JP4186762B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4186762B2
JP4186762B2 JP2003313615A JP2003313615A JP4186762B2 JP 4186762 B2 JP4186762 B2 JP 4186762B2 JP 2003313615 A JP2003313615 A JP 2003313615A JP 2003313615 A JP2003313615 A JP 2003313615A JP 4186762 B2 JP4186762 B2 JP 4186762B2
Authority
JP
Japan
Prior art keywords
diffusion layer
water vapor
polymer electrolyte
fuel cell
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003313615A
Other languages
Japanese (ja)
Other versions
JP2005085517A (en
Inventor
崇徳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003313615A priority Critical patent/JP4186762B2/en
Publication of JP2005085517A publication Critical patent/JP2005085517A/en
Application granted granted Critical
Publication of JP4186762B2 publication Critical patent/JP4186762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

この発明は、固体高分子電解質膜を用いる固体高分子形燃料電池に係り、特に膜電極接合体の電極の外面に配される拡散層の構成に関する。   The present invention relates to a solid polymer fuel cell using a solid polymer electrolyte membrane, and more particularly to the configuration of a diffusion layer disposed on the outer surface of an electrode of a membrane electrode assembly.

固体高分子形燃料電池では、固体高分子電解質膜を燃料極と空気極で挟持し、さらにその両外面に拡散層を配して膜電極接合体が構成され、その外面に配されたセパレータのガス溝に反応ガスである燃料ガスと空気を通流させて拡散層の外面に供給することによって、電気化学反応により電気エネルギーを得る。このとき、反応ガスはそれぞれ拡散層中を拡散して各電極の触媒層の表面に到達し、電気化学反応を生じる。空気極ではこの電気化学反応に伴って水が生成するので、電気化学反応に寄与しなかった空気と水蒸気となった反応生成水が空気極のガス出口から電池外部へと排出される。高い発電効率を得るには、反応ガスが触媒層の表面に均等に供給されること、また触媒層で生成した水蒸気を速やかに排出することが必要であり、電極の触媒層とセパレータのガス溝との間に組込まれた拡散層がその役割を果している。したがって、この拡散層は導電性多孔材料より構成されており、一般に、数μmのカーボン繊維からなる厚さ数百μmのカーボンクロスやカーボンペーパーが用いられている。   In a polymer electrolyte fuel cell, a solid polymer electrolyte membrane is sandwiched between a fuel electrode and an air electrode, and a diffusion layer is disposed on both outer surfaces thereof to form a membrane electrode assembly, and a separator electrode disposed on the outer surface is formed. Electric energy is obtained by an electrochemical reaction by allowing the fuel gas, which is a reactive gas, and air to flow through the gas groove and supplying them to the outer surface of the diffusion layer. At this time, each reaction gas diffuses in the diffusion layer, reaches the surface of the catalyst layer of each electrode, and causes an electrochemical reaction. Since water is generated at the air electrode along with this electrochemical reaction, air that has not contributed to the electrochemical reaction and reaction product water that has become water vapor are discharged from the gas outlet of the air electrode to the outside of the battery. In order to obtain high power generation efficiency, it is necessary to supply the reaction gas evenly to the surface of the catalyst layer, and to quickly discharge the water vapor generated in the catalyst layer. The diffusion layer built in between plays a role. Therefore, this diffusion layer is made of a conductive porous material, and generally, a carbon cloth or carbon paper having a thickness of several hundred μm made of carbon fibers having a thickness of several μm is used.

図4は、従来の固体高分子形燃料電池の単セルの基本構成を示す縦断面図である。図に見られるように、本単セルは、固体高分子電解質膜4を2枚の触媒層3で挟持し、さらにその両外面に拡散層2を配して膜電極接合体を構成し、この膜電極接合体をガス流通溝6を備えた1組のセパレータ5によって挟んで構成されている。燃料ガスは、一端に設けられた燃料ガス入口より燃料極側のガス流通溝6へと導かれ、拡散層2を拡散して触媒層3へと到達し、電気化学反応を生じる。反応に用いられなかった残余のガスは相対する一端に設けられた燃料ガス出口よりセル外へと排出される。同様に、空気は、一端に設けられた空気入口より空気極側のセパレータ5のガス流通溝6へと導かれ、拡散層2を拡散して触媒層3へと到達し、電気化学反応を生じる。反応で生成した水蒸気は、拡散層2を拡散してガス流通溝6へと到達し、反応に用いられなかった残余のガスとともに他端に設けられた空気出口よりセル外へ排出される。したがって、本構成の単セルにおいては、拡散層2の出口側ほど水蒸気の滞留量が増大して水蒸気分圧が高くなる。   FIG. 4 is a longitudinal sectional view showing a basic configuration of a single cell of a conventional polymer electrolyte fuel cell. As shown in the figure, this single cell comprises a membrane electrode assembly in which a solid polymer electrolyte membrane 4 is sandwiched between two catalyst layers 3 and further diffusion layers 2 are arranged on both outer surfaces thereof. The membrane electrode assembly is sandwiched between a pair of separators 5 each having a gas flow groove 6. The fuel gas is guided from the fuel gas inlet provided at one end to the gas flow groove 6 on the fuel electrode side, diffuses through the diffusion layer 2 and reaches the catalyst layer 3 to cause an electrochemical reaction. The remaining gas that has not been used for the reaction is discharged out of the cell from the fuel gas outlet provided at the opposite end. Similarly, air is led from the air inlet provided at one end to the gas flow groove 6 of the separator 5 on the air electrode side, diffuses through the diffusion layer 2 and reaches the catalyst layer 3 to cause an electrochemical reaction. . The water vapor generated by the reaction diffuses through the diffusion layer 2 to reach the gas flow groove 6 and is discharged out of the cell from the air outlet provided at the other end together with the remaining gas not used in the reaction. Therefore, in the single cell of this configuration, the water vapor retention amount increases and the water vapor partial pressure increases toward the outlet side of the diffusion layer 2.

このように拡散層2の面内に水蒸気分圧分布が生じると、水蒸気分圧の高い領域では電気化学反応に寄与する反応ガスの濃度が低下するため、濃度過電圧が増加してセル電圧が低下する可能性がある。また、触媒層3や拡散層2、ガス流通溝6に反応で生成した水蒸気の凝縮水が滞留すると、凝縮水が細孔を覆って反応ガスの拡散を阻害し、触媒層3に十分に反応ガスが供給されない事態が生じる恐れがある。したがって、拡散層2は、特に水蒸気分圧の高い領域で反応ガスがガス流通溝6から触媒層3へと速やかに移動できる構造に構成する必要がある。   When the partial pressure distribution of water vapor occurs in the plane of the diffusion layer 2 in this way, the concentration of the reaction gas contributing to the electrochemical reaction decreases in the region where the partial pressure of water vapor is high, so the concentration overvoltage increases and the cell voltage decreases. there's a possibility that. Further, when condensed water of water vapor generated by the reaction stays in the catalyst layer 3, the diffusion layer 2, and the gas flow groove 6, the condensed water covers the pores and inhibits the diffusion of the reaction gas, so that the catalyst layer 3 is sufficiently reacted. There may be a situation where gas is not supplied. Therefore, the diffusion layer 2 needs to be configured in such a structure that the reaction gas can quickly move from the gas flow groove 6 to the catalyst layer 3 particularly in a region where the water vapor partial pressure is high.

この要求に対応する燃料電池として、特許文献1には、反応ガスの下流側ほど気孔率あるいは空隙率が大きくなるよう形成した拡散層を組込んだ燃料電池が開示されており、特許文献2には、触媒層と拡散層との間に反応ガスの流れ方向に例えば平均気孔径を変化させて形成した水蒸発制御用多孔層を挿入し、面内の特性の均一化を図った燃料電池が開示されている。また、特許文献3には、厚さ方向に水通路としての貫通孔およびガス通路としての貫通孔を備えた拡散層を組込んで、水および反応ガスの流通を良好にした燃料電池が開示されている。
特開平6−267562号公報など 特開2003−92112号公報 特開2003−151585号公報
As a fuel cell that meets this requirement, Patent Document 1 discloses a fuel cell that incorporates a diffusion layer formed such that the porosity or porosity increases toward the downstream side of the reaction gas. Is a fuel cell in which a porous layer for water evaporation control, for example, formed by changing the average pore diameter in the flow direction of the reaction gas is inserted between the catalyst layer and the diffusion layer, and the in-plane characteristics are made uniform. It is disclosed. Patent Document 3 discloses a fuel cell in which a diffusion layer having a through hole as a water passage and a through hole as a gas passage is incorporated in the thickness direction to improve the flow of water and reaction gas. ing.
JP-A-6-267562, etc. JP 2003-92112 A JP 2003-151585 A

上記のように、反応生成水の滞留に起因する反応ガスの拡散阻害を回避する燃料電池として数々の燃料電池が開示されているが、これらのうち、特許文献1や特許文献2に記載の構成の燃料電池では、特殊構成の拡散層や水蒸発制御用多孔層を製作して組込むことが必要となるため、所要の材料コストや製作コストが高くなり、実用化が困難になるという問題点がある。また、特許文献3に記載の構成の燃料電池では、貫通孔が特殊形状でない限り貫通孔の形成による製作コストの上昇は小さく、コスト面では許容される範囲にある。しかしながら、記載されているように拡散層の面内に均等に貫通孔を形成すれば、生成水の排出性能および反応ガスの拡散性能は上昇するが、図4のごとき一端から相対する一端へと反応ガスを流通させる固体高分子形燃料電池においては、拡散層の水蒸気分圧が、図5に示したごとく、上流側で低く、下流側に近づくほど高くなるのに対して、貫通孔はこの分布を考慮に入れていないので、滞留する水蒸気の上流側と下流側とでの差異には対応できず、下流側では相対的に反応ガスの拡散性能が低下し、セル電圧が低下する可能性がある。   As described above, a number of fuel cells have been disclosed as fuel cells that prevent reaction gas diffusion inhibition due to retention of reaction product water. Among these, the configurations described in Patent Document 1 and Patent Document 2 are disclosed. However, in this type of fuel cell, it is necessary to manufacture and incorporate a diffusion layer with a special structure and a porous layer for water evaporation control, which increases the required material cost and manufacturing cost, making it difficult to put it into practical use. is there. Further, in the fuel cell having the configuration described in Patent Document 3, an increase in manufacturing cost due to the formation of the through hole is small unless the through hole has a special shape, and the cost is within an allowable range. However, if the through holes are formed evenly in the plane of the diffusion layer as described, the discharge performance of the generated water and the diffusion performance of the reaction gas increase, but from one end to the other end as shown in FIG. In the polymer electrolyte fuel cell in which the reaction gas flows, the water vapor partial pressure of the diffusion layer is low on the upstream side as shown in FIG. Since the distribution is not taken into consideration, the difference between the upstream and downstream of the accumulated water vapor cannot be handled, and the reaction gas diffusion performance is relatively lowered on the downstream side, and the cell voltage may be lowered. There is.

本発明は、上記のごとき従来技術の問題点を顧慮してなされたもので、本発明の目的は、材料コストと製作コストが廉価であり、かつ、電気化学反応により生じた水蒸気および凝縮水が速やかに排出され、反応ガスが触媒層に適正に供給される低コストで長時間安定して運転できる固体高分子形燃料電池を提供することにある。   The present invention has been made in consideration of the problems of the prior art as described above. The object of the present invention is that the material cost and the manufacturing cost are low, and the water vapor and the condensed water generated by the electrochemical reaction are reduced. An object of the present invention is to provide a polymer electrolyte fuel cell that is promptly discharged and can be stably operated at a low cost for which a reaction gas is appropriately supplied to a catalyst layer.

上記の目的を達成するために、本発明においては、固体高分子電解質膜の両面に触媒層と拡散層を配してなる膜電極接合体をガス流通溝を備えた一組のセパレータで挟持し、ガス流通溝に燃料ガスおよび空気を供給して電気化学反応により電気エネルギーを得る固体高分子形燃料電池において、前記拡散層が厚み方向に貫通する貫通孔を有し、該燃料電池運転時の面内の水蒸気分圧が高い部位ほど、前記拡散層の表面に占める前記貫通孔の占有面積比が大きくなるよう設定されており、かつ、水蒸気分圧が100%以上120%未満の部位における拡散層の表面に占める貫通孔の占有面積比が、20%以上60%未満であるものとした。

In order to achieve the above object, in the present invention, a membrane electrode assembly comprising a catalyst layer and a diffusion layer on both sides of a solid polymer electrolyte membrane is sandwiched between a pair of separators each having a gas flow groove. In the polymer electrolyte fuel cell in which fuel gas and air are supplied to the gas flow groove to obtain electric energy by electrochemical reaction, the diffusion layer has a through-hole penetrating in the thickness direction, It is set so that the area occupied by the through-holes in the surface of the diffusion layer increases as the in-plane water vapor partial pressure increases, and diffusion occurs in a region where the water vapor partial pressure is 100% or more and less than 120%. The occupied area ratio of the through holes on the surface of the layer was 20% or more and less than 60%.

上記のごとく固体高分子形燃料電池に組込まれる拡散層に厚み方向に貫通する貫通孔を備え、かつ、この貫通孔の拡散層単位表面積当たりの面積をこの燃料電池を運転した時の面内水蒸気分圧の分布にしたがって定め、面内水蒸気分圧が高い部位ほど貫通孔の面積が大きくなるよう設定すれば、内部で生成された水蒸気は貫通孔により外部へと排出される。特に、本発明のごとく、相対的に多量の水蒸気が滞留しやすい面内水蒸気分圧が高い部位ほど面積比を大きくして、より密に貫通孔を設ければ、生成した水蒸気が効率的に外部へ排出され、反応ガスが触媒層に適正に供給されるので、固体高分子形燃料電池は低コストで製作可能で、かつ長時間安定して運転できることとなる。   As described above, the diffusion layer incorporated in the polymer electrolyte fuel cell is provided with a through hole penetrating in the thickness direction, and the area per surface area of the diffusion layer per unit area of the diffusion layer is the in-plane water vapor when the fuel cell is operated. If it is determined according to the distribution of partial pressures and the area of the through-holes is set to be larger as the in-plane water vapor partial pressure is higher, the water vapor generated inside is discharged to the outside through the through-holes. In particular, as in the present invention, if the in-plane water vapor partial pressure where a relatively large amount of water vapor tends to stay is higher, the area ratio is increased, and if the through holes are provided more densely, the generated water vapor is efficiently Since it is discharged to the outside and the reaction gas is properly supplied to the catalyst layer, the polymer electrolyte fuel cell can be manufactured at low cost and can be stably operated for a long time.

本発明においては、固体高分子膜の両面に触媒層と拡散層を配して形成された膜電極接合体をガス流通溝を備えたセパレータで挟持して単セルを構成し、それぞれのガス流通溝に反応ガスとして燃料ガスと空気を供給して電気エネルギーを得る固体高分子形燃料電池において、膜電極接合体に組込まれる拡散層、特に空気極側の拡散層が厚み方向に貫通する貫通孔を備え、かつ、その貫通孔の占有する面積比が水蒸気分圧が増大する反応ガスの下流側ほど大きくなるように配設された形態が最良の実施形態である。   In the present invention, a membrane / electrode assembly formed by arranging a catalyst layer and a diffusion layer on both surfaces of a solid polymer membrane is sandwiched by a separator having a gas flow groove to constitute a single cell, and each gas flow In a polymer electrolyte fuel cell that supplies electric energy by supplying fuel gas and air as reaction gas to the groove, a through-hole through which the diffusion layer incorporated in the membrane electrode assembly, in particular, the diffusion layer on the air electrode side penetrates in the thickness direction And the area ratio occupied by the through-holes is arranged such that the downstream side of the reaction gas in which the partial pressure of water vapor increases is the best embodiment.

図1は、本発明の固体高分子形燃料電池の実施例の単セルの基本構成を示す縦断面図である。また、図2は、本実施例の単セルに組込まれている空気極側の拡散層の横断面図である。図1に見られるごとく、本実施例の単セルも、従来例と同様に、固体高分子電解質膜4を2枚の触媒層3で挟持し、さらにその両外面に拡散層2Aを配して膜電極接合体を構成し、この膜電極接合体をガス流通溝6を備えた1組のセパレータ5によって挟んで構成されており、燃料ガスを燃料ガス入口より燃料極側のガス流通溝6へ、また、空気を空気入口より空気極側のセパレータ5のガス流通溝6へと導いて、それぞれ拡散層2Aを拡散させて触媒層3へと到達させ、電気化学反応により電気エネルギーを得るものである。本実施例の単セルの従来例との相違点は、空気極側の拡散層2Aと燃料極側の拡散層2Aに厚み方向に貫通する複数の貫通孔1が設けられていることにある。   FIG. 1 is a longitudinal sectional view showing a basic configuration of a single cell of an example of a polymer electrolyte fuel cell of the present invention. FIG. 2 is a cross-sectional view of the diffusion layer on the air electrode side incorporated in the single cell of this embodiment. As shown in FIG. 1, the single cell of this example also has a solid polymer electrolyte membrane 4 sandwiched between two catalyst layers 3 and a diffusion layer 2A on both outer surfaces thereof, as in the conventional example. A membrane electrode assembly is formed, and the membrane electrode assembly is sandwiched between a pair of separators 5 each having a gas flow groove 6. Fuel gas is supplied from the fuel gas inlet to the gas flow groove 6 on the fuel electrode side. In addition, air is guided from the air inlet to the gas flow groove 6 of the separator 5 on the air electrode side, and the diffusion layer 2A is diffused to reach the catalyst layer 3 to obtain electric energy by electrochemical reaction. is there. The difference from the conventional example of the unit cell of this embodiment is that a plurality of through holes 1 penetrating in the thickness direction are provided in the diffusion layer 2A on the air electrode side and the diffusion layer 2A on the fuel electrode side.

図3は、拡散層2Aに設けた貫通孔1の面積を定める際に用いた、拡散層表面の貫通孔占有面積比と運転時の局部水蒸気分圧との関係を示す特性図である。なお、空気極側の拡散層2Aの運転時の水蒸気分圧は既に示した図5の通りである。反応ガスである空気と水蒸気および凝縮水の移動が速やかに行われるように、水蒸気分圧が高くなるほど貫通孔の占める面積の割合が大きくなるよう選定されており、図5の下流領域に見られるように水蒸気分圧が100%を越えると、水蒸気が凝縮水となって空気の拡散を阻害する危険性が増大するので、水蒸気分圧が100%の領域では貫通孔占有面積比を20%に、水蒸気分圧が120%の領域では貫通孔占有面積比を20%に選定している。図2に模式的に示された貫通孔1は、図5の分布に基づいて図3の特性より占有面積比を定めて形成されたものである。水蒸気分圧が60%以下の上流域には貫通孔は設けられていないが、水蒸気分圧が80%の中流域には占有面積比が約5%の貫通孔が、また水蒸気分圧が100%を越える下流域には占有面積比が20%以上の貫通孔が設けられている。   FIG. 3 is a characteristic diagram showing the relationship between the through hole occupation area ratio on the surface of the diffusion layer and the local water vapor partial pressure during operation, which was used when determining the area of the through hole 1 provided in the diffusion layer 2A. The water vapor partial pressure during operation of the diffusion layer 2A on the air electrode side is as shown in FIG. The ratio of the area occupied by the through-holes is selected to increase as the water vapor partial pressure increases so that the reaction gas, air, water vapor and condensed water can be moved quickly, and can be seen in the downstream region of FIG. Thus, if the water vapor partial pressure exceeds 100%, the risk that water vapor becomes condensed water and hinders air diffusion increases. Therefore, in the region where the water vapor partial pressure is 100%, the through-hole occupation area ratio is 20%. In the region where the water vapor partial pressure is 120%, the through hole occupation area ratio is selected to be 20%. The through-hole 1 schematically shown in FIG. 2 is formed by determining the occupation area ratio from the characteristics of FIG. 3 based on the distribution of FIG. No through hole is provided in the upstream region where the partial pressure of water vapor is 60% or less, but in the middle flow region where the partial pressure of water vapor is 80%, there is a through hole having an occupied area ratio of about 5%, and the partial pressure of water vapor is 100%. A through-hole having an occupied area ratio of 20% or more is provided in a downstream region exceeding%.

なお、貫通孔の大きさは任意に選定できるが、貫通孔の直径が小さ過ぎると、個数が多くなるので製作工数が上がり、製作コストが増大する可能性があり、貫通孔の直径が大きくなり過ぎると、貫通孔を通して触媒層にセパレータが直接接触して触媒層や固体高分子電解質膜を損傷する恐れがあるので、貫通孔の直径は100μm〜10mmの範囲で選定するのが望ましい。   The size of the through-hole can be selected arbitrarily, but if the diameter of the through-hole is too small, the number will increase and the number of manufacturing steps will increase and the manufacturing cost may increase, and the diameter of the through-hole will increase. If it is too large, the separator may be in direct contact with the catalyst layer through the through hole to damage the catalyst layer or the solid polymer electrolyte membrane. Therefore, the diameter of the through hole is preferably selected in the range of 100 μm to 10 mm.

なお、本実施例においては、図1に示したごとく、空気極側の拡散層と燃料極側の拡散層の双方に貫通孔を設けているが、貫通孔の占有面積比は、それぞれの水蒸気分圧をもとに選定しても良く、あるいは水蒸気分圧のより高い空気極側の水蒸気分圧をもとに選定することとしても良い。また、空気極側の拡散層のみ貫通孔を設けることとしても有効である。   In this embodiment, as shown in FIG. 1, through holes are provided in both the air electrode side diffusion layer and the fuel electrode side diffusion layer. The selection may be based on the partial pressure, or may be selected based on the water vapor partial pressure on the air electrode side having a higher water vapor partial pressure. It is also effective to provide a through hole only in the diffusion layer on the air electrode side.

固体高分子形燃料電池を本発明のごとく構成すれば、電気化学反応に伴って生成した水蒸気、凝縮水、および反応ガスが拡散層に滞留することなく速やかに移動するので長時間安定した出力が得られる。また、拡散層に貫通孔を形成する簡単な加工を追加するだけでよいので製作コストも低く抑えられる。したがって、本発明による固体高分子形燃料電池は、家庭用電源としての燃料電池発電装置、あるいは車載用電源としての燃料電池発電装置に用いる燃料電池として利用することができる。 If the polymer electrolyte fuel cell is configured as in the present invention, the water vapor, condensed water, and reaction gas generated by the electrochemical reaction move quickly without staying in the diffusion layer, so a stable output can be obtained for a long time. can get. Further, since it is only necessary to add a simple process for forming a through hole in the diffusion layer, the manufacturing cost can be reduced. Therefore, the polymer electrolyte fuel cell according to the present invention can be used as a fuel cell power generator as a household power source or a fuel cell used in a fuel cell power generator as an in-vehicle power source.

本発明の固体高分子形燃料電池の実施例の単セルの基本構成を示す縦断面図1 is a longitudinal sectional view showing the basic configuration of a single cell of an embodiment of a polymer electrolyte fuel cell of the present invention 本実施例の単セルに組込まれている空気極側の拡散層の横断面図Cross-sectional view of the diffusion layer on the air electrode side incorporated in the single cell of this example 本実施例の単セルの拡散層2Aに設けた貫通孔1の面積の決定に用いた、拡散層表面の貫通孔占有面積比と運転時の局部水蒸気分圧との関係を示す特性図The characteristic view which shows the relationship between the through-hole occupation area ratio of the surface of a diffused layer, and the local water vapor partial pressure at the time of operation used for determination of the area of the through-hole 1 provided in 2 A of diffused layers of the single cell of a present Example 従来の固体高分子形燃料電池の単セルの基本構成を示す縦断面図A longitudinal sectional view showing the basic structure of a single cell of a conventional polymer electrolyte fuel cell 固体高分子形燃料電池の単セルの空気極側の拡散層の水蒸気分圧の面内分布を示す特性図Characteristic chart showing in-plane distribution of water vapor partial pressure in the diffusion layer on the air electrode side of a single cell of a polymer electrolyte fuel cell

符号の説明Explanation of symbols

1 貫通孔
2A 拡散層
3 触媒層
4 固体高分子電解質膜
5 セパレータ
6 ガス流通溝
1 Through hole
2A diffusion layer
3 catalyst layer
4 Solid polymer electrolyte membrane
5 Separator
6 Gas distribution channel

Claims (1)

固体高分子電解質膜の両面に触媒層と拡散層を配してなる膜電極接合体をガス流通溝を備えた一組のセパレータで挟持し、ガス流通溝に燃料ガスおよび空気を供給して電気化学反応により電気エネルギーを得る固体高分子形燃料電池において、
前記拡散層が厚み方向に貫通する貫通孔を有し、
該燃料電池運転時の面内の水蒸気分圧が高い部位ほど、前記拡散層の表面に占める前記貫通孔の占有面積比が大きくなるよう設定されており、
かつ、水蒸気分圧が100%以上120%未満の部位における拡散層の表面に占める貫通孔の占有面積比が、20%以上60%未満に選定されていることを特徴とする固体高分子形燃料電池。
A membrane electrode assembly in which a catalyst layer and a diffusion layer are arranged on both sides of a solid polymer electrolyte membrane is sandwiched between a pair of separators having gas flow grooves, and fuel gas and air are supplied to the gas flow grooves for electricity. In polymer electrolyte fuel cells that obtain electrical energy through chemical reactions,
The diffusion layer has a through-hole penetrating in the thickness direction,
The higher the in-plane water vapor partial pressure during the fuel cell operation, the larger the occupied area ratio of the through-holes in the surface of the diffusion layer is set,
A solid polymer fuel characterized in that the occupied area ratio of the through-holes in the surface of the diffusion layer in the region where the water vapor partial pressure is 100% or more and less than 120% is selected to be 20% or more and less than 60% battery.
JP2003313615A 2003-09-05 2003-09-05 Polymer electrolyte fuel cell Expired - Lifetime JP4186762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313615A JP4186762B2 (en) 2003-09-05 2003-09-05 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313615A JP4186762B2 (en) 2003-09-05 2003-09-05 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2005085517A JP2005085517A (en) 2005-03-31
JP4186762B2 true JP4186762B2 (en) 2008-11-26

Family

ID=34414486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313615A Expired - Lifetime JP4186762B2 (en) 2003-09-05 2003-09-05 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4186762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326148B2 (en) 2012-10-19 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Fuel cell gas diffusion layer and method of manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113360B2 (en) * 2006-09-11 2013-01-09 本田技研工業株式会社 Fuel cell
JP5125275B2 (en) 2007-02-05 2013-01-23 トヨタ自動車株式会社 Fuel cell and vehicle equipped with fuel cell
JP5153159B2 (en) * 2007-02-15 2013-02-27 株式会社日本自動車部品総合研究所 Fuel cell
JP5239221B2 (en) * 2007-06-19 2013-07-17 富士通株式会社 Fuel cell
JP5439740B2 (en) * 2008-05-14 2014-03-12 トヨタ自動車株式会社 Fuel cell and fuel cell stack
JP5673282B2 (en) * 2011-03-28 2015-02-18 凸版印刷株式会社 Gas diffusion layer for fuel cells
JP6519460B2 (en) * 2015-12-07 2019-05-29 株式会社デンソー Fuel cell single cell and fuel cell stack

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110182A (en) * 2000-09-29 2002-04-12 Sony Corp Gas-diffusion electrode and method for making the same, and, electrochemical device and method for making the same
JP2004030959A (en) * 2002-06-21 2004-01-29 Aisin Seiki Co Ltd Gas diffusion member, gas diffusion electrode, and fuel cell
JP2005038738A (en) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326148B2 (en) 2012-10-19 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Fuel cell gas diffusion layer and method of manufacturing same

Also Published As

Publication number Publication date
JP2005085517A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US8557466B2 (en) Fuel cell including separator with gas flow channels
JP5408263B2 (en) Fuel cell
EP2963711B1 (en) Gas flow channel forming body for fuel cell, and fuel cell
KR101664035B1 (en) Separator and fuel cell with the same
US10847816B2 (en) Fuel cell
WO2012007998A1 (en) Fuel cell
WO2005109556A1 (en) Fuel cell and separator thereof
US20140141350A1 (en) Fuel cell
JP2009026476A (en) Unit cell of fuel cell
US7001688B2 (en) Solid polymer type fuel battery
JP2004039525A (en) Fuel cell
JP4186762B2 (en) Polymer electrolyte fuel cell
US20090087711A1 (en) Fuel cell electrode, fuel cell, and fuel cell stack
JP2009037759A (en) Fuel cell
JP2006294503A (en) Fuel battery and gas separator for the same
JP4372370B2 (en) Fuel cell
US20040157111A1 (en) Fuel cell
JP2007018742A (en) Fuel cell
KR102044762B1 (en) Fuel cell to improve the performance and durable
KR20130065171A (en) Separator and fuel cell with the same
JP2006004702A (en) Separator for solid polymer fuel cell
JP4403706B2 (en) Polymer electrolyte fuel cell
JP4453426B2 (en) Fuel cell
CN105917510B (en) Fuel cell
JP4340417B2 (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4