JPS60189868A - Reaction fluid feed structure to fuel cell electrode layer - Google Patents

Reaction fluid feed structure to fuel cell electrode layer

Info

Publication number
JPS60189868A
JPS60189868A JP59046795A JP4679584A JPS60189868A JP S60189868 A JPS60189868 A JP S60189868A JP 59046795 A JP59046795 A JP 59046795A JP 4679584 A JP4679584 A JP 4679584A JP S60189868 A JPS60189868 A JP S60189868A
Authority
JP
Japan
Prior art keywords
electrode
reaction fluid
electrode layer
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59046795A
Other languages
Japanese (ja)
Other versions
JPH0544781B2 (en
Inventor
Tomoyoshi Kamoshita
友義 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59046795A priority Critical patent/JPS60189868A/en
Publication of JPS60189868A publication Critical patent/JPS60189868A/en
Publication of JPH0544781B2 publication Critical patent/JPH0544781B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a uniform current distribution on the electrode layer surface by decreasing the diffusion resistance value from the inlet toward the outlet of fluid paths at diffusion paths where a reaction fluid is diffused i a porous electrode substrate and reaches an electrode layer. CONSTITUTION:An electrode substrate having grooves feeding fuel gas and an electrode substrate having grooves feeding oxidizer gas are closely stuck to both sides of a unit cell consisting of an electrolyte, a fuel electrode, and an oxidizer electrode, and they are laminated to form a fuel cell stack. In this case, the gas feed grooves 4a of each electrode substrate 4 are formed so that the number of branch feed grooves is increased from the inlet section toward the outlet section and the lengths of diffusion paths from the feed grooves 4a to the electrode 2 through the electrode substrate 4 are shortened. Accordingly, the density decrease of the reaction component in a reaction fluid is compensated, a uniform current distribution is obtained on the electrode layer surface, and the cell life can be extended by decreasing the diffusion resistance value toward the outlet section.

Description

【発明の詳細な説明】 〔発明の私する技術分野〕 この発明は非反応成分を含む反応流体が供給される燃料
電池内で発電作用を営む′tニ極層に接し、て多孔性の
電極基材が配設され、この電極基材の7L、;極層とは
反対の側に配設された複数条の反応流体通路に反応流体
が通流されて電極基材内を拡散して電極層に反応流体を
供給する燃料電池電極層への反応流体供給構造に関する
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a porous electrode in contact with a nipolar layer that performs power generation in a fuel cell to which a reactive fluid containing non-reactive components is supplied. A base material is provided, and a reaction fluid is passed through a plurality of reaction fluid passages provided on the side opposite to the electrode layer, and diffuses within the electrode base material to form an electrode. The present invention relates to a structure for supplying a reactive fluid to a fuel cell electrode layer that supplies a reactive fluid to the layer.

よび酸化剤電極に反応流体の通路を有する多孔性の昂、
極晶相を配し、反応流体を前記通路から電極A’ h内
に拡散して1F・5極に供給して電気化学反応を行なわ
せるものであり、例えば、シん酸形燃料電池では反応流
体としてガスを使用し、反応ガスとしての燃料ガスとし
て水素を主成分とする改質カスを、酸化剤カス七して空
気を単位電池に供給して電気化学反応を行なわせている
が、反応によシ反応ガス中の水素、酸素は反応ガスが通
路の入口部から出口部に向って流れるにしたがって消費
され、これらの成分嬢度が漸減する。以下図面に基づい
て従来技術について説明する。
a porous membrane with passages for the reactant fluid to the and oxidizer electrodes;
A polar crystal phase is arranged, and the reaction fluid is diffused from the passageway into the electrode A'h and supplied to the 1F/5 electrodes to perform an electrochemical reaction. Gas is used as a fluid, reforming residue mainly composed of hydrogen is used as a fuel gas as a reaction gas, air is supplied to a unit cell as an oxidizer residue, and an electrochemical reaction is carried out. Hydrogen and oxygen in the reactive gas are consumed as the reactive gas flows from the inlet to the outlet of the passage, and the levels of these components gradually decrease. The prior art will be explained below based on the drawings.

第1図は従来の燃料電池の構造を示す分解斜視図であり
、図において電解質1を挾持してその両τ10に燃料電
極2および酸化剤電極3を配し、さらにその外側に燃料
L12極2に当接する面の反対側に燃料ガスを供給する
溝4aが通路として形成された電極暴利4が燃料1れ極
2に密着され、また酸化剤電極3に当接する面の反対側
の面に供給溝4aと直交する方向に設けられた酸化剤ガ
スを供給する溝5aが通路として形成された電極基材5
が密着され−CIJブ付を極力式の単位電池を構成し、
各単位電池間にはガス不拡散性のセパレートプレート6
が介装され、これらが多数私層されてセルスタック各構
成する。
FIG. 1 is an exploded perspective view showing the structure of a conventional fuel cell, in which an electrolyte 1 is sandwiched, a fuel electrode 2 and an oxidizer electrode 3 are arranged on both sides τ10, and a fuel L12 pole 2 is placed on the outside. An electrode 4 having grooves 4a formed as passages for supplying fuel gas on the opposite side of the surface that contacts the oxidizer electrode 3 is in close contact with the fuel 1 electrode 2, and also supplies the fuel gas on the surface opposite to the surface that contacts the oxidizer electrode 3. An electrode base material 5 in which a groove 5a for supplying oxidant gas, which is provided in a direction perpendicular to the groove 4a, is formed as a passage.
is closely attached to the unit battery of the CIJ type as much as possible,
Gas non-diffusive separate plate 6 is provided between each unit battery.
These cells are interposed in multiple layers to form each cell stack.

このセルスタックの側面には燃料ガスを供給する入口管
7aを有するマニホールド7がセルスタックの一方の側
面に、図示しないが燃料ガスを排出する出口管を有する
マニホールドが上記と対向する側面に設けられ、そして
酸化剤ガスを供給する入口管8aを有するマニホールド
8か燃料ガスを供給、排出する面と直交するセルスタッ
クの側面に設けられ、図示しないが酸化剤ガスを排出す
る出口管を有するマニホールドが上記と対向するセルス
タックの側面に設けられて燃料電池が構成される。
A manifold 7 having an inlet pipe 7a for supplying fuel gas is provided on one side of the cell stack, and a manifold 7 having an outlet pipe for discharging fuel gas (not shown) is provided on the opposite side. , and a manifold 8 having an inlet pipe 8a for supplying oxidant gas, or a manifold 8 provided on the side of the cell stack perpendicular to the surface for supplying and discharging fuel gas, and having an outlet pipe for discharging oxidant gas (not shown). A fuel cell is configured by being provided on the side surface of the cell stack facing the above.

燃料電池の運転は反応ガスとしての燃料ガスを入口管7
aから流入させマニホールド7を介してセルスタックの
燃料ガスの供給溝4aに流し、多孔性の電極基材4内に
拡散させて燃料電極2に供給し、燃料ガスは図示しない
排出マニホールドに集められて出口部・よ1+出される
。一方酸化剤ガスも同4)J8にして人ロ肯8a、供給
用のマニホールド8を介しC酸化剤カスの供給溝5aに
流し、多孔質の電極ハロ5内に拡散させて酸化剤を極3
に供給され、酸化剤ガスFi図示しない排出用マニホー
ルドに集められ出口管よシ排出され、これらの反応ガス
が単位電池内にて′ii!、’気化学反応全化学反応を
発生する0 第2図は上述の反応ガスが多孔性の電極基側内を拡散す
る状況を示す萌向図であシ、燃料ガスは電極暴利4の供
給/k 4 aを矢印Aの方向に流れ、電極晶相4内を
矢印B方向のように拡散して燃料t4(亘2に供給され
、また酸化剤ガスは電極暴利5の供給溝5aを紙面に直
角方向に流れて電極基材5内を矢印C方向のように拡散
して酸化剤を極3に供給され、マトリックス1の電解質
と反応ガス中の酸素と水素とが電極において電気化学反
応をする。
In operation of the fuel cell, fuel gas as a reaction gas is passed through the inlet pipe 7.
The fuel gas flows into the fuel gas supply groove 4a of the cell stack through the manifold 7, diffuses into the porous electrode base material 4, and is supplied to the fuel electrode 2. The fuel gas is collected in an exhaust manifold (not shown). Then, the exit part will be ejected. On the other hand, the oxidant gas is also made into J8 (4), passed through the supply manifold 8 to the supply groove 5a for the C oxidant residue, and diffused into the porous electrode halo 5 to supply the oxidant to the electrode 3.
The oxidant gas Fi is collected in a discharge manifold (not shown) and discharged through an outlet pipe, and these reaction gases are fed into the unit cell 'ii! , 'Gas chemical reaction All chemical reactions occur.0 Figure 2 is a diagram showing the situation in which the above-mentioned reaction gas diffuses inside the porous electrode base side, and the fuel gas is supplied from the electrode profiteer 4. k 4 a flows in the direction of arrow A, diffuses in the electrode crystal phase 4 in the direction of arrow B, and is supplied to fuel t4 (Wataru 2), and the oxidant gas flows through the supply groove 5a of the electrode profiteer 5 as shown in the paper. It flows in the right angle direction and diffuses in the electrode base material 5 in the direction of arrow C, and the oxidizing agent is supplied to the electrode 3, and the electrolyte in the matrix 1 and oxygen and hydrogen in the reaction gas undergo an electrochemical reaction at the electrode. .

このため反応カスの通路としての供給溝の入口部から出
口部に向って空気中の酸素と改質ガス中の水素の載置i
i漸減する〇 したがって第3図に示されるように電極基材4の反応ガ
スの供給’f:rj J aからなる通路の断面積が入
口部から出口部に向って等しい多孔性の′iLi、極基
羽を用いた従来のものでは反応ガスの供給溝から反応ガ
スが電極基材内を二次元的に拡散する平均拡散抵抗は通
路に泊って一定であるため各電極に供給される反応ガス
中の酸素および水素量は供給溝を流れる反応ガスの酸素
および水素成分の濃度に直接影響される。
Therefore, oxygen in the air and hydrogen in the reformed gas are loaded from the inlet to the outlet of the supply groove, which serves as a passage for the reaction scum.
i gradually decreases〇Therefore, as shown in FIG. In the conventional type using polar blades, the reaction gas is two-dimensionally diffused within the electrode base material from the reaction gas supply groove.The average diffusion resistance is constant throughout the passage, so the reaction gas supplied to each electrode is The amount of oxygen and hydrogen therein is directly influenced by the concentration of oxygen and hydrogen components in the reaction gas flowing through the feed channel.

このため電極面において反応カスの入口部では発電電流
が大きく、逆に出口側では発電電流の少ない不均一な電
流分布が生じる。櫨たt池特性の経時変化はIL電流密
度依存し、?b、流密度が高い個所程、発熱密度の増加
に伴う温度上昇のため高温となシ、喝゛性の経時的な劣
化が大きい。したがって不均一な電流分布が生じた燃料
電池を長期間運転すると初期に一流密度の高い個所がま
ず劣化し、これに伴い隣接する個所の電流密度が、劣化
した個所の電流を補う形で高くなり、順次劣化した個所
が拡大していく。
Therefore, on the electrode surface, a non-uniform current distribution occurs, in which the generated current is large at the inlet of the reaction scum, and conversely, the generated current is small at the outlet. How does the change over time in the T-pond characteristics depend on the IL current density? b. The higher the flow density, the higher the temperature due to the increase in heat generation density, and the greater the deterioration of the resiliency over time. Therefore, when a fuel cell with an uneven current distribution is operated for a long period of time, the parts with high current density will deteriorate first, and the current density in adjacent parts will increase to compensate for the current in the deteriorated parts. , the areas of deterioration gradually expand.

が反応ガスの供給溝からなる通路に沿って一定であるた
め、’7Li、’極に供給される反応ガス量は反応ガス
成分のg2度に影竹され、不均一な電流分布が避けられ
ず霜、池の寿命に悪影響を与えるという欠点がある。
is constant along the path consisting of the reactant gas supply groove, the amount of reactant gas supplied to the '7Li,' electrode is affected by the g2 degree of the reactant gas component, and an uneven current distribution is unavoidable. It has the disadvantage of frost, which has a negative effect on the lifespan of the pond.

〔発明の目的〕[Purpose of the invention]

この発明は上記の欠点に鑑み、反応流体の通路からIL
極基インを拡散して電極に供給される反応流体の成分量
を電極層面にほぼ均等にする燃料電池1[1,極層への
反応流体供給構造を提供することを目的とする。
In view of the above-mentioned drawbacks, the present invention provides an IL-
It is an object of the present invention to provide a fuel cell 1 [1, a structure for supplying a reactive fluid to an electrode layer, in which the amount of components of the reactive fluid supplied to the electrode is almost uniform on the surface of the electrode layer by diffusing the polar base.

〔発明の侠旨〕[Chivalry of invention]

上記の目的を達成するため、本発明によれば非反応成分
を含む反応流体が供給される燃料電池内でヅ6電作用を
営む?−電極基接して多孔性の電極基Iが配設され、こ
の電極基材の電極層とは反対の側に配列された複数糸の
反応流体通路、例えばとのilJ、極晶相に平行に設け
られた溝、または電極基材に面するガス不拡散性のプレ
ートに平行に設けられた溝に反応流体が疋J流されて電
極基1内ケ拡散して%、電極層反応流体を供給するに除
し、反応流体が前記反応流体止J路に面する電極基材の
表η11から電極基旧内部を拡散して電極層に述するま
での二次元的な拡危路の平均拡散抵抗、すなわち’ij
1゜極基村内の拡散路の路長とか電極基材の気孔率によ
り定められる平均拡散抵抗値と反応流体通路内を通流す
る反応流体中の反応成分の温度とかこの通路の入口部か
ら出口部に亘ってす1は比例関係にすることによって達
成される。
In order to achieve the above object, according to the present invention, a reaction fluid containing non-reactive components is supplied with an electrolyte in a fuel cell. - a porous electrode base I is disposed adjacent to the electrode, and a plurality of threads of reaction fluid channels arranged on the side of the electrode base opposite to the electrode layer, e.g. The reaction fluid flows through the provided grooves or into the grooves provided parallel to the gas-nondiffusive plate facing the electrode base material and diffuses within the electrode group 1, supplying the electrode layer reaction fluid. However, the average diffusion resistance of the two-dimensional diffusion path where the reaction fluid diffuses from the surface η11 of the electrode base material facing the reaction fluid stop J path to the inside of the electrode base and reaches the electrode layer. , i.e. 'ij
1゜ The average diffusion resistance value determined by the length of the diffusion path within the polar base village, the porosity of the electrode base material, the temperature of the reaction component in the reaction fluid flowing through the reaction fluid passage, and the temperature from the inlet to the exit of this passage. 1 is achieved by making it proportional across the parts.

〔発明の実り山側〕[The fruitful side of invention]

以1図面に基づいて本発明の詳細な説明する。 The present invention will now be described in detail based on the drawings.

第4図は本発明の実施例によるリブ付’iLi&力式に
よる単位′Ii:i、池の電極基材の斜視図であシ、第
5図。
FIG. 4 is a perspective view of a ribbed electrode base material according to an embodiment of the present invention; FIG.

第6図はそれぞれ第4図におけるX−X断面図、Y−Y
断面図である。なお、a)4図以降の図において第1図
、第2図、第3図と同一部分には同じ杓月を伺している
Figure 6 is a sectional view taken along line X-X and Y-Y in Figure 4, respectively.
FIG. In addition, a) In the figures after Figure 4, the same parts as in Figures 1, 2, and 3 have the same ladle.

第4図において、多孔性のill、極基駒4の反応流体
3i11路としての供給溝4aに反応流体としての反応
カスの燃料ガスが矢印の方向に流れるが、供給溝4aの
数は矢印の方向、すなわち燃料ガスが入口部から出口部
に向って流れる方向に分岐供給溝の数が増加している。
In FIG. 4, the fuel gas of the reaction scum as a reaction fluid flows in the direction of the arrow in the supply groove 4a as the reaction fluid 3i11 path of the porous ill and the pole base piece 4, but the number of the supply grooves 4a is the same as that of the arrow. The number of branch supply grooves increases in the direction, that is, in the direction in which the fuel gas flows from the inlet to the outlet.

したがって分岐供給溝の数が増加する程、1μF接する
、供給溝間の距離は短かくなり、6(絹rjfから電極
基(イを拡散して電極に達する拡散路の路長も短かくな
る。
Therefore, as the number of branch supply grooves increases, the distance between the supply grooves that are in contact with each other by 1 μF becomes shorter, and the length of the diffusion path that diffuses from the silk rjf to the electrode group also becomes shorter.

第5図は燃料ガスが供給溝4aよシ多孔性の電極基材4
内を拡散して燃料’KL 4’m ’2に供給されるX
−X断m1における状態が示され、供給溝4aの内側面
および底面より矢印りの方向に二次元的に拡散されて燃
11箱極2に供給される。
FIG. 5 shows a porous electrode base material 4 in which the fuel gas is supplied from the supply groove 4a.
X diffused inside and supplied to fuel 'KL 4'm '2
The state at -X section m1 is shown, and the fuel is supplied to the fuel 11 box electrode 2 after being two-dimensionally diffused in the direction of the arrow from the inner surface and bottom surface of the supply groove 4a.

第6図は、燃料ガスの出口側に近く、シたがってX−X
断面の供給溝の数より多い第4図におけるY−Y断面に
おける供給溝4aの内側面および底面から燃料ガスが矢
印Eの方向に二次元的に拡散されて燃料電極2に供給さ
れる状態が示されている。ここで、第6図のY−Y断面
の供給溝の数は第5図のX−Xル[面の供給溝の数より
多いので、供給溝4aより二次元的に拡散する矢印E方
向の平均拡散路の路長、すなわち平均拡散抵抗値は矢印
り方向の平均拡散路の路長すなわち平均拡散抵抗値は小
さくなる。すなわち供給溝の分岐供給溝を増加すること
により平均拡散抵抗値は小さくなるOまだ酸化剤ガス用
の1L極基拐についてもr2ij述と同じ構造にするこ
とによシ同−作用が得られる。
Figure 6 is close to the fuel gas outlet side, so X-X
A state in which fuel gas is two-dimensionally diffused in the direction of arrow E and supplied to the fuel electrode 2 from the inner surface and bottom surface of the supply groove 4a in the Y-Y cross section in FIG. 4, which is larger than the number of supply grooves in the cross section. It is shown. Here, the number of supply grooves in the Y-Y cross section of FIG. 6 is greater than the number of supply grooves in the X-X plane of FIG. The average diffusion path length, ie, the average diffusion resistance value, becomes smaller in the direction of the arrow. That is, by increasing the number of branched supply grooves in the supply groove, the average diffusion resistance value becomes smaller.However, the same effect can be obtained by using the same structure as described above for the 1L polar base layer for oxidizing gas.

したがって上記の@−;造を有する燃料電池の運転によ
り反応ガスが単位看り池に供給されると、電極基材を入
口部から出口部に向って通流するとき生じる電気化学反
応による反応ガス中の反応成分1□:゛、例えば水素、
酸素は反応によ多消費され、入口部から出口部に向って
反応成分濃度が低下するか、これに対応して平均拡散抵
抗値もnl」記成分な、1度に正比例でないが、段階的
にほぼ比例し、て低下しているので、反応ガス中の反応
成分は霜、極面にはIY均等な成分量で供給され、運転
時の電極面の電流分布がすよは均等になる。
Therefore, when the reactant gas is supplied to the unit reservoir by the operation of the fuel cell having the structure described above, the reactant gas is caused by the electrochemical reaction that occurs when flowing through the electrode base material from the inlet to the outlet. Reactive component 1□: ゛, for example hydrogen,
A large amount of oxygen is consumed in the reaction, and the concentration of the reaction components decreases from the inlet to the outlet, or the average diffusion resistance value decreases gradually, although not directly proportionally at once. Since the reaction component in the reaction gas is supplied to the electrode surface in an equal amount, the current distribution on the electrode surface during operation becomes even.

第7図は本発明の異なる実施例による電極基材の斜視図
である0第7図において、反応流体としての燃料ガスは
?lj、極基月4暴利路としての供給溝4aを矢印の方
面に流れるが、供給溝4aの深さを燃料ガスの入口部か
ら出口部に向って順次深くし、供給6f^4aの内側d
f+および底面から燃料%極2への拡散路の路長を小さ
くシ、拡散抵抗を順次減少したものでおり、燃料電池の
運転による電気化学反応に伴う反応ガス中の反応成分の
消費による成分濃度の低下にt’a、t1比例して供給
路の深さを大きくして拡散抵抗を減小させ、電極面の電
流密度をtt’6は均等にすることができる。なお酸化
剤カス用のiL電極基材ついても同様な構造により同じ
作用が得られる。
FIG. 7 is a perspective view of an electrode base material according to a different embodiment of the present invention. In FIG. 7, what type of fuel gas is used as the reaction fluid? lj, the fuel gas flows in the direction of the arrow through the supply groove 4a as a profiteering route, but the depth of the supply groove 4a is gradually deepened from the inlet to the outlet of the fuel gas, and the inside d of the supply 6f^4a
The length of the diffusion path from f+ and the bottom to the fuel electrode 2 is made smaller, and the diffusion resistance is gradually reduced, and the component concentration due to the consumption of reaction components in the reaction gas accompanying the electrochemical reaction during fuel cell operation. By increasing the depth of the supply path in proportion to the decrease in t'a and t1, the diffusion resistance can be reduced, and the current density on the electrode surface can be made equal to tt'6. Note that the same effect can be obtained with the iL electrode base material for oxidant scum due to the similar structure.

また反応ガスの拡散抵抗を順次減少させる方法として霜
、極基椙の気孔率を反応ガスが流れる電極ハエの入口部
から出口部に向って大きくすることによっても得られる
〇 第8図は本発明の異なる実施例を示すものであり、リブ
伺セパレータ方式の単位電池において、1シt1114
とリブ付セパレータとの間に多孔性のt極晶相を介装L
7たものの断面図を示すものである。第8図においてリ
プ付セパレータ10の下面に反応ガスとしての燃料ガス
を供給する溝10aかに向に直角方向に設けられ、一方
上面には酸化剤ガスの供給溝10aと面文する方向に供
給するように設けられた溝10bとからなるガス不拡散
性のりフ伺セパレータが設けられ、供給溝10aと燃料
電極2との間には多孔性の電極基利14が介装され、図
示しないが燃料電極はt#質に接L7ている。またリプ
付セパレータ10の供給溝10bも同様に図示しない酸
化剤電極とリプ付セパレータ10との間に介装された多
孔質のt極基相に接している0この例において燃料ガス
が供給溝10aを通流するとき、燃料ガスは多孔性の電
極暴利14内を矢印Fの方向に拡散して燃料を極2に供
給される。
In addition, as a method of sequentially decreasing the diffusion resistance of the reactive gas, it can also be obtained by increasing the porosity of the frost and polar base from the inlet to the outlet of the electrode fly through which the reactive gas flows. Figure 8 shows the present invention. This shows a different embodiment of the rib separator type unit battery.
A porous t-polar phase is interposed between the ribbed separator and the ribbed separator.
7 shows a cross-sectional view of the item. In FIG. 8, grooves 10a for supplying fuel gas as a reaction gas are provided on the lower surface of the separator with lips 10 in a direction perpendicular to the direction, while on the upper surface, fuel gas is supplied in a direction parallel to the supply grooves 10a for oxidizing gas. A gas-non-diffusible glue gap separator is provided, which is made up of grooves 10b provided so as to prevent the gas from spreading, and a porous electrode base 14 is interposed between the supply groove 10a and the fuel electrode 2, although not shown. The fuel electrode is in contact with the t# material L7. Similarly, the supply groove 10b of the lipped separator 10 is in contact with the porous t-pole base phase interposed between the oxidizing agent electrode (not shown) and the lipped separator 10. In this example, the fuel gas flows into the supply groove. When flowing through 10a, the fuel gas diffuses within the porous electrode 14 in the direction of arrow F, supplying fuel to the electrode 2.

したがってリプ付セパレータの供給溝を前述した第4図
に示されるようなリブ付電極方式による電極基材4に設
けられた分岐供給溝を有する反応流体通路と同等とすれ
ば拡散抵抗が電極晶相の反応流体通路の入口部から出口
部に向って減小する構造が得られ、前述と同じ作用が得
られる。また短枠ノ11=拐14に3Jfl路の人口部
から出口部に向って気孔率をJ[次増大しても同じ作用
が得られる。
Therefore, if the supply grooves of the lipped separator are equivalent to the reaction fluid passages having branched supply grooves provided in the electrode base material 4 of the ribbed electrode method as shown in FIG. A structure is obtained in which the reaction fluid passage decreases from the inlet to the outlet, and the same effect as described above is obtained. Further, the same effect can be obtained by increasing the porosity by J [degrees] from the population part to the outlet part of the short frame No. 11 = No. 14.

〔発IJIJの効泉〕[The effective spring of IJIJ]

以上の説明から明らかなように、本発明によれば非反応
lJk分をつむ反応流体が反応流体通路から多孔性の?
ti:極基月内暴利11女シて霜、極層に達する拡散路
における拡散(1を抗値を、反応流体が電極基材の反応
流体通路の人L1部から出口部に向ってIL電気化学反
応より消費されるため低下する反応流体中の反応成分の
ヌ反低下に#1は比例して低下する供給11t?i造と
することにより、電極層の電気化学、反応面の全面に反
応流体の反応成分かはは均等な成分111で供給される
ため、■極層面に均等な電流分布が得られ、燃料電池の
寿命も長くなるという動床がある。
As is clear from the above description, according to the present invention, the reaction fluid containing the non-reacting lJk is transferred from the reaction fluid passage through the porous ?
ti: polar base monthly profit 11 female frost, diffusion in the diffusion path reaching the polar layer (1 is the resistance value, the reaction fluid is IL electricity from the part L1 of the reaction fluid passage of the electrode base material toward the exit part) #1 decreases in proportion to the decrease in the number of reactive components in the reaction fluid, which decreases due to consumption due to chemical reactions. Since the reactive components of the fluid are supplied as equal components 111, there is a moving bed in which uniform current distribution is obtained on the polar layer surface and the life of the fuel cell is extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料電池の構成を示す分解斜視図、第2
図は第1図におけるリブ伺電極基村内に反応流体が拡散
する状況を示す部分断面説明図、第3図は第1図におけ
るリプ付電極晶相を示す部分斜視図、第4図は本発明の
実施例によるリフ゛付電極晶相を示す部分斜視図、第5
図、第6図はそ □れぞれ第4図におけるX−X断面、
Y−Y断面における反応流体が拡散する状況を示す断面
説明図、第7図は本発明の異なる実施例を示す部分斜視
図、第8図は他の異なる実施例による反応流体の拡散す
る状況を力ξす断面説明図である0 2:燃料1」、極、3:酸化剤を極、4,5:リフ゛付
電極晶相、4a、5a;反応流体の供給路、10:リプ
伺セパレータ、10a、10b :反応流体の供給路、
14:を極基材。 第2図゛。 コ 第7図
Figure 1 is an exploded perspective view showing the configuration of a conventional fuel cell;
The figure is a partial cross-sectional explanatory diagram showing the situation in which the reaction fluid diffuses into the ribbed electrode base village in Figure 1, Figure 3 is a partial perspective view showing the crystal phase of the lip-attached electrode in Figure 1, and Figure 4 is the present invention. FIG. 5 is a partial perspective view showing the crystal phase of the electrode with a refrigeration according to the example of FIG.
□The XX cross section in Fig. 4,
7 is a partial perspective view showing a different embodiment of the present invention, and FIG. 8 is a cross-sectional view showing a situation in which a reaction fluid diffuses in another different embodiment. 2: fuel 1", electrode; 3: oxidizer electrode; 4, 5: electrode crystal phase with refill; 4a, 5a; supply path for reaction fluid; 10: lip separator; 10a, 10b: supply path for reaction fluid;
14: Pole base material. Figure 2. Figure 7

Claims (1)

【特許請求の範囲】 1)非反応成分を含む反応流体が供給される燃料電池内
で発電作用を営む電極層に対する該反応流体の供給構造
であって、該電極層に接して多孔性の電極基側が配設さ
れ、該電極基材の電極層とは反対の側には反応流体が通
流される複数条の反応流体通路が配設されるものにおい
て、該各反応流体通路に面する知1極基拐の表面から反
応流体が電極晶相内部を拡散して電極層に達するまでの
二次元的拡散路の平均拡散抵抗値と反応流体通路内を通
流する反応流体中の反応成分の濃度とが、該通路の入口
部から出口部に亘ってほぼ比例関係になるようにされた
ことを%徴とする燃料電池電極層への反応流体供給構造
。 2、特許請求の範囲第1項記載の反応流体供給構造にお
いて、拡散抵抗値は電極晶相内部の拡散路の路長または
電極基材の気孔率により定められることを特徴とする燃
料電池電極層への反応流体供給構造。 3)特許請求の範囲第1項記載の反応流体供給f1・j
造において、複数条の反応流体通路は電極基側に溝が平
行に形成されるか、まだは電極基材に面するガス不拡散
性のプレートに溝が平行に形成されて通路となることを
特徴とする燃料電池電極層への反応流体供給構造。
[Scope of Claims] 1) A structure for supplying a reactive fluid containing a non-reactive component to an electrode layer that performs a power generation function in a fuel cell, the structure comprising a porous electrode in contact with the electrode layer. A base side is provided, and a plurality of reaction fluid passages through which a reaction fluid flows are arranged on the opposite side of the electrode base material from the electrode layer, and a groove 1 facing each reaction fluid passage is provided. The average diffusion resistance value of the two-dimensional diffusion path from the surface of the polar base until the reaction fluid diffuses inside the electrode crystal phase and reaches the electrode layer, and the concentration of the reaction component in the reaction fluid flowing through the reaction fluid path. A structure for supplying a reaction fluid to a fuel cell electrode layer, wherein the characteristics are substantially proportional to each other from an inlet to an outlet of the passage. 2. In the reaction fluid supply structure according to claim 1, the fuel cell electrode layer is characterized in that the diffusion resistance value is determined by the length of the diffusion path inside the electrode crystal phase or the porosity of the electrode base material. reaction fluid supply structure. 3) Reaction fluid supply f1/j according to claim 1
In the structure, multiple reaction fluid passages are formed by forming parallel grooves on the electrode base side, or by forming parallel grooves in a gas-inhibitory plate facing the electrode base material. Features a reactant fluid supply structure to the fuel cell electrode layer.
JP59046795A 1984-03-12 1984-03-12 Reaction fluid feed structure to fuel cell electrode layer Granted JPS60189868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59046795A JPS60189868A (en) 1984-03-12 1984-03-12 Reaction fluid feed structure to fuel cell electrode layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59046795A JPS60189868A (en) 1984-03-12 1984-03-12 Reaction fluid feed structure to fuel cell electrode layer

Publications (2)

Publication Number Publication Date
JPS60189868A true JPS60189868A (en) 1985-09-27
JPH0544781B2 JPH0544781B2 (en) 1993-07-07

Family

ID=12757265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59046795A Granted JPS60189868A (en) 1984-03-12 1984-03-12 Reaction fluid feed structure to fuel cell electrode layer

Country Status (1)

Country Link
JP (1) JPS60189868A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302670A (en) * 1988-05-30 1989-12-06 Mitsubishi Electric Corp Fuel cell
WO2001078174A1 (en) * 2000-04-05 2001-10-18 Forschungszentrum Jülich GmbH Fuel cell with a diffusion layer
WO2002019453A1 (en) * 2000-09-01 2002-03-07 Forschungszentrum Jülich GmbH Bipolar plate for a fuel cell
JP2005503654A (en) * 2001-09-17 2005-02-03 スリーエム イノベイティブ プロパティズ カンパニー Flow field
KR100606978B1 (en) 2004-04-09 2006-08-01 엘지전자 주식회사 Fuel Cell
JP2006260919A (en) * 2005-03-17 2006-09-28 Honda Motor Co Ltd Fuel cell
JP2007115413A (en) * 2005-10-18 2007-05-10 Hitachi Ltd Fuel cell
WO2011118138A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Direct oxidation fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166658A (en) * 1982-03-27 1983-10-01 Hitachi Ltd Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166658A (en) * 1982-03-27 1983-10-01 Hitachi Ltd Fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302670A (en) * 1988-05-30 1989-12-06 Mitsubishi Electric Corp Fuel cell
WO2001078174A1 (en) * 2000-04-05 2001-10-18 Forschungszentrum Jülich GmbH Fuel cell with a diffusion layer
WO2002019453A1 (en) * 2000-09-01 2002-03-07 Forschungszentrum Jülich GmbH Bipolar plate for a fuel cell
JP2005503654A (en) * 2001-09-17 2005-02-03 スリーエム イノベイティブ プロパティズ カンパニー Flow field
JP4874519B2 (en) * 2001-09-17 2012-02-15 スリーエム イノベイティブ プロパティズ カンパニー Plate for fuel cell
KR100606978B1 (en) 2004-04-09 2006-08-01 엘지전자 주식회사 Fuel Cell
JP2006260919A (en) * 2005-03-17 2006-09-28 Honda Motor Co Ltd Fuel cell
US8778553B2 (en) 2005-03-17 2014-07-15 Honda Motor Co., Ltd. Fuel cell
JP2007115413A (en) * 2005-10-18 2007-05-10 Hitachi Ltd Fuel cell
WO2011118138A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Direct oxidation fuel cell

Also Published As

Publication number Publication date
JPH0544781B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
US3994748A (en) Method for feeding reactant gas to fuel cells in a stack and apparatus therefor
JP3596332B2 (en) Operating method of stacked fuel cell, stacked fuel cell, and stacked fuel cell system
US5686199A (en) Flow field plate for use in a proton exchange membrane fuel cell
US8557466B2 (en) Fuel cell including separator with gas flow channels
KR20030081502A (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP2006173123A (en) Bipolar plate for fuel cell
US3372060A (en) Fluid distribution means in a fuel cell
US7201990B2 (en) Fuel cell stack
CN106033818A (en) Guide plate and fuel cell stack containing the same
JPS60189868A (en) Reaction fluid feed structure to fuel cell electrode layer
WO2000039871A1 (en) Fuel battery
CN204720508U (en) Baffler and the fuel cell pack containing this baffler
JP2001519080A (en) Cooling and humidification of polymer electrolyte fuel cells
JPS63119166A (en) Fuel battery
JP2008047395A (en) Fuel cell
JP4186762B2 (en) Polymer electrolyte fuel cell
JP2004228089A (en) Micro fuel cell having positive and negative micro fluid channel and method relating the same
JP5062948B2 (en) Fuel cell power generator
JPH1021944A (en) Solid polymer electrolyte fuel cell
JPS5830074A (en) Fuel cell
KR100766154B1 (en) Seperator of a fuel cell
JPS59217955A (en) Phosphoric-acid-type fuel cell
JP2007234405A (en) Fuel cell stack
US20030170528A1 (en) Moldable separator plate for electrochemical devices and cells
JPH07192739A (en) Fuel cell