JP2004335444A - Fuel cell control method - Google Patents

Fuel cell control method Download PDF

Info

Publication number
JP2004335444A
JP2004335444A JP2004005107A JP2004005107A JP2004335444A JP 2004335444 A JP2004335444 A JP 2004335444A JP 2004005107 A JP2004005107 A JP 2004005107A JP 2004005107 A JP2004005107 A JP 2004005107A JP 2004335444 A JP2004335444 A JP 2004335444A
Authority
JP
Japan
Prior art keywords
fuel cell
control method
stage
water
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004005107A
Other languages
Japanese (ja)
Other versions
JP4522097B2 (en
Inventor
Ikuyasu Katou
育康 加藤
Masaru Kadokawa
優 角川
Toshiyuki Suzuki
稔幸 鈴木
Takeshi Takahashi
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2004005107A priority Critical patent/JP4522097B2/en
Publication of JP2004335444A publication Critical patent/JP2004335444A/en
Application granted granted Critical
Publication of JP4522097B2 publication Critical patent/JP4522097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell control method capable of controlling moisture content at a preferable position in a cell surface. <P>SOLUTION: (1) In the fuel cell control method, the distribution of the moisture content as water droplets or steam in the cell surface is controlled by regulating at least one of the pressure of a reactive gas, humidity, temperature, flow, or pressure loss property caused by a passage profile. (2) In the fuel cell control method, the distribution of the moisture content in the cell surface is controlled by relating the pressure loss property caused by the passage profile of the fuel gas passage and oxidation gas passage of a separator. (3) In the fuel cell control method, the distribution of the moisture content as water droplets or steam in the cell surface is controlled by regulating the flow direction of the reactive gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は燃料電池の制御方法に関し、とくにセル面内の任意の位置の水分量を制御するようにした燃料電池の制御方法に関する。   The present invention relates to a control method for a fuel cell, and more particularly to a control method for a fuel cell in which a water content at an arbitrary position in a cell plane is controlled.

燃料電池、とくに固体高分子電解質型燃料電池は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータとの積層体からなる。膜−電極アッセンブリは、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置された触媒層からなる電極(アノード、燃料極)および電解質膜の他面に配置された触媒層からなる電極(カソード、空気極)とからなる。膜−電極アッセンブリとセパレータとの間には、アノード側、カソード側にそれぞれ拡散層が設けられる。セパレータには、アノードに燃料ガス(水素)を供給するための燃料ガス流路が形成され、カソードに酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路が形成されている。また、セパレータには冷媒(通常、冷却水)を流すための冷媒流路も形成されている。膜−電極アッセンブリとセパレータを重ねてセルを構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート)、ボルト・ナットにて固定して、スタックを構成する。
各セルの、アノード側では、水素を水素イオン(プロトン)と電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水を生成するつぎの反応が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
2. Description of the Related Art A fuel cell, particularly a solid polymer electrolyte fuel cell, comprises a laminate of a membrane-electrode assembly (MEA: Membrane-Electrode Assembly) and a separator. The membrane-electrode assembly is composed of an electrolyte membrane composed of an ion exchange membrane and an electrode (anode, fuel electrode) composed of a catalyst layer disposed on one side of the electrolyte membrane, and an electrode composed of a catalyst layer disposed on the other side of the electrolyte membrane (anode). Cathode, air electrode). A diffusion layer is provided between the membrane-electrode assembly and the separator on the anode side and the cathode side, respectively. The separator has a fuel gas flow path for supplying fuel gas (hydrogen) to the anode, and an oxidizing gas flow path for supplying oxidizing gas (oxygen, usually air) to the cathode. Further, a coolant channel for flowing a coolant (normally, cooling water) is also formed in the separator. A cell is formed by stacking a membrane-electrode assembly and a separator, a module is formed from at least one cell, the modules are stacked to form a cell stack, and terminals, insulators, and end plates are provided at both ends of the cell stack in the cell stacking direction. Are arranged, and the cell stack is fastened in the cell stacking direction, and is fixed with a fastening member (for example, a tension plate) extending in the cell stacking direction outside the cell stack with a bolt and a nut to form a stack.
On the anode side of each cell, a reaction is performed to convert hydrogen into hydrogen ions (protons) and electrons. The hydrogen ions move through the electrolyte membrane to the cathode side, and oxygen and hydrogen ions and electrons (next MEA) on the cathode side. The following reaction is performed to generate water from the electrons generated at the anode of the cell through the separator, or the electrons generated at the anode of the cell at one end in the cell stacking direction arrive at the cathode of the other cell through an external circuit.
Anode side: H 2 → 2H + + 2e
Cathode: 2H + + 2e - + ( 1/2) O 2 → H 2 O

セルで正常な発電が行われるには、電解質膜が適当に湿潤状態にあることが必要であり、反応ガスは加湿して供給される。しかし、加湿および電池反応での生成水により湿潤過多になると反応ガス流路が液滴で閉塞され、出力低下を招く。セル面内を各部位の要求に応じて最適に湿潤することが臨まれる。
特開平11−250923号公報は、従来の固体高分子電解質型燃料電池のセパレータの流路形状を開示している。これは、全体として折り返しながら流れる蛇行流路であって、折り返す毎に溝本数が減少し、下流に行くほど流速が速くなり、発生した液滴を吹き飛ばすことを狙っている。
特開平11−250923号公報
For normal power generation in the cell, the electrolyte membrane needs to be in an appropriately wet state, and the reaction gas is supplied humidified. However, if the water generated by the humidification and the battery reaction becomes excessively wet, the reaction gas flow path is clogged with droplets, and the output is reduced. It is expected that the inside of the cell surface will be optimally moistened according to the requirements of each part.
Japanese Patent Application Laid-Open No. H11-250923 discloses a channel shape of a separator of a conventional solid polymer electrolyte fuel cell. This is a meandering flow path that flows while turning as a whole, and the number of grooves decreases with each turn, and the flow velocity increases toward the downstream, aiming to blow off generated droplets.
JP-A-11-250923

しかし、従来技術には、つぎの問題がある。
複数本の流路があった場合、ガスは流れやすい流路を流れるため、液滴が存在している流路に必ずしもガスが流れ、液滴を吹き飛ばしてくれるとは限らない。また、燃料電池の電解質膜にとっては、十分に加湿されているほど発電効率がよいことから、液滴の存在がすべて悪いとは限らない。
However, the prior art has the following problems.
When there are a plurality of flow paths, the gas flows through a flow path that is easy to flow, so that the gas does not always flow through the flow path where the droplet exists, and does not necessarily blow the droplet. Also, for the electrolyte membrane of the fuel cell, the more humidified the better, the better the power generation efficiency.

本発明の目的は、セル面内の任意の位置の水分量を制御できる燃料電池の制御方法を提供することにある。   An object of the present invention is to provide a fuel cell control method capable of controlling the amount of water at an arbitrary position in a cell plane.

上記目的を達成する本発明はつぎの通りである。
(1) 反応ガスの圧力、湿度、温度、流量、流路形状による圧損特性の少なくとも1つを調整して、セル面内の液滴または水蒸気としての水分量の分布を制御する燃料電池の制御方法。
(2) 燃料電池に接続された酸素含有ガスの供給装置、加湿装置、圧力センサ、圧力制御弁と、
前記燃料電池に接続された水素含有ガスの供給装置、加湿装置、圧力センサ、圧力制御弁と、
各単位電池および電池全体の作動を監視する電圧センサ、温度、電流センサを含む電池作動監視装置と、
前記各センサの信号を元に、供給装置、加湿装置、圧力制御弁の少なくとも1つを制御する制御装置と、
の少なくとも1つを用いて、セル面内の水分量の分布を制御する(1)記載の燃料電池の制御方法。
(3) セパレータの、燃料ガス流路、酸化ガス流路の流路形状による圧損特性を関係させて、セル面内の水分量の分布を制御する(1)または(2)記載の燃料電池の制御方法。
(4) 燃料電池の出ガスの圧力を制御することにより、セル面内の水分量の分布を制御する(1)または(2)記載の燃料電池の制御方法。
(5) 燃料電池へ供給するガス流量を制御することにより、セル面内の水分量の分布を制御する(1)または(2)記載の燃料電池の制御方法。
(6) 燃料電池へ供給するガスの加湿量を制御することによりセル面内の水分量の分布を制御する(1)または(2)記載の燃料電池の制御方法。
(7) セル面内全域に液滴を存在させないようにした(1)または(3)記載の燃料電池の制御方法。
(8) セル面内の任意の位置のみに液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(9) セル面内の入口段のみに液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(10) セル面内の中央段のみに液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(11) セル面内の出口段のみに液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(12) セル面内の入口段と中央段のみに液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(13) セル面内の入口段と出口段のみに液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(14) セル面内の中央段と出口段のみに液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(15) セル面内全域に液滴を存在させるようにした(1)または(3)記載の燃料電池の制御方法。
(16) 反応ガスの流れ方向を調整することにより、セル面内の液滴または水蒸気としての水分量の分布を制御する(1)乃至(15)の何れか一つに記載の燃料電池の制御方法。
The present invention that achieves the above object is as follows.
(1) Control of a fuel cell in which at least one of pressure, humidity, temperature, flow rate, and pressure loss characteristics of a reaction gas is adjusted to control the distribution of water content as droplets or water vapor in a cell surface. Method.
(2) an oxygen-containing gas supply device connected to the fuel cell, a humidifier, a pressure sensor, a pressure control valve,
A hydrogen-containing gas supply device connected to the fuel cell, a humidifier, a pressure sensor, a pressure control valve,
A battery operation monitoring device including a voltage sensor, a temperature, and a current sensor for monitoring the operation of each unit battery and the entire battery;
A control device that controls at least one of a supply device, a humidifier, and a pressure control valve based on a signal of each of the sensors;
The control method for a fuel cell according to (1), wherein the distribution of the amount of water in the cell surface is controlled by using at least one of the following.
(3) The fuel cell according to (1) or (2), wherein the distribution of the water content in the cell surface is controlled by relating the pressure loss characteristics of the separator to the shape of the fuel gas flow path and the oxidizing gas flow path. Control method.
(4) The control method for a fuel cell according to (1) or (2), wherein the distribution of the amount of water in the cell surface is controlled by controlling the pressure of the gas emitted from the fuel cell.
(5) The fuel cell control method according to (1) or (2), wherein the distribution of the amount of water in the cell surface is controlled by controlling the flow rate of gas supplied to the fuel cell.
(6) The fuel cell control method according to (1) or (2), wherein the distribution of the amount of water in the cell surface is controlled by controlling the humidification amount of the gas supplied to the fuel cell.
(7) The method for controlling a fuel cell according to (1) or (3), wherein the droplets are prevented from being present in the whole area within the cell plane.
(8) The method for controlling a fuel cell according to (1) or (3), wherein the droplet is present only at an arbitrary position in the cell plane.
(9) The method for controlling a fuel cell according to (1) or (3), wherein the liquid droplet is present only in the entrance stage in the cell plane.
(10) The method of controlling a fuel cell according to (1) or (3), wherein the droplet is present only in the central stage in the cell plane.
(11) The method for controlling a fuel cell according to (1) or (3), wherein the droplets are made to exist only in the outlet stage in the cell plane.
(12) The method for controlling a fuel cell according to (1) or (3), wherein the droplets are present only in the entrance stage and the center stage in the cell plane.
(13) The method for controlling a fuel cell according to (1) or (3), wherein the droplets are present only in the entrance stage and the exit stage in the cell plane.
(14) The method for controlling a fuel cell according to (1) or (3), wherein the droplets are present only in the center stage and the exit stage in the cell plane.
(15) The method for controlling a fuel cell according to (1) or (3), wherein the droplets are present in the whole area within the cell plane.
(16) The fuel cell control according to any one of (1) to (15), wherein the distribution of the amount of water as droplets or water vapor in the cell surface is controlled by adjusting the flow direction of the reaction gas. Method.

上記(1)〜(15)の燃料電池の制御方法では、温度、ガス量、圧力の少なくとも1つによる飽和水蒸気量の変化、および/またはセパレータのガス流路形状による圧力降下特性を制御することにより、入口から供給された水分と発電中に生成された水分を、セル面内の任意の位置にて、液滴として存在させるか、あるいは水蒸気として存在させるかを、自在に操作できるようになる。
上記(16)の燃料電池の制御方法では、反応ガスの流れ方向をも調整するようにしたので、セル面内の水分量の分布の制御の自由度が上がる。
In the fuel cell control method according to any one of the above (1) to (15), a change in a saturated water vapor amount due to at least one of a temperature, a gas amount, and a pressure and / or a pressure drop characteristic due to a gas flow path shape of a separator are controlled. Thereby, it becomes possible to freely operate whether the moisture supplied from the inlet and the moisture generated during the power generation are present as droplets or as steam at an arbitrary position in the cell plane. .
In the fuel cell control method of (16), the flow direction of the reaction gas is also adjusted, so that the degree of freedom in controlling the distribution of the amount of water in the cell surface increases.

以下に、本発明の燃料電池の制御方法を図1〜図25および図26〜図34を参照して説明する。
まず、本発明の全実施例に共通する部分を図1〜図3、図25を参照して説明する。
本発明で対象となる燃料電池は低温型燃料電池であり、たとえば固体高分子電解質型燃料電池1である。該燃料電池1は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
Hereinafter, the control method of the fuel cell according to the present invention will be described with reference to FIGS. 1 to 25 and FIGS. 26 to 34.
First, parts common to all embodiments of the present invention will be described with reference to FIGS. 1 to 3 and FIG.
The fuel cell to be used in the present invention is a low-temperature fuel cell, for example, a solid polymer electrolyte fuel cell 1. The fuel cell 1 is mounted on, for example, a fuel cell vehicle. However, it may be used other than a car.

固体高分子電解質型燃料電池1は、図2に示すように、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータ18との積層体からなる。膜−電極アッセンブリは、イオン交換膜からなる電解質膜15、この電解質膜の一面に配置された触媒層からなる電極(アノード、燃料極)16および電解質膜15の他面に配置された触媒層からなる電極(カソード、空気極)17とからなる。膜−電極アッセンブリとセパレータ18との間には、通常、アノード側、カソード側にそれぞれ拡散層が設けられる。
膜−電極アッセンブリとセパレータ18を重ねて単セルを構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート)、ボルト・ナットにて固定して、スタックを構成する。
As shown in FIG. 2, the solid polymer electrolyte fuel cell 1 is composed of a laminate of a membrane-electrode assembly (MEA: Membrane-Electrode Assembly) and a separator 18. The membrane-electrode assembly includes an electrolyte membrane 15 composed of an ion exchange membrane, an electrode (anode, fuel electrode) 16 composed of a catalyst layer disposed on one side of the electrolyte membrane, and a catalyst layer disposed on the other side of the electrolyte membrane 15. (Cathode, air electrode) 17. Generally, a diffusion layer is provided between the membrane-electrode assembly and the separator 18 on the anode side and the cathode side, respectively.
The membrane-electrode assembly and the separator 18 are stacked to form a single cell, a module is formed from at least one cell, and the modules are stacked to form a cell stack, and a terminal, an insulator, An end plate is arranged, the cell stack is tightened in the cell stacking direction, and a fastening member (for example, a tension plate) extending in the cell stacking direction outside the cell stack is fixed with bolts and nuts to form a stack.

セパレータ18には、電解質膜15に対向する面に、アノード16に燃料ガス(水素)を供給するための燃料ガス流路が形成され、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路が形成されている。燃料ガス流路、酸化ガス流路は、リブ25、26によって形成されており、大蛇行流路に形成されている。大蛇行流路部分には、複数の凸部27によって格子状の溝からなる流路が形成されている。また、セパレータ18には燃料ガス流路、酸化ガス流路と反対側の面に冷媒(通常、冷却水)を流すための冷媒流路も形成されている。冷媒流路はセル毎に、または複数のセル毎に(たとえば、モジュール毎に)設けられている。
セパレータ18には、燃料ガス導入穴19、燃料ガス排出穴20、酸化ガス導入穴21、酸化ガス排出穴22、冷却水流路穴23、24が形成されている。燃料ガスは燃料ガス導入穴19からセル面内燃料ガス流路に入り、セル面内燃料ガス流路から燃料ガス排出穴20に出ていく。酸化ガスは酸化ガス導入穴21からセル面内酸化ガス流路に入り、セル面内酸化ガス流路から酸化ガス排出穴22に出ていく。
A fuel gas flow path for supplying fuel gas (hydrogen) to the anode 16 is formed on the surface of the separator 18 facing the electrolyte membrane 15, and an oxidizing gas (oxygen, usually air) is supplied to the cathode 17. Oxidizing gas flow path is formed. The fuel gas flow path and the oxidizing gas flow path are formed by ribs 25 and 26, and are formed as large meandering flow paths. In the large meandering channel portion, a channel formed of a lattice-like groove is formed by the plurality of convex portions 27. The separator 18 also has a coolant channel for flowing a coolant (usually, cooling water) on a surface opposite to the fuel gas channel and the oxidizing gas channel. The coolant passage is provided for each cell or for each of a plurality of cells (for example, for each module).
The separator 18 has a fuel gas introduction hole 19, a fuel gas discharge hole 20, an oxidizing gas introduction hole 21, an oxidizing gas discharge hole 22, and cooling water passage holes 23 and 24. The fuel gas enters the fuel gas flow path in the cell plane from the fuel gas introduction hole 19 and exits to the fuel gas discharge hole 20 from the fuel gas flow path in the cell plane. The oxidizing gas enters the oxidizing gas flow path in the cell surface from the oxidizing gas introduction hole 21 and exits to the oxidizing gas discharge hole 22 from the oxidizing gas flow path in the cell surface.

図1は、単セルを積層した燃料電池スタックとそれに接続される反応ガス供給、排出の制御システムを示している。本システムは、燃料電池1と、燃料電池1のアノード側に水素を含む燃料ガスを供給する燃料ガス供給装置2と、その燃料ガスを加湿する燃料ガス加湿器4と、燃料電池1のカソード側に酸素を含む酸化ガスを供給する酸化ガス供給装置3と、その酸化ガスを加湿する酸化ガス加湿器5と、燃料電池1のアノード側から排出される燃料ガスの圧力を制御する燃料ガス圧力調整弁6およびその圧力を検出する燃料ガス圧力センサ8と、燃料電池1のカソード側から排出される酸化ガスの圧力を制御する酸化ガス圧力調整弁7およびその圧力を検出する酸化ガス圧力センサ9と、燃料電池1の作動状態を監視する電池作動監視装置10と、燃料電池1の作動状態を制御する制御装置11と、を備えている。電池作動監視装置10は、電圧、電流、温度を検出するセンサ12、13、14からなる。   FIG. 1 shows a fuel cell stack in which single cells are stacked, and a control system for supplying and discharging a reaction gas connected thereto. This system comprises a fuel cell 1, a fuel gas supply device 2 for supplying a fuel gas containing hydrogen to the anode side of the fuel cell 1, a fuel gas humidifier 4 for humidifying the fuel gas, and a cathode side of the fuel cell 1. Gas supply device 3 for supplying an oxidizing gas containing oxygen to the fuel cell, oxidizing gas humidifier 5 for humidifying the oxidizing gas, and fuel gas pressure adjustment for controlling the pressure of the fuel gas discharged from the anode side of fuel cell 1 A valve 6 and a fuel gas pressure sensor 8 for detecting its pressure, an oxidizing gas pressure regulating valve 7 for controlling the pressure of oxidizing gas discharged from the cathode side of the fuel cell 1 and an oxidizing gas pressure sensor 9 for detecting its pressure; The fuel cell system includes a battery operation monitoring device 10 for monitoring the operation state of the fuel cell 1 and a control device 11 for controlling the operation state of the fuel cell 1. The battery operation monitoring device 10 includes sensors 12, 13, and 14 for detecting voltage, current, and temperature.

本発明の燃料電池の制御方法は、上記の燃料電池システムを用いて、反応ガス(燃料ガス、酸化ガス)の圧力、湿度、温度、流量、流路形状による圧損特性(圧力降下特性)の少なくとも1つを調整して、セル面内の液滴または水蒸気としての水分量の分布を制御する方法からなる。   The fuel cell control method of the present invention uses the above-described fuel cell system to perform at least the pressure drop characteristics (pressure drop characteristics) of the reaction gas (fuel gas, oxidizing gas) by the pressure, humidity, temperature, flow rate, and flow path shape. One method is to control the distribution of the amount of water as droplets or water vapor in the cell surface by adjusting one of them.

さらに詳しくは、本発明の燃料電池の制御方法は、燃料電池1に接続された酸素含有ガスの供給装置3、加湿装置5、圧力センサ9、圧力制御弁(背圧調整弁)7と、燃料電池1に接続された水素含有ガスの供給装置2、加湿装置4、圧力センサ8、圧力制御弁(背圧調整弁)6と、各単位電池および電池全体の作動を監視する、電圧センサ12、温度14、電流センサ13を含む電池作動監視装置10と、各センサ12、13、14の信号を元に、供給装置2、3、加湿装置4、5、圧力制御弁6、7の少なくとも1つを制御する制御装置11と、の少なくとも1つを用いて、セル面内の水分量の分布を制御する方法からなる。   More specifically, the method for controlling a fuel cell according to the present invention includes a supply device 3 for an oxygen-containing gas, a humidifier 5, a pressure sensor 9, a pressure control valve (back pressure regulating valve) 7, A hydrogen-containing gas supply device 2, a humidifier 4, a pressure sensor 8, a pressure control valve (back pressure regulating valve) 6, and a voltage sensor 12, which monitors the operation of each unit battery and the entire battery connected to the battery 1, Battery operation monitoring device 10 including temperature 14 and current sensor 13, and at least one of supply devices 2 and 3, humidification devices 4 and 5, and pressure control valves 6 and 7 based on signals from sensors 12, 13 and 14. And a control device 11 for controlling the distribution of the amount of water in the cell surface using at least one of the control device 11 and the control device 11.

本発明の燃料電池の制御方法では、セパレータ18の、燃料ガス流路、酸化ガス流路の流路形状による圧損特性を関連させて、セル面内の水分量の分布を制御することが望ましい。   In the fuel cell control method of the present invention, it is desirable to control the distribution of the amount of water in the cell surface by relating the pressure loss characteristics of the separator 18 to the shape of the fuel gas flow path and the oxidizing gas flow path.

本発明の燃料電池の制御方法では、温度、ガス量、圧力の少なくとも1つによる飽和水蒸気量の変化、および/またはセパレータのガス流路形状による圧力降下特性を制御することにより、入口から供給された水分と発電中に生成された水分を、セル面内の任意の位置にて、液滴として存在させるか、あるいは水蒸気として存在させるかを、自在に操作できるようになる。   In the control method of the fuel cell according to the present invention, the fuel gas is supplied from the inlet by controlling the change in the amount of saturated steam by at least one of the temperature, the gas amount, and the pressure, and / or the pressure drop characteristic by the gas flow path shape of the separator. It is possible to freely operate whether the generated moisture and the moisture generated during power generation are present as droplets or as steam at an arbitrary position in the cell surface.

つぎに、本発明の各実施例の特有な部分を、説明する。
(1)実施例1……図4、図5
〔構成〕
本発明の実施例1では、図4に示すように、大蛇行流路の流路幅を、たとえば、酸化ガス流路の入口段28と中央段29と出口段30の流路幅を、ほぼ均等にする。
また、酸化ガス流路の出口段30のみに液滴として水分を存在させる(図4の色付け部分)。
〔作用〕
本発明の実施例1の燃料電池の制御方法は、酸化ガス流路の出口段30に液滴の水分を存在させて、水素側入口部の加湿不足を補いたい時に有効である。
酸化ガス導入穴21から流れ込んだ酸化ガスは全体的には大蛇行流路を流れて、酸化ガス排出穴22から排出される。図4に示すように、大蛇行流路の流路幅をほぼ均等にすることで、図5の線Aに示すように、入口から出口に向かってほぼ直線的減少する圧損特性を得ることができる。供給ガスの流量、背圧(図5の点L)を決めることで、ガス流路内全域の飽和水分量が図5の線Bのように決まる。一方、ガス流路全域内の水分量は供給するガスの加湿量(図5の点M)を決めることで、発電により生成される水分量と合わせて図5の線Cのように決まる。ただし、発電による生成水は面内で均一であり、水分はすべて後方へ流れていくものと仮定している。点Lと点Mを調整し、線Bと線Cの交点(図5の点N)を中央段29と出口段30の境にもってくることにより、ガス流路全域内にて液体として存在する水は図5の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域内の出口段30のみに液体としての水を存在させる。
点Lに示す背圧値は、酸化ガス背圧センサ9を観察し、酸化ガス背圧調整弁7によって調整する。
点Mに示す加湿量は酸化ガス加湿器5によって調整する。
なお、温度は一定として説明している(以下の実施例も同様)。温度が変われば、線Bが変化するが、その温度に合わせて点Mを設定し、線Cを動かして点Nを合わせることになる。燃料電池では、冷却水により温度を一定に制御しているため省略しているが、温度を変化させて調整してもよい。
Next, a specific portion of each embodiment of the present invention will be described.
(1) Example 1 FIGS. 4 and 5
〔Constitution〕
In the first embodiment of the present invention, as shown in FIG. 4, the width of the large meandering channel, for example, the width of the inlet stage 28, the center stage 29, and the outlet stage 30 of the oxidizing gas channel is substantially Even out.
Further, moisture is present as droplets only in the outlet stage 30 of the oxidizing gas flow path (colored portion in FIG. 4).
[Action]
The control method of the fuel cell according to the first embodiment of the present invention is effective when it is desired to make the moisture of the droplets exist in the outlet stage 30 of the oxidizing gas flow path to compensate for insufficient humidification at the hydrogen-side inlet.
The oxidizing gas flowing from the oxidizing gas introduction hole 21 generally flows through the large meandering channel, and is discharged from the oxidizing gas discharge hole 22. As shown in FIG. 4, by making the flow path width of the large meandering flow path substantially uniform, it is possible to obtain a pressure drop characteristic that decreases almost linearly from the inlet to the outlet as shown by the line A in FIG. it can. By determining the flow rate of the supply gas and the back pressure (point L in FIG. 5), the saturated moisture amount in the entire gas flow path is determined as shown by the line B in FIG. On the other hand, the amount of moisture in the entire gas flow path is determined as shown by the line C in FIG. 5 by determining the humidification amount of the supplied gas (point M in FIG. 5) and the amount of moisture generated by power generation. However, it is assumed that the water generated by power generation is uniform in the plane, and that all the water flows backward. By adjusting the point L and the point M and bringing the intersection of the line B and the line C (point N in FIG. 5) to the boundary between the center stage 29 and the exit stage 30, it exists as a liquid in the entire gas flow path. The water looks like line D in FIG. In this way, by designing the flow path shape, the back pressure, and the humidification amount, water as a liquid is present only in the outlet stage 30 in the entire gas flow path.
The back pressure value shown at the point L is adjusted by the oxidizing gas back pressure adjusting valve 7 while observing the oxidizing gas back pressure sensor 9.
The humidification amount shown at the point M is adjusted by the oxidizing gas humidifier 5.
Note that the description is made on the assumption that the temperature is constant (the same applies to the following embodiments). If the temperature changes, the line B changes, but the point M is set according to the temperature, and the point N is adjusted by moving the line C. In the fuel cell, although the temperature is controlled to be constant by the cooling water, the description is omitted, but the temperature may be changed and adjusted.

(2)実施例2……図6、図7
〔構成〕
本発明の実施例2では、図6に示すように、出口段30での流路幅を入口段28、中央段29に比べて狭くしてある。実施例1に対して、実施例2は出口部分で流速を上げて液滴を排出しやすいようにしたものである。
また、酸化ガス流路の出口段30のみに液滴として水分を存在させる(図6の色付け部分)。その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例2の燃料電池の制御方法は、実施例1と同様、酸化ガス流路の出口段30に液滴の水分を存在させて、水素側入口部の加湿不足を補いたい時に有効である。
本発明の実施例2の圧損特性は、図7の線Aに示すように、出口段30で圧力降下が大きくなる。供給ガスの流量、背圧(図7の点L)を決めることで、ガス流路全域内の飽和水分量が図7の線Bのように決まる。この場合にも、実施例1と同様に、背圧、加湿量を調整した設計をすることにより、ガス流路全域内の出口段30のみに液体としての水を存在させる。その他は実施例1に準じる。
(2) Embodiment 2 FIGS. 6 and 7
〔Constitution〕
In the second embodiment of the present invention, as shown in FIG. 6, the width of the flow passage at the outlet stage 30 is narrower than that of the inlet stage 28 and the center stage 29. In contrast to the first embodiment, the second embodiment increases the flow velocity at the outlet portion so that droplets can be easily discharged.
Further, water is made to exist as droplets only in the outlet stage 30 of the oxidizing gas flow path (colored portion in FIG. 6). Others are the same as the first embodiment of the present invention.
[Action]
The control method of the fuel cell according to the second embodiment of the present invention is effective when the moisture of the droplets is present in the outlet stage 30 of the oxidizing gas flow path to compensate for the insufficient humidification at the hydrogen-side inlet portion, as in the first embodiment. It is.
In the pressure loss characteristic of the second embodiment of the present invention, the pressure drop increases at the outlet stage 30, as shown by the line A in FIG. By determining the flow rate of the supply gas and the back pressure (point L in FIG. 7), the amount of saturated moisture in the entire gas flow path is determined as shown by the line B in FIG. Also in this case, similarly to the first embodiment, by designing the back pressure and the humidification amount to be adjusted, water as the liquid is present only in the outlet stage 30 in the entire gas flow path. Others are the same as in the first embodiment.

(3)実施例3……図8、図9、図10
〔構成〕
本発明の実施例3では、図8に示すように、酸化ガス流路の中央段29と出口段30のみに液滴として水分を存在させる(図8の色付け部分)。その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例3の燃料電池の制御方法は、酸化ガス流路の中央段29、出口段30に液滴の水分を存在させて、水素側入口部の加湿不足を補いたい時に有効である。
本発明の実施例3では、実施例1に対して、加湿量(図9の点M)を調整することで、線Bと線Cの交点(図9の点N)を入口段28と中央段29の境にもってくることにより、ガス流路全域内にて液体として存在する水は図9の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域内のうち中央段29と出口段30に液体としての水を存在させる。
もう一つの方法として、図10に示すように、実施例1に対して、背圧(図10の点L)を調整することで、線Bと線Cの交点(図10の点N)を入口段28と中央段29の境にもってくることにより、ガス流路全域内にて液体として存在する水は図10の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域内のうち中央段29と出口段30に液体としての水を存在させる。
(3) Third Embodiment FIGS. 8, 9, and 10
〔Constitution〕
In the third embodiment of the present invention, as shown in FIG. 8, water is present as droplets only in the center stage 29 and the outlet stage 30 of the oxidizing gas flow path (colored portion in FIG. 8). Others are the same as the first embodiment of the present invention.
[Action]
The control method for the fuel cell according to the third embodiment of the present invention is effective when it is desired to make the water content of the droplets exist in the central stage 29 and the outlet stage 30 of the oxidizing gas flow path to compensate for insufficient humidification at the hydrogen-side inlet. .
In the third embodiment of the present invention, the intersection of the line B and the line C (point N in FIG. 9) is adjusted to the center of the entrance step 28 by adjusting the humidification amount (point M in FIG. 9). By bringing to the boundary of the step 29, water existing as a liquid in the entire gas flow path becomes as shown by a line D in FIG. In this way, by designing the flow path shape, the back pressure, and the humidification amount to be adjusted, water as a liquid is present in the central stage 29 and the outlet stage 30 in the entire gas flow path.
As another method, as shown in FIG. 10, by adjusting the back pressure (point L in FIG. 10) with respect to the first embodiment, the intersection of line B and line C (point N in FIG. 10) is obtained. By bringing the boundary between the inlet stage 28 and the center stage 29, water existing as a liquid in the entire gas flow path becomes as shown by a line D in FIG. In this way, by designing the flow path shape, the back pressure, and the humidification amount to be adjusted, water as a liquid is present in the central stage 29 and the outlet stage 30 in the entire gas flow path.

(4)実施例4……図11、図12
〔構成〕
本発明の実施例4では、図11に示すように、セル面内全域の酸化ガス流路に液滴として水分を存在させる(図11の色付け部分)。
その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例4の燃料電池の制御方法は、酸化ガス流路の全域(入口段28、中央段29、出口段30)に液滴の水分を存在させて、電解質膜の湿潤を十分に保つのに有効である。
本発明の実施例4では、実施例1に対して、加湿量(図12の点M)を調整することで、線Bと線Cの交点(図12の点N)を酸化ガス流路入口にもってくることにより、ガス流路全域内にて液体として存在する水は図12の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域(入口段28、中央段29、出口段30)に液体としての水を存在させる。
(4) Fourth Embodiment FIGS. 11 and 12
〔Constitution〕
In the fourth embodiment of the present invention, as shown in FIG. 11, water is present as droplets in the oxidizing gas flow path in the entire area of the cell surface (colored portion in FIG. 11).
Others are the same as the first embodiment of the present invention.
[Action]
In the control method of the fuel cell according to the fourth embodiment of the present invention, the moisture of the droplets is present in the entire area of the oxidizing gas flow path (the inlet stage 28, the center stage 29, and the outlet stage 30) to sufficiently wet the electrolyte membrane. Effective to keep.
In the fourth embodiment of the present invention, the intersection of the line B and the line C (point N in FIG. 12) is adjusted by adjusting the humidification amount (point M in FIG. 12) with respect to the first embodiment. As a result, the water existing as a liquid in the entire gas flow path becomes as shown by a line D in FIG. As described above, by designing the flow path shape, the back pressure, and the humidification amount, water as a liquid is present in the entire gas flow path (the inlet stage 28, the center stage 29, and the outlet stage 30).

(5)実施例5……図13、図14、図15、図16
〔構成〕
本発明の実施例5では、図13に示すように、セル面内全域の酸化ガス流路に液滴としての水分を存在させないようにする。その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例5の燃料電池の制御方法は、酸化ガス流路の全域(入口段28、中央段29、出口段30)に液滴の水分を存在させないようにして、水によるガス流路の閉塞を確実に防止する。
本発明の実施例5では、実施例1に対して、加湿量(図14の点M)を調整することで、線Bと線Cの交点が出ないようにすることにより、ガス流路全域内にて液体として存在する水はなくなり、図14の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域(入口段28、中央段29、出口段30)に液体としての水を存在させない。
もう一つの方法として、図15に示すように、実施例1に対して、背圧(図15の点L)を調整することで、線Bと線Cの交点が出ないようにすることにより、ガス流路全域内にて液体として存在する水はなくなり、図15の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域(入口段28、中央段29、出口段30)に液体としての水を存在させない。
もう一つの方法として、図16に示すように、実施例1に対して、流量を調整することで、飽和水分量を増やし(図16の線Bが全体に上にシフト)、線Bと線Cの交点が出ないようにすることにより、ガス流路全域内にて液体として存在する水はなくなり、図16の線Dのようになる。このように、流路形状と、流量、背圧、加湿量を調整した設計をすることにより、ガス流路全域(入口段28、中央段29、出口段30)に液体としての水を存在させない。
(5) Fifth Embodiment FIGS. 13, 14, 15, and 16
〔Constitution〕
In the fifth embodiment of the present invention, as shown in FIG. 13, water as droplets is prevented from being present in the oxidizing gas flow path in the entire area of the cell surface. Others are the same as the first embodiment of the present invention.
[Action]
The control method of the fuel cell according to the fifth embodiment of the present invention is configured such that water in the droplets does not exist in the entire area of the oxidizing gas flow path (the inlet stage 28, the center stage 29, and the outlet stage 30). To prevent blockage.
In the fifth embodiment of the present invention, the humidification amount (point M in FIG. 14) is adjusted as compared with the first embodiment so that the intersection of the line B and the line C does not appear, so that the entire gas flow path There is no water present as a liquid inside, as shown by the line D in FIG. In this way, by designing the flow path shape, the back pressure, and the humidification amount, water as a liquid does not exist in the entire gas flow path (the inlet stage 28, the center stage 29, and the outlet stage 30).
As another method, as shown in FIG. 15, by adjusting the back pressure (point L in FIG. 15) with respect to the first embodiment, the intersection of the line B and the line C is prevented from appearing. The water existing as a liquid in the entire gas flow path disappears, and becomes as shown by a line D in FIG. In this way, by designing the flow path shape, the back pressure, and the humidification amount, water as a liquid does not exist in the entire gas flow path (the inlet stage 28, the center stage 29, and the outlet stage 30).
As another method, as shown in FIG. 16, the amount of saturated water is increased by adjusting the flow rate (the line B in FIG. 16 is shifted upward as a whole), and the line B and the line By preventing the intersection of C from appearing, there is no water existing as a liquid in the entire area of the gas flow path, and it becomes as shown by a line D in FIG. As described above, by designing the flow path shape, the flow rate, the back pressure, and the humidification amount to be adjusted, water as a liquid does not exist in the entire gas flow path (the inlet stage 28, the center stage 29, and the outlet stage 30). .

(6)実施例6……図17、図18
〔構成〕
本発明の実施例6では、図17に示すように、入口段28での流路幅を中央段29、出口段30に比べて狭くしてある。中央段29、出口段30は均一幅である。
また、酸化ガス流路の入口段28のみに液滴として水分を存在させる(図17の色付け部分)。その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例6の燃料電池の制御方法は、酸化ガス流路の入口段28に液滴の水分を存在させて、水素側出口部の加湿不足を補いたい時に有効である。
本発明の実施例6の圧損特性は、図18の線Aに示すように、入口段28で圧力降下が大きくなる。供給ガスの流量、背圧(図18の点L)を決めることで、ガス流路全域内の飽和水分量が図18の線Bのように決まる。さらに加湿量を100%近くに調整することで、ガス流路全域内の入口段28のみに液体としての水を存在させる。その他は実施例1に準じる。
(6) Embodiment 6 FIGS. 17 and 18
〔Constitution〕
In the sixth embodiment of the present invention, as shown in FIG. 17, the width of the flow passage at the inlet stage 28 is narrower than that at the center stage 29 and the outlet stage 30. The center stage 29 and the exit stage 30 have a uniform width.
In addition, moisture is made to exist as droplets only in the inlet stage 28 of the oxidizing gas flow path (colored portion in FIG. 17). Others are the same as the first embodiment of the present invention.
[Action]
The control method of the fuel cell according to the sixth embodiment of the present invention is effective when it is desired to make the moisture of the droplets exist at the inlet stage 28 of the oxidizing gas flow path to compensate for insufficient humidification at the hydrogen-side outlet.
In the pressure loss characteristic of the sixth embodiment of the present invention, the pressure drop increases at the inlet stage 28 as shown by the line A in FIG. By determining the flow rate of the supplied gas and the back pressure (point L in FIG. 18), the amount of saturated moisture in the entire gas flow path is determined as shown by the line B in FIG. Further, by adjusting the humidification amount to nearly 100%, water as a liquid is present only in the inlet stage 28 in the entire gas flow path. Others are the same as in the first embodiment.

(7)実施例7……図19、図20
〔構成〕
本発明の実施例7では、図19に示すように、中央段29と出口段30の間のターン部分の幅を狭くした絞り31を設けた流路形状とする。
入口段28から中央段29にかけては均等幅の流路形状であり、出口段30は入口段28および中央段29より幅を狭くした流路形状とする。
その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例7の燃料電池の制御方法は、酸化ガス流路の中央段29のみに液滴の水分を存在させて、入口段28、出口段30は液滴を存在させないことで、供給および排出管内でのガス流れをスムーズにすることと、内部での湿潤を確保することの両立をはかる時に有効である。
本発明の実施例7の圧損特性は、図20の線Aに示すように、入口段28から中央段29にかけてほとんど圧力降下がなく、中央段29と出口段30の間で大きく圧力降下し、出口段30での圧力降下は緩やかである。供給ガスの流量、背圧(図20の点L)を決めることで、ガス流路全域内の飽和水分量が図20の線Bのように決まる。さらに加湿量を調整することで、線Bと線Cの交点(図20の点N)を入口段28と中央段29の境にもってくると同時に、線Bと線Cの2つ目の交点(図20の点O)を中央段29と出口段30の境にもってくることで、ガス流路全域内にて液体として存在する水は図20の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域内の中央段29のみに液体としての水を存在させる。
(7) Embodiment 7 FIGS. 19 and 20
〔Constitution〕
In the seventh embodiment of the present invention, as shown in FIG. 19, the flow path is provided with a throttle 31 in which the width of the turn portion between the central stage 29 and the exit stage 30 is reduced.
From the inlet stage 28 to the center stage 29, the flow passage shape has a uniform width, and the outlet stage 30 has a flow passage shape narrower than the inlet stage 28 and the center stage 29.
Others are the same as the first embodiment of the present invention.
[Action]
In the control method of the fuel cell according to the seventh embodiment of the present invention, the supply of water is performed by allowing the water content of the droplets to exist only in the center stage 29 of the oxidizing gas flow path and the droplets not to exist in the entrance stage 28 and the exit stage 30. This is effective in achieving both a smooth gas flow in the discharge pipe and a sufficient wetting inside.
The pressure loss characteristic of the seventh embodiment of the present invention shows that there is almost no pressure drop from the inlet stage 28 to the center stage 29 and a large pressure drop between the center stage 29 and the outlet stage 30 as shown by the line A in FIG. The pressure drop at the outlet stage 30 is gentle. By determining the flow rate of the supply gas and the back pressure (point L in FIG. 20), the saturated water content in the entire gas flow path is determined as shown by the line B in FIG. By further adjusting the humidification amount, the intersection of the line B and the line C (point N in FIG. 20) is brought to the boundary between the entrance stage 28 and the center stage 29, and at the same time, the second intersection of the line B and the line C By bringing (point O in FIG. 20) the boundary between the center stage 29 and the exit stage 30, water existing as a liquid in the entire gas flow path becomes as shown by a line D in FIG. In this way, by designing the flow path shape, the back pressure, and the humidification amount to be adjusted, water as a liquid is present only in the central stage 29 in the entire gas flow path.

(8)実施例8……図21、図22
〔構成〕
本発明の実施例8では、図21に示すように、中央段29の幅を狭くした流路形状とする。
入口段28、出口段30は中央段29より幅が広く均一幅である。
その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例8の燃料電池の制御方法は、酸化ガス流路の入口段28と中央段29のみに液滴の水分を存在させて、水素側出口部の加湿不足を補いたい時に有効である。
本発明の実施例8の圧損特性は、図22の線Aに示すように、入口段28ではほとんど圧力降下がなく、中央段29で大きく圧力降下し、出口段30ではほとんど圧力降下がない。供給ガスの流量、背圧(図22の点L)を決めることで、ガス流路全域内の飽和水分量が図22の線Bのように決まる。さらに加湿量を100%近くに調整し、線Bと線Cの交点(図22の点N)を中央段29と出口段30の境にもってくることで、ガス流路全域内にて液体として存在する水は図22の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域内のうち入口段28と中央段29のみに液体としての水を存在させる。
(8) Embodiment 8 FIGS. 21 and 22
〔Constitution〕
In the eighth embodiment of the present invention, as shown in FIG.
The inlet stage 28 and the outlet stage 30 are wider than the central stage 29 and have a uniform width.
Others are the same as the first embodiment of the present invention.
[Action]
The control method of the fuel cell according to the eighth embodiment of the present invention is effective when it is desired to make the water content of the droplets exist only in the inlet stage 28 and the center stage 29 of the oxidizing gas flow path to compensate for insufficient humidification at the hydrogen side outlet. is there.
The pressure drop characteristic of the eighth embodiment of the present invention is that there is almost no pressure drop at the inlet stage 28, a large pressure drop at the center stage 29, and almost no pressure drop at the outlet stage 30, as shown by the line A in FIG. By determining the flow rate of the supply gas and the back pressure (point L in FIG. 22), the saturated moisture content in the entire gas flow path is determined as shown by the line B in FIG. Further, the humidification amount is adjusted to nearly 100%, and the intersection of the line B and the line C (point N in FIG. 22) is brought to the boundary between the center stage 29 and the exit stage 30, so that the liquid is formed as a liquid in the entire gas flow path. The existing water is as shown by the line D in FIG. In this way, by designing the flow path shape, the back pressure, and the humidification amount, water as a liquid is present only in the inlet stage 28 and the center stage 29 in the entire gas flow path.

(9)実施例9……図23、図24
〔構成〕
本発明の実施例9では、図23に示すように、入口段28と中央段29の間のターン部分の幅を狭くした絞り32を設けた流路形状とする。
入口段28と中央段29から出口段30にかけては均等幅の流路形状である。
その他は本発明の実施例1と同じである。
〔作用〕
本発明の実施例9の燃料電池の制御方法は、酸化ガス流路の入口段28と出口段30のみに液滴の水分を存在させて、水素側入口部と出口部の双方の加湿不足を補いたい時に有効である。
本発明の実施例9の圧損特性は、図24の線Aに示すように、入口段28ではほとんど圧力降下がなく、入口段28と中央段29の間で大きく圧力降下し、中央段29から出口段30にかけてはほとんど圧力降下がない。供給ガスの流量、背圧(図24の点L)を決めることで、ガス流路全域内の飽和水分量が図24の線Bのように決まる。さらに加湿量を100%近くに調整し、線Bと線Cの交点(図24の点N)を入口段28と中央段29の境にもってくると同時に、線Bと線Cの2つ目の交点(図20の点O)を中央段29と出口段30の境にもってくることで、ガス流路全域内にて液体として存在する水は図24の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、ガス流路全域内の入口段28と出口段30のみに液体としての水を存在させる。
(9) Embodiment 9 FIGS. 23 and 24
〔Constitution〕
In the ninth embodiment of the present invention, as shown in FIG. 23, a flow path shape having a throttle 32 having a narrower turn portion between the inlet stage 28 and the center stage 29 is provided.
The inlet stage 28 and the central stage 29 to the outlet stage 30 have a uniform width channel shape.
Others are the same as the first embodiment of the present invention.
[Action]
In the control method of the fuel cell according to the ninth embodiment of the present invention, the moisture of the droplet is present only in the inlet stage 28 and the outlet stage 30 of the oxidizing gas flow path, and the insufficient humidification of both the hydrogen-side inlet and outlet is performed. It is effective when you want to supplement.
The pressure loss characteristic of the ninth embodiment of the present invention is that, as shown by the line A in FIG. 24, there is almost no pressure drop at the inlet stage 28, a large pressure drop between the inlet stage 28 and the center stage 29, There is almost no pressure drop over the outlet stage 30. By determining the flow rate of the supply gas and the back pressure (point L in FIG. 24), the saturated moisture amount in the entire gas flow path is determined as shown by the line B in FIG. Further, the humidification amount is adjusted to nearly 100%, and the intersection of the line B and the line C (point N in FIG. 24) is brought to the boundary between the entrance stage 28 and the center stage 29, and at the same time, the second of the line B and the line C 20 (point O in FIG. 20) at the boundary between the center stage 29 and the exit stage 30, water existing as a liquid in the entire gas flow path becomes as shown by a line D in FIG. In this way, by designing the shape of the flow path, the back pressure, and the humidification amount, water as a liquid is present only in the inlet stage 28 and the outlet stage 30 in the entire gas flow path.

(10)実施例10……図26〜図34
〔構成〕
本発明の実施例10では、図26、図27に示すように、酸化ガス加湿器5と燃料電池1との間に燃料電池1への空気供給方向を切り替える入口側切替弁200と、燃料電池1と酸化ガス背圧調整弁7との間に燃料電池1からの空気排出方向を切り替える出口側切替弁201が設置されている。入口側切替弁200と出口側切替弁201は互いに連動して作動し、その作動は制御装置11によって制御される。空気の流れ方向が切替え可能である点で、本発明の他の実施例と異なる。実施例1〜9にて酸化ガス導入穴21であったものは酸化ガスの流れ方向を切り替えると酸化ガス排出穴となるので、実施例10では、21は酸化ガス導入排出穴Aと呼ぶことにする。同様に、実施例1〜9にて酸化ガス排出穴21であったものは酸化ガスの流れ方向を切り替えると酸化ガス導入穴となるので、実施例10では、22は酸化ガス導入排出穴Bと呼ぶことにする。
図28のセパレータ流路では、入口段28、中央段29、出口段30の順に、酸化ガスの蛇行流路の流路幅が狭くなっている。
その他は本発明の実施例1と同じである。
(10) Embodiment 10 FIGS. 26 to 34
〔Constitution〕
In the tenth embodiment of the present invention, as shown in FIGS. 26 and 27, an inlet-side switching valve 200 for switching the air supply direction to the fuel cell 1 between the oxidizing gas humidifier 5 and the fuel cell 1, An outlet-side switching valve 201 for switching the direction of discharging air from the fuel cell 1 is provided between the fuel cell 1 and the oxidizing gas back pressure regulating valve 7. The inlet-side switching valve 200 and the outlet-side switching valve 201 operate in conjunction with each other, and the operation is controlled by the controller 11. It differs from the other embodiments of the present invention in that the flow direction of the air can be switched. The oxidizing gas introduction hole 21 in Examples 1 to 9 becomes an oxidizing gas discharge hole when the flow direction of the oxidizing gas is switched. Therefore, in Example 10, the oxidizing gas introduction hole 21 is referred to as an oxidizing gas introduction hole A. I do. Similarly, what is the oxidizing gas discharge hole 21 in Examples 1 to 9 becomes an oxidizing gas introduction hole when the flow direction of the oxidizing gas is switched. I will call it.
In the separator channel shown in FIG. 28, the meandering channel of the oxidizing gas has a narrower channel width in the order of the inlet stage 28, the center stage 29, and the outlet stage 30.
Others are the same as the first embodiment of the present invention.

〔作用〕
本発明の実施例10の燃料電池の制御方法では、酸化ガスの導入・排出方向を切替え、加湿量を変化させることにより、酸化ガス流路中の任意の位置に液体としての水を存在させるように制御する。図28の(a)、(b)、(c)、(d)、(e)、(f)に、液体としての水を存在させる位置を互いに変えた6種類のパターンを示す。液体の水が存在するとこを色付けで表示した。
[Action]
In the control method of the fuel cell according to the tenth embodiment of the present invention, the direction of introduction and discharge of the oxidizing gas is switched and the amount of humidification is changed so that water as a liquid exists at an arbitrary position in the oxidizing gas flow path. To control. (A), (b), (c), (d), (e), and (f) of FIG. 28 show six types of patterns in which the positions where water as a liquid is present are changed. The presence of liquid water is indicated by color.

図29は、図28のパターン(a)の場合の水分布制御の概要を表したグラフである。入口側切替弁200と出口側切替弁201を切り替えて、酸化ガス導入排出穴A21から流れ込んだ酸化ガスが全体的に大蛇行流路を流れて、酸化ガス導入排出穴B22から排出されるようにする。
下段30の幅を小さくしてあるため、図29の線Aに示すように、圧力は、上段、中段では徐々に減少し、下段で大きく低下する圧損特性を得ることができる。供給ガスの流量、背圧(図29の点L)を決めることで全体ガス流路内の飽和水分量が図29の線Bのように決まる。一方、全体ガス流路内の水分量は供給するガスの加湿量(図29の点M)を決めることで、発電により生成される水分量と合わせて図29の線Cのように決まる。ただし、発電による生成水は面内で均一であり、水分はすべて後方へ流れていくものと仮定している。点Lと点Mを調整し、線Bと線Cの交点(図29の点N)を中央段と下段の境にもってくることにより、全体ガス流路内にて液体として存在する水は図29の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、全体ガス流路内の下段30のみに液体としての水を存在させる。
点Lに示す背圧値は酸化ガス背圧用圧力センサ9を観察し、酸化ガス背圧調整弁7によって調整する。
点Mに示す加湿量は酸化ガス加湿器5によって調整する。
FIG. 29 is a graph showing an outline of water distribution control in the case of the pattern (a) in FIG. The inlet-side switching valve 200 and the outlet-side switching valve 201 are switched so that the oxidizing gas flowing from the oxidizing gas introducing / discharging hole A21 flows through the large meandering channel as a whole and is discharged from the oxidizing gas introducing / discharging hole B22. I do.
Since the width of the lower stage 30 is reduced, the pressure loss characteristics can be obtained in which the pressure gradually decreases in the upper stage and the middle stage, and largely decreases in the lower stage, as shown by the line A in FIG. By determining the flow rate of the supply gas and the back pressure (point L in FIG. 29), the amount of saturated moisture in the entire gas flow path is determined as shown by the line B in FIG. On the other hand, the amount of moisture in the entire gas passage is determined as shown by the line C in FIG. 29 by determining the humidification amount of the supplied gas (point M in FIG. 29) and the amount of moisture generated by power generation. However, it is assumed that the water generated by power generation is uniform in the plane, and that all the water flows backward. By adjusting the points L and M and bringing the intersection of the line B and the line C (point N in FIG. 29) to the boundary between the center stage and the lower stage, the water existing as a liquid in the entire gas flow path is It looks like line D of 29. In this manner, by designing the flow path shape, the back pressure, and the humidification amount, water as a liquid is present only in the lower stage 30 in the entire gas flow path.
The back pressure value indicated by the point L is adjusted by the oxidizing gas back pressure regulating valve 7 by observing the oxidizing gas back pressure pressure sensor 9.
The humidification amount shown at the point M is adjusted by the oxidizing gas humidifier 5.

図30は、図28のパターン(b)の場合の水分布制御の概要を表したグラフである。パターン(a)との違いは、加湿量を変えた点で、それにより、点M、線C、点Nが変化し、線Dすなわち液体として存在する水が中段29、下段30部分となる。   FIG. 30 is a graph showing an outline of water distribution control in the case of the pattern (b) in FIG. The difference from the pattern (a) is that the amount of humidification is changed, whereby the point M, the line C, and the point N change, and the line D, that is, the water existing as a liquid, becomes the middle section 29 and the lower section 30.

図31は、図28のパターン(c)の場合の水分布制御の概要を表したグラフである。パターン(a)との違いは、加湿量を変えた点で、それにより、点M、線C、点Nが変化し、線Dすなわち液体として存在する水が上段28、中段29、下段30部分となる。   FIG. 31 is a graph showing an outline of water distribution control in the case of the pattern (c) in FIG. The difference from the pattern (a) is that the humidification amount is changed, whereby the point M, the line C, and the point N are changed, and the line D, that is, the water existing as a liquid is in the upper 28, middle 29, and lower 30 portions. It becomes.

図32は、図28のパターン(d)の場合の水分布制御の概要を表したグラフである。入口側切替弁200と出口側切替弁201を切り替えて、酸化ガス導入排出穴B22から流れ込んだ酸化ガスが全体的に大蛇行流路を流れて、酸化ガス導入排出穴A21から排出されるようにする。
下段30の幅を小さくしてあるため、図32の線Aに示すように圧力は下段で大きく低下し、中段、上段では徐々に減少しする圧損特性を得ることができる。供給ガスの流量、背圧(図32の点L)を決めることで全体ガス流路内の飽和水分量が図32の線Bのように決まる。一方、全体ガス流路内の水分量は供給するガスの加湿量(図32の点M)を決めることで、発電により生成される水分量と合わせて図32の線Cのように決まる。ただし、発電による生成水は面内で均一であり、水分はすべて後方へ流れていくものと仮定している。点Lと点Mを調整し、線Bと線Cの交点(図29の点N)を上段と中段と下段の境にもってくることにより、全体ガス流路内にて液体として存在する水は図32の線Dのようになる。このように、流路形状と背圧、加湿量を調整した設計をすることにより、全体ガス流路内の上段28、中段29、および下段30のガス導入側に液体としての水を存在させる。
点Lに示す背圧値は酸化ガス背圧用圧力センサ9を観察し、酸化ガス背圧調整弁7によって調整する。
点Mに示す加湿量は酸化ガス加湿器5によって調整する。
FIG. 32 is a graph showing an outline of water distribution control in the case of the pattern (d) in FIG. The inlet-side switching valve 200 and the outlet-side switching valve 201 are switched so that the oxidizing gas flowing from the oxidizing gas introduction / discharge hole B22 flows through the large meandering channel as a whole and is discharged from the oxidizing gas introduction / discharge hole A21. I do.
Since the width of the lower stage 30 is reduced, it is possible to obtain a pressure loss characteristic in which the pressure largely decreases in the lower stage and gradually decreases in the middle and upper stages as shown by the line A in FIG. By determining the flow rate of the supply gas and the back pressure (point L in FIG. 32), the amount of saturated moisture in the entire gas flow path is determined as shown by the line B in FIG. On the other hand, the amount of moisture in the entire gas passage is determined as shown by a line C in FIG. 32 by determining the humidification amount of the supplied gas (point M in FIG. 32) and the amount of moisture generated by power generation. However, it is assumed that the water generated by power generation is uniform in the plane, and that all the water flows backward. By adjusting the point L and the point M and bringing the intersection of the line B and the line C (point N in FIG. 29) to the boundary between the upper, middle, and lower stages, water existing as a liquid in the entire gas flow path is A line D in FIG. 32 is obtained. As described above, by designing the flow path shape, the back pressure, and the humidification amount, water as a liquid is present on the gas introduction side of the upper stage 28, the middle stage 29, and the lower stage 30 in the entire gas passage.
The back pressure value indicated by the point L is adjusted by the oxidizing gas back pressure regulating valve 7 by observing the oxidizing gas back pressure pressure sensor 9.
The humidification amount shown at the point M is adjusted by the oxidizing gas humidifier 5.

図33は、図28のパターン(e)の場合の水分布制御の概要を表したグラフである。パターン(d)との違いは、加湿量を変えた点で、それにより、点M、線C、点Nが変化し、線Dすなわち液体として存在する水が上段28のガス排出側のみとなる。   FIG. 33 is a graph showing an outline of water distribution control in the case of the pattern (e) in FIG. The difference from the pattern (d) is that the humidification amount is changed, whereby the point M, the line C, and the point N change, and the line D, that is, water existing as a liquid is only on the gas discharge side of the upper stage 28. .

図34は、図28のパターン(f)の場合の水分布制御の概要を表したグラフである。パターン(d)との違いは、加湿量を変えた点で、それにより、点M、線C、点Nが変化し、線Dすなわち液体として存在する水がなくなる。   FIG. 34 is a graph showing an outline of water distribution control in the case of the pattern (f) in FIG. The difference from the pattern (d) is that the humidification amount is changed, whereby the point M, the line C, and the point N change, and the line D, that is, the water existing as the liquid disappears.

実施例1〜10の各実施例において、流路は図3に示したような流路内に多数の凸部を持つ流路に限定されるものではなく、図25に示すように複数の溝をもつ流路であってもよい。また、実施例1〜10の各実施例において、流路は3段に限定するものではない。1段の場合でも上流から下流にかけて流路を分割して考えても同様である。
また、上記説明では、ガス流路は酸化ガス流路を例にとって説明したが、燃料ガス流路でも同様のことが成立し、本発明は酸化ガス流路だけでなく、燃料ガス流路の場合も含むものとする。
In each of the first to tenth embodiments, the flow path is not limited to the flow path having a large number of protrusions in the flow path as shown in FIG. 3, but a plurality of grooves as shown in FIG. May be provided. Further, in each of Examples 1 to 10, the flow path is not limited to three steps. Even in the case of one stage, the same applies when the flow path is divided from upstream to downstream.
Further, in the above description, the gas flow path has been described as an example of the oxidizing gas flow path, but the same holds true for the fuel gas flow path, and the present invention is applicable to not only the oxidizing gas flow path but also the fuel gas flow path. Shall be included.

本発明の燃料電池の制御方法を実行する燃料電池システム図である。FIG. 2 is a fuel cell system diagram for executing the fuel cell control method of the present invention. 固体高分子型燃料電池の単セルの一部分の断面図である。FIG. 2 is a cross-sectional view of a part of a single cell of a polymer electrolyte fuel cell. 本発明の燃料電池の制御方法が適用される燃料電池のセパレータの正面図である。FIG. 2 is a front view of a fuel cell separator to which the fuel cell control method of the present invention is applied. 本発明の実施例1の燃料電池の制御方法が実行されるセパレータの正面図である。FIG. 2 is a front view of a separator in which the control method of the fuel cell according to the first embodiment of the present invention is executed. 本発明の実施例1の燃料電池の制御方法の、水分分布制御グラフである。5 is a water distribution control graph of the fuel cell control method according to the first embodiment of the present invention. 本発明の実施例2の燃料電池の制御方法が実行されるセパレータの正面図である。FIG. 9 is a front view of a separator in which the control method of the fuel cell according to Embodiment 2 of the present invention is executed. 本発明の実施例2の燃料電池の制御方法の、水分分布制御グラフである。6 is a water distribution control graph of the fuel cell control method according to the second embodiment of the present invention. 本発明の実施例3の燃料電池の制御方法が実行されるセパレータの正面図である。FIG. 9 is a front view of a separator in which a fuel cell control method according to a third embodiment of the present invention is executed. 本発明の実施例3の燃料電池の制御方法の、水分分布制御グラフである。9 is a water distribution control graph of the fuel cell control method according to the third embodiment of the present invention. 本発明の実施例3のもう一つの方法に係る燃料電池の制御方法の、水分分布制御グラフである。9 is a water distribution control graph of a fuel cell control method according to another method of Embodiment 3 of the present invention. 本発明の実施例4の燃料電池の制御方法が実行されるセパレータの正面図である。FIG. 13 is a front view of a separator in which a fuel cell control method according to a fourth embodiment of the present invention is executed. 本発明の実施例4の燃料電池の制御方法の、水分分布制御グラフである。13 is a water distribution control graph of the fuel cell control method according to the fourth embodiment of the present invention. 本発明の実施例5の燃料電池の制御方法が実行されるセパレータの正面図である。FIG. 13 is a front view of a separator in which a fuel cell control method according to a fifth embodiment of the present invention is executed. 本発明の実施例5の燃料電池の制御方法の、水分分布制御グラフである。13 is a water distribution control graph of the fuel cell control method according to the fifth embodiment of the present invention. 本発明の実施例5のもう一つの方法に係る燃料電池の制御方法の、水分分布制御グラフである。14 is a water distribution control graph of a fuel cell control method according to another method of Example 5 of the present invention. 本発明の実施例5のさらにもう一つの方法に係る燃料電池の制御方法の、水分分布制御グラフである。13 is a water distribution control graph of a fuel cell control method according to still another method of Example 5 of the present invention. 本発明の実施例6の燃料電池の制御方法が実行されるセパレータの正面図である。FIG. 13 is a front view of a separator in which a control method for a fuel cell according to Embodiment 6 of the present invention is executed. 本発明の実施例6の燃料電池の制御方法の、水分分布制御グラフである。13 is a water distribution control graph of the fuel cell control method according to the sixth embodiment of the present invention. 本発明の実施例7の燃料電池の制御方法が実行されるセパレータの正面図である。It is a front view of the separator in which the control method of the fuel cell of Embodiment 7 of the present invention is executed. 本発明の実施例7の燃料電池の制御方法の、水分分布制御グラフである。13 is a water distribution control graph of the fuel cell control method according to the seventh embodiment of the present invention. 本発明の実施例8の燃料電池の制御方法が実行されるセパレータの正面図である。It is a front view of the separator in which the control method of the fuel cell of Embodiment 8 of the present invention is executed. 本発明の実施例8の燃料電池の制御方法の、水分分布制御グラフである。13 is a water distribution control graph of the fuel cell control method according to the eighth embodiment of the present invention. 本発明の実施例9の燃料電池の制御方法が実行されるセパレータの正面図である。It is a front view of the separator in which the control method of the fuel cell of Embodiment 9 of the present invention is executed. 本発明の実施例9の燃料電池の制御方法の、水分分布制御グラフである。14 is a water distribution control graph of the fuel cell control method according to the ninth embodiment of the present invention. 本発明の何れの実施例の方法にも適用可能な、燃料電池のセパレータの正面図である。FIG. 2 is a front view of a fuel cell separator applicable to the method of any embodiment of the present invention. 本発明の実施例10の燃料電池の制御方法を実行する燃料電池システム図である。It is a fuel cell system diagram which performs the control method of the fuel cell of Embodiment 10 of the present invention. 本発明の実施例10の燃料電池の制御方法が適用される燃料電池のセパレータの正面図である。It is a front view of a separator of a fuel cell to which a control method of a fuel cell of a tenth embodiment of the present invention is applied. 本発明の実施例10の燃料電池の制御方法が適用される燃料電池のセパレータの、各パターン(a)〜(f)の水分布概略図である。It is the water distribution schematic diagram of each pattern (a)-(f) of the separator of the fuel cell to which the control method of the fuel cell of Example 10 of this invention is applied. 本発明の実施例10の燃料電池の制御方法の、パターン(a)の水分布制御概要グラフである。It is a water distribution control outline | summary graph of the pattern (a) of the control method of the fuel cell of Example 10 of this invention. 本発明の実施例10の燃料電池の制御方法の、パターン(b)の水分布制御概要グラフである。It is a water distribution control outline | summary graph of the pattern (b) of the control method of the fuel cell of Example 10 of this invention. 本発明の実施例10の燃料電池の制御方法の、パターン(c)の水分布制御概要グラフである。It is a water distribution control outline | summary graph of the pattern (c) of the control method of the fuel cell of Example 10 of this invention. 本発明の実施例10の燃料電池の制御方法の、パターン(d)の水分布制御概要グラフである。It is a water distribution control outline | summary graph of the pattern (d) of the control method of the fuel cell of Example 10 of this invention. 本発明の実施例10の燃料電池の制御方法の、パターン(e)の水分布制御概要グラフである。It is a water distribution control outline | summary graph of the pattern (e) of the control method of the fuel cell of Example 10 of this invention. 本発明の実施例10の燃料電池の制御方法の、パターン(f)の水分布制御概要グラフである。It is a water distribution control outline | summary graph of the pattern (f) of the control method of the fuel cell of Example 10 of this invention.

符号の説明Explanation of reference numerals

1 (固体高分子電解質型)燃料電池
2 燃料ガス供給装置
3 酸化ガス供給装置
4 燃料ガス加湿器
5 酸化ガス加湿器
6 燃料ガス圧力調整弁(燃料ガス背圧調整弁)
7 酸化ガス圧力調整弁(酸化ガス背圧調整弁)
8 燃料ガス圧力センサ(燃料ガス背圧用圧力センサ)
9 酸化ガス圧力センサ(酸化ガス背圧用圧力センサ)
10 電池作動監視装置
11 制御装置
12 電圧センサ
12 電流センサ
13 温度センサ
15 固定電解質膜
16 燃料ガス側電極(アノード)
17 酸化ガス側電極(カソード)
18 セパレータ
19 燃料ガス導入穴
20 燃料ガス排出穴
21 酸化ガス導入穴
22 酸化ガス排出穴
23、24 冷却水流路穴
25、26 流路形成リブ
27 凸部
28 (酸化ガス流路の)入口段、上段
29 (酸化ガス流路の)中央段、中段
30 (酸化ガス流路の)出口段、下段
31、32 絞り
200 入口側切替弁
201 出口側切替弁
REFERENCE SIGNS LIST 1 (solid polymer electrolyte type) fuel cell 2 fuel gas supply device 3 oxidizing gas supply device 4 fuel gas humidifier 5 oxidizing gas humidifier 6 fuel gas pressure control valve (fuel gas back pressure control valve)
7 Oxidizing gas pressure regulating valve (oxidizing gas back pressure regulating valve)
8. Fuel gas pressure sensor (pressure sensor for fuel gas back pressure)
9 Oxidizing gas pressure sensor (pressure sensor for oxidizing gas back pressure)
Reference Signs List 10 Battery operation monitoring device 11 Control device 12 Voltage sensor 12 Current sensor 13 Temperature sensor 15 Fixed electrolyte membrane 16 Fuel gas side electrode (anode)
17 Oxidizing gas side electrode (cathode)
18 Separator 19 Fuel gas introduction hole 20 Fuel gas discharge hole 21 Oxidation gas introduction hole 22 Oxidation gas discharge hole 23, 24 Cooling water passage hole 25, 26 Flow passage forming rib 27 Convex part 28 (of oxidation gas passage) Upper stage 29 Middle stage (of oxidizing gas passage), Middle stage 30 (Outlet stage of oxidizing gas passage), Lower stage 31, 32 Restrictor 200 Inlet switching valve 201 Outlet switching valve

Claims (16)

反応ガスの圧力、湿度、温度、流量、流路形状による圧損特性の少なくとも1つを調整して、セル面内の液滴または水蒸気としての水分量の分布を制御する燃料電池の制御方法。   A method for controlling a fuel cell, wherein at least one of pressure drop characteristics depending on a pressure, a humidity, a temperature, a flow rate, and a flow path shape of a reaction gas is adjusted to control a distribution of a water content as droplets or water vapor in a cell surface. 燃料電池に接続された酸素含有ガスの供給装置、加湿装置、圧力センサ、圧力制御弁と、
前記燃料電池に接続された水素含有ガスの供給装置、加湿装置、圧力センサ、圧力制御弁と、
各単位電池および電池全体の作動を監視する電圧センサ、温度、電流センサを含む電池作動監視装置と、
前記各センサの信号を元に、供給装置、加湿装置、圧力制御弁の少なくとも1つを制御する制御装置と、
の少なくとも1つを用いて、セル面内の水分量の分布を制御する請求項1記載の燃料電池の制御方法。
An oxygen-containing gas supply device connected to the fuel cell, a humidifier, a pressure sensor, a pressure control valve,
A hydrogen-containing gas supply device connected to the fuel cell, a humidifier, a pressure sensor, a pressure control valve,
A battery operation monitoring device including a voltage sensor, a temperature, and a current sensor for monitoring the operation of each unit battery and the entire battery;
A control device that controls at least one of a supply device, a humidifier, and a pressure control valve based on a signal of each of the sensors;
2. The control method for a fuel cell according to claim 1, wherein the distribution of the amount of water in the cell plane is controlled using at least one of the following.
セパレータの、燃料ガス流路、酸化ガス流路の流路形状による圧損特性を関係させて、セル面内の水分量の分布を制御する請求項1または請求項2記載の燃料電池の制御方法。   3. The control method for a fuel cell according to claim 1, wherein the distribution of the amount of water in the cell surface is controlled by relating the pressure loss characteristics of the separator to the shape of the fuel gas flow path and the oxidizing gas flow path. 燃料電池の出ガスの圧力を制御することにより、セル面内の水分量の分布を制御する請求項1または請求項2記載の燃料電池の制御方法。   3. The control method for a fuel cell according to claim 1, wherein the distribution of the amount of water in the cell surface is controlled by controlling the pressure of the gas output from the fuel cell. 燃料電池へ供給するガス流量を制御することにより、セル面内の水分量の分布を制御する請求項1または請求項2記載の燃料電池の制御方法。   3. The control method for a fuel cell according to claim 1, wherein the distribution of the amount of water in the cell surface is controlled by controlling the flow rate of gas supplied to the fuel cell. 燃料電池へ供給するガスの加湿量を制御することによりセル面内の水分量の分布を制御する請求項1または請求項2記載の燃料電池の制御方法。   3. The control method for a fuel cell according to claim 1, wherein the distribution of the amount of water in the cell surface is controlled by controlling the amount of humidification of the gas supplied to the fuel cell. セル面内全域に液滴を存在させないようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The method for controlling a fuel cell according to claim 1, wherein the liquid droplet is prevented from being present in the whole area within the cell plane. セル面内の任意の位置のみに液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein the droplets are present only at an arbitrary position in the cell plane. セル面内の入口段のみに液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein the liquid droplets exist only in the entrance stage in the cell plane. セル面内の中央段のみに液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein the liquid droplets exist only in the central stage in the cell plane. セル面内の出口段のみに液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein the liquid droplets exist only in the outlet stage in the cell plane. セル面内の入口段と中央段のみに液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein droplets are present only in the entrance stage and the center stage in the cell plane. セル面内の入口段と出口段のみに液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein droplets are present only in the entrance stage and the exit stage in the cell plane. セル面内の中央段と出口段のみに液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein droplets are present only in the center stage and the exit stage in the cell plane. セル面内全域に液滴を存在させるようにした請求項1または請求項3記載の燃料電池の制御方法。   4. The control method for a fuel cell according to claim 1, wherein the liquid droplets exist in the whole area of the cell surface. 反応ガスの流れ方向を調整することにより、セル面内の液滴または水蒸気としての水分量の分布を制御する請求項1乃至請求項15の何れか一項記載の燃料電池の制御方法。   The control method for a fuel cell according to any one of claims 1 to 15, wherein the distribution of the amount of water as droplets or water vapor in the cell surface is controlled by adjusting a flow direction of the reaction gas.
JP2004005107A 2003-04-16 2004-01-13 Fuel cell control method Expired - Fee Related JP4522097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005107A JP4522097B2 (en) 2003-04-16 2004-01-13 Fuel cell control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003111947 2003-04-16
JP2004005107A JP4522097B2 (en) 2003-04-16 2004-01-13 Fuel cell control method

Publications (2)

Publication Number Publication Date
JP2004335444A true JP2004335444A (en) 2004-11-25
JP4522097B2 JP4522097B2 (en) 2010-08-11

Family

ID=33513216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005107A Expired - Fee Related JP4522097B2 (en) 2003-04-16 2004-01-13 Fuel cell control method

Country Status (1)

Country Link
JP (1) JP4522097B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004151A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Fuel cell system
WO2009051252A1 (en) * 2007-10-17 2009-04-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2010073380A1 (en) 2008-12-26 2010-07-01 トヨタ自動車株式会社 Device for estimating the water content of a fuel cell and fuel cell system
WO2011024581A1 (en) * 2009-08-26 2011-03-03 トヨタ自動車株式会社 Fuel cell system and method for operating fuel cell system
JP4849195B2 (en) * 2009-08-26 2012-01-11 トヨタ自動車株式会社 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2012043677A (en) * 2010-08-20 2012-03-01 Toyota Motor Corp Fuel cell system and method for controlling fuel cell system
US8252474B2 (en) 2008-12-26 2012-08-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8293421B2 (en) 2008-12-26 2012-10-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8309262B2 (en) 2007-10-17 2012-11-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9425473B2 (en) 2009-07-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of operating fuel cell system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111230A (en) * 1994-10-12 1996-04-30 Kansai Electric Power Co Inc:The Operating method for solid high polymer type fuel cell
JPH11250923A (en) * 1998-03-02 1999-09-17 Honda Motor Co Ltd Fuel cell
JPH11312531A (en) * 1998-04-27 1999-11-09 Toshiba Corp Fuel cell system
WO2000065678A1 (en) * 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
JP2001148253A (en) * 1999-11-22 2001-05-29 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and its operation method
JP2002280027A (en) * 2001-03-19 2002-09-27 Nissan Motor Co Ltd Fuel cell system
JP2003036875A (en) * 2001-05-18 2003-02-07 Denso Corp Method for measuring moisture of fuel cell inside
JP2004146267A (en) * 2002-10-25 2004-05-20 Toyota Motor Corp Fuel cell system
JP2004146236A (en) * 2002-10-25 2004-05-20 Denso Corp Fuel cell system
JP2005108673A (en) * 2003-09-30 2005-04-21 Toyota Motor Corp Fuel cell system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111230A (en) * 1994-10-12 1996-04-30 Kansai Electric Power Co Inc:The Operating method for solid high polymer type fuel cell
JPH11250923A (en) * 1998-03-02 1999-09-17 Honda Motor Co Ltd Fuel cell
JPH11312531A (en) * 1998-04-27 1999-11-09 Toshiba Corp Fuel cell system
WO2000065678A1 (en) * 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
JP2001148253A (en) * 1999-11-22 2001-05-29 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and its operation method
JP2002280027A (en) * 2001-03-19 2002-09-27 Nissan Motor Co Ltd Fuel cell system
JP2003036875A (en) * 2001-05-18 2003-02-07 Denso Corp Method for measuring moisture of fuel cell inside
JP2004146267A (en) * 2002-10-25 2004-05-20 Toyota Motor Corp Fuel cell system
JP2004146236A (en) * 2002-10-25 2004-05-20 Denso Corp Fuel cell system
JP2005108673A (en) * 2003-09-30 2005-04-21 Toyota Motor Corp Fuel cell system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004151A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Fuel cell system
US8309262B2 (en) 2007-10-17 2012-11-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2009051252A1 (en) * 2007-10-17 2009-04-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP5310738B2 (en) * 2008-12-26 2013-10-09 トヨタ自動車株式会社 Fuel cell moisture amount estimation device and fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2010073380A1 (en) 2008-12-26 2010-07-01 トヨタ自動車株式会社 Device for estimating the water content of a fuel cell and fuel cell system
US8252474B2 (en) 2008-12-26 2012-08-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8293421B2 (en) 2008-12-26 2012-10-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
US9425473B2 (en) 2009-07-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of operating fuel cell system
JP6017785B2 (en) * 2009-07-09 2016-11-02 トヨタ自動車株式会社 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
US8338040B2 (en) 2009-08-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of operating fuel cell system
WO2011024581A1 (en) * 2009-08-26 2011-03-03 トヨタ自動車株式会社 Fuel cell system and method for operating fuel cell system
DE112010003392T5 (en) 2009-08-26 2012-06-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for operating a fuel cell system
JP4849195B2 (en) * 2009-08-26 2012-01-11 トヨタ自動車株式会社 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
DE112010003392B4 (en) 2009-08-26 2024-08-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for operating a fuel cell system
JP2012043677A (en) * 2010-08-20 2012-03-01 Toyota Motor Corp Fuel cell system and method for controlling fuel cell system

Also Published As

Publication number Publication date
JP4522097B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP5364916B2 (en) Humidifier for fuel cell
CA2353637C (en) Fuel cell
US7517600B2 (en) Multiple pressure regime control to minimize RH excursions during transients
KR20210011204A (en) Humidifier for fuel cell
US6855442B2 (en) Fuel cell and method of operating same
JP4522097B2 (en) Fuel cell control method
US7820333B2 (en) Fuel cell operating method with improved hydrogen and oxygen utilization
US6696190B2 (en) Fuel cell system and method
CA2433167A1 (en) Fuel cell and method of controlling same
US7306873B2 (en) Method and apparatus for changing the direction of fluid flow in fuel cell flow fields
US20060029837A1 (en) Humidifier bypass system and method for PEM fuel cell
US6964824B2 (en) Fuel cell and method of operating the same
US6706430B2 (en) Electronic by-pass of fuel cell cathode gas to combustor
US7781119B2 (en) Flow shifting in each individual cell of a fuel cell stack
JP4792699B2 (en) Fuel cell
JP2002334711A (en) Method for operating solid polymer type fuel cell power generator
US20040076869A1 (en) Fuel cell
JP2007323993A (en) Fuel cell system
JP2004139817A (en) Fuel cell
JP4413587B2 (en) Humidification system for fuel cell
JP5319160B2 (en) Fuel cell system
JP4675605B2 (en) Fuel cell oxidant supply device
US20040131899A1 (en) System and method for process gas stream delivery and regulation using down spool control
JP2010135071A (en) Fuel cell, method for operating same, and fuel cell device
JP2009266632A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R151 Written notification of patent or utility model registration

Ref document number: 4522097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees