71 ° C.). It is the experimental result which plotted the voltage change of the cell output. From these experimental results, in the operating conditions, there is an optimum value of the cell surface upper temperature where the cell output voltage is maximum and an optimum value of the cell surface upper and lower temperature difference, and preferably, the cell surface upper temperature is 71 ° C. ± 3 ° C (most preferably ±
It was confirmed that the temperature difference between the upper and lower sides of the cell surface was 5 ° C ± 1 ° C.

【0021】なお、前述の運転条件を変えても同様の傾
向が得られている。また、セル面内温度分布の形成手段
としては、その冷却構成を特に選ばず、例えば後述の実
施例2〜5に示されるような構成を採用することができ
る。さらに、この実験結果の確証性を得るために、生成
水排出効率のよい温度分布のシュミレーションを行っ
た。以下に、その結果を述べる。
A similar tendency is obtained even if the above-mentioned operating conditions are changed. Further, as the means for forming the in-cell temperature distribution, the cooling configuration thereof is not particularly selected, and for example, the configurations shown in Examples 2 to 5 described later can be adopted. Furthermore, in order to obtain the corroborativeness of this experimental result, the simulation of the temperature distribution with good discharge efficiency of generated water was performed. The results will be described below.

【0022】まず、生成水排出条件から次式が成り立
つ。
First, the following equation is established from the generated water discharge condition.

【0023】[0023]

【数1】αj/2F = (De/Le)(Pe-Ps) = (Dg/Lg)(Ps-Pg) ただし、j:電流密度, α:生成水排出率, 酸化剤電極内
において De:拡散係数Le:拡散層厚さ, ガス流路内にお
いてDg: 拡散係数 Lg:拡散層厚さ, 水蒸気分圧(電極:P
e,電極/ガス界面Ps, ガス流路:Pg), F:ファラデー定数
とする。 ここで、Ke=De/Le,Kg=Dg/Lg,Pc=Pe-Pg
[Pc=Pc0(T0/T)m(P/P0)(j/j0)] とすると、前記数1から
下式が成り立つ。
[Formula 1] αj / 2F = (De / Le) (Pe-Ps) = (Dg / Lg) (Ps-Pg) where j: current density, α: generated water discharge rate, De: Diffusion coefficient Le: Diffusion layer thickness, in gas channel Dg: Diffusion coefficient Lg: Diffusion layer thickness, Water vapor partial pressure (Electrode: P
e, electrode / gas interface Ps, gas flow path: Pg), F: Faraday constant. Where Ke = De / Le, Kg = Dg / Lg, Pc = Pe-Pg
When [Pc = Pc 0 (T 0 / T) m (P / P 0 ) (j / j 0 )], the following equation is established from the above mathematical expression 1.

【0024】[0024]

【数2】αj/2F = Pc/(1/Ke+1/Kg) また、水蒸気圧力について以下の式が成り立つ。[Formula 2] αj / 2F = Pc / (1 / Ke + 1 / Kg) Further, the following equation holds for the water vapor pressure.

【0025】[0025]

【数3】RnPn/Pall = Wn/(Vn+Wn) ただし、n:ガス流路分割部分, In:部分電流, Vn:空気流
量, Wn:水蒸気流量,Pn:飽和水蒸気圧(Antoine式より導
出), Tn:温度, Rn:相対湿度, Pall:全圧 Wn+1= Wn+In/2F, Vn+1= Vn-In/4F, Pg=RnPn さらに、Pe=Pnと仮定して、以上の数1〜数3を解くこ
とでセル面内最適温度分布を計算した。
[Formula 3] R n P n / P all = W n / (V n + W n ), where n: gas flow passage division part, I n : partial current, V n : air flow rate, W n : water vapor flow rate, P n : Saturated water vapor pressure (derived from Antoine equation), T n : Temperature, R n : Relative humidity, P all : Total pressure W n + 1 = W n + I n / 2F, V n + 1 = V n- I n / 4F, Pg = R n P n Furthermore, assuming that Pe = P n , the optimum temperature distribution in the cell plane was calculated by solving the above equations 1 to 3.

【0026】この結果と実験結果を比較したものが図2
である。図2において、シュミレーション結果と実験結
果は±1℃程度の誤差で一致していることから、前述に
おける実験結果の確証性が確かめられた。次に、所望の
セル面内温度分布を得るための手段について述べる。な
お、以下に述べる実施例2,3は、特願平5-269344号に
示された概念を実施例1のセル面内温度分布形成手段と
して適用したものである。また、実施例3,4は、前述
の特開平5-144451号公報に開示されている概念を実施例
1のセル面内温度分布形成手段として適用したものであ
る。
FIG. 2 shows a comparison between this result and the experimental result.
Is. In FIG. 2, since the simulation result and the experimental result agree with each other with an error of about ± 1 ° C., the credibility of the experimental result described above was confirmed. Next, a means for obtaining a desired in-plane temperature distribution in the cell will be described. In the second and third embodiments described below, the concept disclosed in Japanese Patent Application No. 5-269344 is applied as the in-cell temperature distribution forming means of the first embodiment. Further, in the third and fourth embodiments, the concept disclosed in the above-mentioned Japanese Patent Laid-Open No. 5-144451 is applied as the in-cell temperature distribution forming means of the first embodiment.

【0027】実施例2;図3(a) は、この発明の運転方
法を実施するための固体高分子型燃料電池のセル面内温
度分布の形成手段を模式的に示す側面図である。図3
(b) はセパレータの平面図である。図3(a),図3(b) に
おいて、図7〜図8に示した従来例の固体高分子型燃料
電池と同一部分には同じ符号を付し、その説明を省略す
る。
Example 2; FIG. 3 (a) is a side view schematically showing the means for forming the in-plane temperature distribution of the cell of the polymer electrolyte fuel cell for carrying out the operating method of the present invention. FIG.
(b) is a plan view of the separator. In FIGS. 3 (a) and 3 (b), the same parts as those of the conventional polymer electrolyte fuel cell shown in FIGS. 7 to 8 are designated by the same reference numerals, and the description thereof will be omitted.

【0028】図3(a),図3(b) において、8は、セパレ
ータ6Cを採用した単電池である。セパレータ6Cは、
4本の冷媒流路としての凹溝11を並列的に備えてい
る。また、9Aは、単電池8および締付板93C,93
Dとから成るスタックである。締付板93C,93D
は、締付板93A,93Bに対して、それぞれの凹溝1
1の本数に対応する個数の冷却媒体5の流入口93aあ
るいは、冷却媒体5の流出口93bが備えられている。
In FIGS. 3 (a) and 3 (b), reference numeral 8 is a unit cell using a separator 6C. The separator 6C is
Four grooves 11 are provided in parallel as refrigerant flow paths. In addition, 9A is the unit cell 8 and the fastening plates 93C, 93.
It is a stack consisting of D and. Tightening plate 93C, 93D
Is the groove 1 for each of the tightening plates 93A and 93B.
An inflow port 93a for the cooling medium 5 or an outflow port 93b for the cooling medium 5 is provided in the number corresponding to one.

【0029】スタック9Aに対する冷却媒体5の供給
は、図8(b) に示した冷媒流路と同一の構成を持つ冷媒
流路により行われる。ただし、スタック9Aの備える流
入口93aと流出口93b間との接続は、以下のように
して行われる。すなわち、冷却媒体5は、まず反応ガス
がスタック9Aに流入する最も上流側に位置する冷媒流
路の持つ流入口93aに供給される。最も上流側に位置
する冷媒流路の持つ流出口93bから流出した冷却媒体
5は、次に上流側に位置する冷媒流路の持つ流出口93
bに供給される。続いて、次に上流側に位置する冷媒流
路の持つ流入口93aから流出した冷却媒体5は、さら
に次に上流側に位置する冷媒流路の持つ流入口93aに
供給される。以降、流入口93aと流出口93b間との
接続は、順次上流側に位置する冷媒流路に冷却媒体5が
供給されるように互いに接続される。ここで、冷却媒体
5は、冷媒流路を流通する際反応熱を吸収するため、反
応ガスの流通方向に対して順次高くなるセル面内温度分
布が形成される。これにより、セル面内温度分布を、反
応ガスの入口付近では、反応ガスを乾燥させない比較的
低い値とし、しかも、反応ガスの出口付近では、生成水
が液化することの無い比較的高い値とすることが可能と
なっている。さらに、この際、冷媒流路への冷却媒体5
の通流方向が、互いに隣接する冷媒流路において反転す
るため、冷媒流路に沿ったセル7の温度分布状態が交互
に反転することになり、これにより、セル7の面垂直方
向における温度分布はほぼ一様にすることができる。
The supply of the cooling medium 5 to the stack 9A is performed by a coolant passage having the same structure as the coolant passage shown in FIG. 8 (b). However, the connection between the inflow port 93a and the outflow port 93b included in the stack 9A is performed as follows. That is, the cooling medium 5 is first supplied to the inflow port 93a of the refrigerant passage located at the most upstream side where the reaction gas flows into the stack 9A. The cooling medium 5 flowing out from the outlet 93b of the refrigerant passage located on the most upstream side has the outlet 93 of the refrigerant passage located on the next upstream side.
b. Subsequently, the cooling medium 5 flowing out from the inflow port 93a of the refrigerant flow path located on the upstream side next is supplied to the inflow port 93a of the refrigerant flow path located on the further upstream side. After that, the connection between the inflow port 93a and the outflow port 93b is connected to each other so that the cooling medium 5 is sequentially supplied to the refrigerant channel located on the upstream side. Here, since the cooling medium 5 absorbs reaction heat when flowing through the refrigerant flow path, a temperature distribution within the cell plane that gradually increases in the flowing direction of the reaction gas is formed. As a result, the in-cell temperature distribution is set to a relatively low value that does not dry the reaction gas near the inlet of the reaction gas, and a relatively high value that does not liquefy the produced water near the outlet of the reaction gas. It is possible to do. Further, at this time, the cooling medium 5 to the refrigerant channel
Since the flow directions of the cells are reversed in the refrigerant channels adjacent to each other, the temperature distribution states of the cells 7 along the refrigerant channels are alternately reversed, which results in the temperature distribution in the plane vertical direction of the cells 7. Can be approximately uniform.

【0030】実施例3;図4(a) は、この発明の運転方
法を実施するための固体高分子型燃料電池のセル面内温
度分布の実施例2とは異なる形成手段を主要な周辺装置
と共に模式的に示したものである。図4(b) は、図4
(a) 中に示したスタックが備えるセパレータ平面図であ
る。図4(a) ,図4(b) において、図7〜図8に示した
従来例の固体高分子型燃料電池と同一部分には同じ符号
を付し、その説明を省略する。
Embodiment 3; FIG. 4 (a) is a diagram showing the main means for forming the temperature distribution in the cell surface of a polymer electrolyte fuel cell for carrying out the operating method of the present invention, which is different from that of Embodiment 2. It is also shown schematically. Figure 4 (b) is
FIG. 3A is a plan view of a separator included in the stack shown in (a). In FIGS. 4 (a) and 4 (b), the same parts as those of the conventional polymer electrolyte fuel cell shown in FIGS. 7 to 8 are designated by the same reference numerals, and the description thereof will be omitted.

【0031】図4(a),図4(b) において、8は、セパレ
ータ6Dを採用した単電池であり、セパレータ6Dは3
本の凹溝11を備え、いずれも反応ガス流通方向に対し
て、それぞれほぼ直交する方向に形成されている。それ
ぞれの凹溝11の両端部は、それぞれ貫通孔12,13
に連通されている。締付板93E,93Fには、それぞ
れの凹溝11の本数に対応する個数の冷却媒体5の流入
口93aあるいは、冷却媒体5の流出口93bが備えら
れ、それぞれの冷媒流路は互いに隔離されている。
In FIGS. 4 (a) and 4 (b), 8 is a unit cell employing the separator 6D, and the separator 6D is 3
The groove 11 is provided, and each is formed in a direction substantially orthogonal to the reaction gas flow direction. Both ends of each groove 11 have through holes 12, 13 respectively.
Is communicated to. The tightening plates 93E and 93F are provided with the inflow ports 93a for the cooling medium 5 or the outflow ports 93b for the cooling medium 5 in a number corresponding to the number of the respective recessed grooves 11, and the respective refrigerant flow paths are isolated from each other. ing.

【0032】スタック9Bの冷媒流路5は、放熱装置2
3を用いると共に、凹溝11の本数と同数の流量の制御
弁98を備えている。放熱装置23は、放熱能が互いに
異なる凹溝11の本数と同数の単位放熱器23a,23
bおよび23cを備えている。それぞれの単位放熱器
は、23c,23b,23aの順に順次大きくなる放熱
能を備えている。したがって、同一温度で放熱装置23
に流入した冷却媒体5は、放熱装置23の出口におい
て、単位放熱器23aに放熱した冷却媒体5aの温度が
最も低く、単位放熱器23bに放熱した冷却媒体5bの
温度は、冷却媒体5aの温度よりも高く、単位放熱器2
3cに放熱した冷却媒体5cが、冷却媒体5bの温度よ
りもさらに高い。それぞれの流出口93bから流出した
冷却媒体5a〜5cは、合流したうえで加圧ポンプ97
に還流する。これにより、図7(b) におけるセル7の電
極膜72,73表面における温度分布を、反応ガスの入
口付近では、比較的低い値とし、反応ガスの出口付近で
は、比較的高い値とすることが可能となる。
The refrigerant flow path 5 of the stack 9B is connected to the heat dissipation device 2
3 is used, and control valves 98 having the same number of flow rates as the number of the concave grooves 11 are provided. The heat radiating device 23 has the same number of unit heat radiators 23a, 23 as the number of the concave grooves 11 having different heat radiating capacities.
b and 23c. Each of the unit radiators has a heat dissipation capability that increases in the order of 23c, 23b, and 23a. Therefore, at the same temperature, the heat dissipation device 23
The temperature of the cooling medium 5a radiated to the unit radiator 23a is the lowest at the outlet of the radiator 23, and the temperature of the cooling medium 5b radiated to the unit radiator 23b is the temperature of the cooling medium 5a. Higher than the unit radiator 2
The temperature of the cooling medium 5c radiated to 3c is higher than the temperature of the cooling medium 5b. The cooling mediums 5a to 5c flowing out from the respective outlets 93b are merged and then the pressure pump 97.
Reflux to. As a result, the temperature distribution on the surfaces of the electrode films 72 and 73 of the cell 7 in FIG. 7 (b) should be relatively low near the reaction gas inlet and relatively high near the reaction gas outlet. Is possible.

【0033】実施例4;図5は、この発明のさらに異な
る一実施例になる固体高分子型燃料電池のセル面内温度
分布の形成手段を示す断面図であり、従来技術と同一部
分には同じ符号を付し、その説明を省略する。図5にお
いて、セパレータ6には、反応ガス流路61に並行して
複数の冷媒流路65が設けられ、冷却媒体5と反応ガス
の流通方向を等しくすることにより、セパレータ6の一
端から流入した冷却媒体5がセルの発電生成熱を吸収し
温度上昇するため、セル面内方向に冷却媒体5入口側で
低く、出口側で高い温度分布が形成される。
Embodiment 4; FIG. 5 is a sectional view showing a means for forming a temperature distribution in a cell surface of a polymer electrolyte fuel cell according to a further embodiment of the present invention. The same reference numerals are given and the description thereof is omitted. In FIG. 5, a plurality of refrigerant flow paths 65 are provided in the separator 6 in parallel with the reaction gas flow paths 61, and the cooling medium 5 and the reaction gas flow in from one end of the separator 6 by making the flowing directions of the reaction gas the same. Since the cooling medium 5 absorbs the heat generated by the power generation of the cells and rises in temperature, a temperature distribution that is low on the inlet side of the cooling medium 5 and high on the outlet side is formed in the in-plane direction of the cell.

【0034】実施例5;図6は、この発明のさらに異な
る一実施例になる固体高分子型燃料電池のセル面内温度
分布の形成手段を示す反応ガスおよび冷却媒体流通構造
の要部を示す断面図であり、従来技術と同一部分には同
一符号を付し、重複説明を省略する。図6において、セ
パレータ6において、並列に形成された複数の冷媒流路
22A〜22Zが反応ガス流路61に対して直行する方
向に設けられ、冷媒流路22の間隔がセル上部では密
に、セル下部では疎に分布して成るものとし、セル面内
方向に温度分布が形成される。
Embodiment 5; FIG. 6 shows the essential parts of the reaction gas and cooling medium flow structure showing the means for forming the in-plane temperature distribution of the solid polymer electrolyte fuel cell according to a further different embodiment of the present invention. It is a cross-sectional view, the same parts as those of the conventional art are denoted by the same reference numerals, and the duplicated description will be omitted. In FIG. 6, in the separator 6, a plurality of refrigerant channels 22A to 22Z formed in parallel are provided in a direction orthogonal to the reaction gas channel 61, and the refrigerant channels 22 are closely spaced at the upper part of the cell. It is assumed that the lower part of the cell is sparsely distributed, and a temperature distribution is formed in the in-plane direction of the cell.

【0035】実施例2〜5における前述の説明では、ス
タックにおけるセル積層方向をセル面の法線方向が水平
になるようになされていたが、これに限定されるもので
はなく、セルの積層方向を鉛直方向に変えてもよい。
In the above description of Examples 2 to 5, the cell stacking direction in the stack was such that the direction normal to the cell surface was horizontal, but the invention is not limited to this, and the cell stacking direction is not limited to this. May be changed in the vertical direction.

【0036】[0036]

【発明の効果】この発明においては、前述のように、燃
料電池セルの酸化剤電極膜表面における温度分布を制御
して、セル面内上部温度およびセル面内上下温度差が最
適値またはその近傍になるように運転することにより、
最適値近傍にない運転状態に比べて、セル出力電圧を極
度に少なくとも8%以上に増大させることができる。こ
れにより、高い発電性能を得ると共に、固体高分子膜の
好適な加湿制御ができるので、セルの特性が長時間安定
して得られ、燃料電池の寿命が向上する効果が得られ
る。
As described above, according to the present invention, the temperature distribution on the surface of the oxidizer electrode film of the fuel cell is controlled so that the upper temperature in the cell plane and the vertical temperature difference in the cell plane are at or near the optimum values. By driving so that
The cell output voltage can be extremely increased to at least 8% or more as compared with the operating state that is not near the optimum value. As a result, high power generation performance can be obtained, and suitable humidification control of the solid polymer membrane can be performed, so that the cell characteristics can be stably obtained for a long time and the life of the fuel cell can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一運転例を示す図で、図1(a) は固
体高分子型燃料電池のセル出力電圧とセル面内上部温度
との関係を示す図,図1(b) はセル出力電圧とセル面内
上下温度差との関係を示す図
FIG. 1 is a diagram showing an operation example of the present invention, FIG. 1 (a) is a diagram showing a relationship between a cell output voltage of a polymer electrolyte fuel cell and an upper temperature in a cell surface, and FIG. 1 (b) is a diagram. The figure which shows the relationship between the cell output voltage and the temperature difference in the cell plane.

【図2】図1にかかる、セル面内最適温度分布のシュミ
レーション結果と実験結果との関係を示す図
FIG. 2 is a diagram showing the relationship between the simulation result of the optimum temperature distribution in the cell plane and the experimental result according to FIG.

【図3】この発明の実施にかかるセル面内温度分布を形
成する冷却構成の一実施例を示し、図3(a) はセル面内
温度分布の形成手段を模式的に示す側面図,図3(b)は
セパレータの平面図
FIG. 3 shows an embodiment of a cooling structure for forming a temperature distribution in a cell surface according to the present invention, and FIG. 3 (a) is a side view schematically showing a means for forming a temperature distribution in the cell surface. 3 (b) is a plan view of the separator

【図4】この発明の実施にかかるセル面内温度分布を形
成する冷却構成の異なる実施例を示し、図4(a) はセル
面内温度分布の形成手段を模式的に示す側面図,図4
(b) はセパレータの平面図
FIG. 4 shows an embodiment in which a cooling structure for forming an in-cell temperature distribution according to the present invention is different, and FIG. 4 (a) is a side view schematically showing a means for forming an in-cell temperature distribution. Four
(b) is a plan view of the separator

【図5】この発明の実施にかかるセル面内温度分布を形
成する冷却構成のさらに異なる実施例におけるセル断面
FIG. 5 is a sectional view of a cell in a further different embodiment of the cooling structure for forming the in-plane temperature distribution of the cell according to the present invention.

【図6】この発明の実施にかかるセル面内温度分布を形
成する冷却構成のさらに異なる実施例におけるセル断面
FIG. 6 is a sectional view of a cell in a further different embodiment of the cooling structure for forming the in-plane temperature distribution of the cell according to the present invention.

【図7】図7(a) は従来のスタックの側面図, 図7(b)
は従来の単電池の側面断面図
FIG. 7 (a) is a side view of a conventional stack, FIG. 7 (b).
Is a side sectional view of a conventional cell

【図8】図8(a) は従来のスタックの冷却構成の一例を
示す図,図8(b) は従来のセル面内冷却構成の一例を示
す図
FIG. 8 (a) is a diagram showing an example of a conventional stack cooling configuration, and FIG. 8 (b) is a diagram showing an example of a conventional cell in-plane cooling configuration.

【符号の説明】[Explanation of symbols]

8 単電池 7 セル 9, 9 A, 9 B スタック 93 A〜93 F 締付板 23 放熱装置 23 a〜23 c 単位放熱器 5, 5 a〜5 c 冷却媒体 93 a 冷却媒体流入口 93 b 冷却媒体流出口 61 a, 61 b 反応ガス流路 65, 65 a〜65 c 冷媒流路 6 A 〜6 D セパレータ 12 貫通孔 13 貫通孔 8 Single cell 7 cells 9, 9 A, 9 B Stack 93 A to 93 F Tightening plate 23 Radiator 23 a to 23 c Unit radiator 5, 5 a to 5 c Cooling medium 93 a Cooling medium inlet 93 b Cooling Medium outlet 61 a, 61 b Reaction gas flow path 65, 65 a to 65 c Refrigerant flow path 6 A to 6 D Separator 12 Through hole 13 Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎並 義晶 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiaki Enoki No. 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】燃料ガス及び酸化剤ガスの供給を受けて直
流電力を発生するセルが、セパレータを介して複数積層
された単電池集積体(スタック)と、 該スタック内に、前記セル毎あるいは複数のセル毎に設
けられセルで発生した熱を除去する冷却部とを備え、 前記セルは、固体高分子膜からなる電解質層と、該電解
質層を挟んでそれぞれ配設された燃料電極(アノード)
と酸化剤電極(カソード)とを有し、 前記冷却部は、冷却媒体を通流させる冷媒流路を有し、 前記セル面内は、酸化剤ガス入口側温度(セル面内上部
温度)より、酸化剤ガス出口側温度(セル面内下部温
度)の方が高く形成されて成る固体高分子型燃料電池の
運転方法であって、 電流密度,反応ガス全圧,入口空気露点,空気利用率,
生成水排出率とから、セル出力電圧が最大となる前記セ
ル面内上部温度の最適値および該セル面内上部温度とセ
ル面内下部温度との差(セル面内上下温度差)の最適値
とを求め、前記冷却媒体の温度および流量を調整するこ
とにより、前記最適セル面内上部温度の最適値またはそ
の近傍およびセル面内上下温度差の最適値またはその近
傍となるように制御することを特徴とする固体高分子型
燃料電池の運転方法。
1. A unit cell integrated body (stack) in which a plurality of cells, which receive a supply of a fuel gas and an oxidant gas and generate direct current power, are stacked via a separator, and each of the cells in the stack, or A cooling unit that is provided for each of a plurality of cells and removes heat generated in the cells is provided, and the cells include an electrolyte layer formed of a solid polymer membrane, and fuel electrodes (anodes) that are respectively disposed so as to sandwich the electrolyte layer. )
And a oxidant electrode (cathode), the cooling unit has a coolant channel for flowing a cooling medium, and the inside of the cell surface is higher than the oxidant gas inlet side temperature (the upper temperature inside the cell surface). , A method of operating a polymer electrolyte fuel cell in which the temperature on the outlet side of the oxidant gas (the temperature on the lower side of the cell surface) is higher than that of the current density, the total pressure of the reaction gas, the dew point of the inlet air, and the air utilization rate. ,
From the generated water discharge rate, the optimum value of the upper temperature in the cell surface where the cell output voltage becomes maximum and the optimum value of the difference between the upper temperature in the cell surface and the lower temperature in the cell surface (difference between the upper and lower temperatures in the cell surface). By controlling the temperature and flow rate of the cooling medium, control is performed so as to be the optimum value of the upper temperature in the optimum cell plane or in the vicinity thereof and the optimum value of the vertical temperature difference in the cell surface or in the vicinity thereof. And a method for operating a polymer electrolyte fuel cell.
【請求項2】請求項1記載の固体高分子型燃料電池の運
転方法において、前記セル面内上部温度を該温度の最適
値±3℃,前記セル面内上下温度差を該温度差の最適値
±1℃の範囲内に制御することを特徴とする固体高分子
型燃料電池の運転方法。
2. The method for operating a polymer electrolyte fuel cell according to claim 1, wherein the upper temperature in the cell plane is the optimum value of the temperature ± 3 ° C., and the temperature difference between the upper and lower sides in the cell plane is the optimum temperature difference. A method for operating a polymer electrolyte fuel cell, which is controlled within a value range of ± 1 ° C.
【請求項3】請求項1記載の固体高分子型燃料電池の運
転方法において、前記セル面内上部温度を該温度の最適
値±1℃,前記セル面内上下温度差を該温度差の最適値
±1℃の範囲内に制御することを特徴とする固体高分子
型燃料電池の運転方法。
3. The method for operating a polymer electrolyte fuel cell according to claim 1, wherein the upper temperature in the cell plane is an optimum value of the temperature ± 1 ° C., and the temperature difference between the upper and lower sides in the cell plane is the optimum temperature difference. A method for operating a polymer electrolyte fuel cell, which is controlled within a value range of ± 1 ° C.
JP6245813A 1994-10-12 1994-10-12 Operating method for solid high polymer type fuel cell Pending JPH08111230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245813A JPH08111230A (en) 1994-10-12 1994-10-12 Operating method for solid high polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245813A JPH08111230A (en) 1994-10-12 1994-10-12 Operating method for solid high polymer type fuel cell

Publications (1)

Publication Number Publication Date
JPH08111230A true JPH08111230A (en) 1996-04-30

Family

ID=17139237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245813A Pending JPH08111230A (en) 1994-10-12 1994-10-12 Operating method for solid high polymer type fuel cell

Country Status (1)

Country Link
JP (1) JPH08111230A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065678A1 (en) 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
WO2002047190A1 (en) * 2000-12-05 2002-06-13 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte type fuel cell, and operation method therefor
JP2002246048A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
WO2002089241A1 (en) * 2001-04-24 2002-11-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system control method
JP2004335444A (en) * 2003-04-16 2004-11-25 Toyota Motor Corp Fuel cell control method
JP2005005080A (en) * 2003-06-11 2005-01-06 Honda Motor Co Ltd Fuel cell and temperature control system
JP2007188893A (en) * 1999-04-26 2007-07-26 Matsushita Electric Ind Co Ltd Method for operating polymer electrolytic fuel cell
JP2008059754A (en) * 2006-08-29 2008-03-13 Equos Research Co Ltd Fuel cell system
JP2008243829A (en) * 2008-06-23 2008-10-09 Toyota Motor Corp Operation method for fuel cell system
CZ299893B6 (en) * 1998-06-25 2008-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cells system and method of controlling the fuel cells
JP2009231083A (en) * 2008-03-24 2009-10-08 Toyota Motor Corp Fuel cell
CN110057395A (en) * 2018-09-26 2019-07-26 南方科技大学 Fuel battery inside temperature-humidity detecting device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ299893B6 (en) * 1998-06-25 2008-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cells system and method of controlling the fuel cells
EP1187240A4 (en) * 1999-04-26 2007-03-28 Matsushita Electric Ind Co Ltd Operation method for polymer electrolytic fuel cell
WO2000065678A1 (en) 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
KR100437292B1 (en) * 1999-04-26 2004-06-25 마쯔시다덴기산교 가부시키가이샤 Operation method for polymer electrolytic fuel cell
EP1187240A1 (en) * 1999-04-26 2002-03-13 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
US6830840B1 (en) 1999-04-26 2004-12-14 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
US7144645B2 (en) 1999-04-26 2006-12-05 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolyte fuel cell
JP2007188893A (en) * 1999-04-26 2007-07-26 Matsushita Electric Ind Co Ltd Method for operating polymer electrolytic fuel cell
WO2002047190A1 (en) * 2000-12-05 2002-06-13 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte type fuel cell, and operation method therefor
CN1293661C (en) * 2000-12-05 2007-01-03 松下电器产业株式会社 Polyelectrolyte type fuel cell and operation method therefor
EP1349224A1 (en) * 2000-12-05 2003-10-01 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte type fuel cell, and operation method therefor
EP1349224A4 (en) * 2000-12-05 2007-05-16 Matsushita Electric Ind Co Ltd Polyelectrolyte type fuel cell, and operation method therefor
JP4701511B2 (en) * 2001-02-13 2011-06-15 株式会社デンソー Fuel cell system
JP2002246048A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
US7887962B2 (en) 2001-04-24 2011-02-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system control method
WO2002089241A1 (en) * 2001-04-24 2002-11-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system control method
JP2004335444A (en) * 2003-04-16 2004-11-25 Toyota Motor Corp Fuel cell control method
JP4522097B2 (en) * 2003-04-16 2010-08-11 トヨタ自動車株式会社 Fuel cell control method
JP2005005080A (en) * 2003-06-11 2005-01-06 Honda Motor Co Ltd Fuel cell and temperature control system
JP4629961B2 (en) * 2003-06-11 2011-02-09 本田技研工業株式会社 Fuel cell and temperature control system
JP2008059754A (en) * 2006-08-29 2008-03-13 Equos Research Co Ltd Fuel cell system
JP2009231083A (en) * 2008-03-24 2009-10-08 Toyota Motor Corp Fuel cell
JP2008243829A (en) * 2008-06-23 2008-10-09 Toyota Motor Corp Operation method for fuel cell system
CN110057395B (en) * 2018-09-26 2021-08-06 南方科技大学 Temperature and humidity detection device inside fuel cell
CN110057395A (en) * 2018-09-26 2019-07-26 南方科技大学 Fuel battery inside temperature-humidity detecting device

Similar Documents

Publication Publication Date Title
US5922485A (en) Solid polymer electrolyte fuel cell
JP4516229B2 (en) Solid polymer cell assembly
KR100699659B1 (en) Polymer Electrolyte Fuel Cell
US20060210855A1 (en) Flow field plate arrangement
US20040157103A1 (en) Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
JP2004241367A (en) Fuel cell
JP2004039357A (en) Solid polymer fuel cell
US7399548B2 (en) Fuel cell stack
JPH08111230A (en) Operating method for solid high polymer type fuel cell
JP5006506B2 (en) Fuel cell and operation method thereof
JP3839978B2 (en) Polymer electrolyte fuel cell system
JP4034804B2 (en) Polymer electrolyte fuel cell power generation system
JPH05144451A (en) Reaction gas/cooling medium flowing structure of fuel cell with solid highpolymer electrolyte
KR20090072536A (en) Bipolar plate and fuel cell stack including the same
JPH08111231A (en) Solid high polymer electrolyte type fuel cell
JP2006156411A (en) Polymer electrolyte fuel cell
JP5425092B2 (en) FUEL CELL, FUEL CELL SYSTEM, AND FUEL CELL OPERATING METHOD
JP2006210334A5 (en)
JP2002298898A (en) Solid polymer type fuel cell
JPH07122280A (en) Solid high polymer electrolyte type fuel cell
US20060003206A1 (en) Fuel cell
JP2002100380A (en) Fuel cell and fuel cell stack
JP3685039B2 (en) Polymer electrolyte fuel cell system
JP5089884B2 (en) Polymer electrolyte fuel cell system
JP2005038845A (en) Polyelectrolyte fuel cell