JP2005038738A - Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell - Google Patents

Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2005038738A
JP2005038738A JP2003275295A JP2003275295A JP2005038738A JP 2005038738 A JP2005038738 A JP 2005038738A JP 2003275295 A JP2003275295 A JP 2003275295A JP 2003275295 A JP2003275295 A JP 2003275295A JP 2005038738 A JP2005038738 A JP 2005038738A
Authority
JP
Japan
Prior art keywords
diffusion layer
gas diffusion
layer electrode
hole
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003275295A
Other languages
Japanese (ja)
Inventor
Kazushige Mihara
和茂 三原
Hidehiko Ohashi
英彦 大橋
Mitsuo Hamada
光夫 浜田
Tomoyoshi Chiba
知義 千葉
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003275295A priority Critical patent/JP2005038738A/en
Publication of JP2005038738A publication Critical patent/JP2005038738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte fuel cell capable of exhibiting a stable performance even at a high current density, and a gas diffusion layer electrode base material suited for obtaining the same, as well as its manufacturing method. <P>SOLUTION: The gas diffusion layer electrode base material for the polymer electrolyte fuel cell having a carbon fiber paper is provided with a plurality of through-holes penetrating from one face to the other, with densities and/or pore sizes made different in a plane direction. In the manufacturing method of the gas diffusion layer electrode base material for the polymer electrolyte fuel cell, a paper-shaped body including carbon short fiber is impregnated with carbon precursor resin to harden it, through-holes with different densities and/or pore sizes in the plane direction are opened on it, and later, it is carbonized. In the polymer electrolyte fuel cell provided with a fuel electrode side gas diffusion layer electrode base material, a fuel electrode side catalyst layer, a polymer electrolyte film, an oxygen electrode side catalyst layer, and an oxygen electrode side gas diffusion layer electrode base material, the oxygen electrode side gas diffusion layer base material has a plurality of through-holes penetrating from one face to the other with the densities and/or the pore sizes made different in plane direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高分子電解質型燃料電池に関し、また、高分子電解質型燃料電池用のガス拡散層電極に用いられる電極基材及びその製造方法に関する。   The present invention relates to a polymer electrolyte fuel cell, and also relates to an electrode substrate used for a gas diffusion layer electrode for a polymer electrolyte fuel cell and a method for producing the same.

高分子電解質型燃料電池は、作動温度が80〜100℃程度と低く、且つ出力密度が高いことから、電気自動車や家庭用の電源の他、小型通信用やコンピューターのバックアップ電源として技術開発が進められている。更に、小型化可能であるため、携帯電話やノートパソコン等の電源としても期待されている。   Since polymer electrolyte fuel cells have a low operating temperature of about 80-100 ° C and a high output density, technological development is progressing as a backup power source for small vehicles and computers, as well as power sources for electric vehicles and homes. It has been. Furthermore, since it can be miniaturized, it is also expected as a power source for mobile phones and notebook computers.

高分子電解質型燃料電池は、高分子電解質膜の両側に、触媒処理等を施した多孔性の燃料極と酸素極のガス拡散層電極で挟み、更にガスが流れる溝(ガス通路)が付いているセパレータで挟んだ構造となっており、燃料極側には水素を、酸素極側には酸化ガスをガス通路に供給する。燃料極側では水素燃料が触媒作用によって水素イオンと電子に分かれ、水素イオンは高分子イオン交換膜中を移動し酸素極へ行き、電子は外部回路を通って酸素極へ行く、更に酸素極では酸素と電子及び水素イオンが反応して水が生成する。   A polymer electrolyte fuel cell is sandwiched between a porous fuel electrode that has been subjected to catalyst treatment, etc., and a gas diffusion layer electrode of an oxygen electrode on both sides of the polymer electrolyte membrane, and further has a groove (gas passage) through which gas flows. In this structure, hydrogen is supplied to the fuel electrode side and oxidizing gas is supplied to the gas passage on the oxygen electrode side. On the fuel electrode side, hydrogen fuel is separated into hydrogen ions and electrons by catalytic action, hydrogen ions move through the polymer ion exchange membrane and go to the oxygen electrode, electrons go to the oxygen electrode through an external circuit, and further at the oxygen electrode Oxygen reacts with electrons and hydrogen ions to produce water.

特に大量の反応ガスを必要とされる高電流密度発電においては、酸素極側で大量の反応生成水が発生し系内への滞留を起こし、ガス拡散層電極の表面を水で覆ってしまう状況を招き易くなる。ガス拡散層電極が水で覆われると、反応ガスの流れが阻害されて触媒層まで達することができなくなって電極反応が阻害され、電池出力が不安定となり、又、低下することになる。   Especially in high current density power generation where a large amount of reaction gas is required, a large amount of reaction product water is generated on the oxygen electrode side and stays in the system, and the surface of the gas diffusion layer electrode is covered with water. It becomes easy to invite. If the gas diffusion layer electrode is covered with water, the flow of the reaction gas is hindered so that it cannot reach the catalyst layer, the electrode reaction is hindered, and the battery output becomes unstable and decreases.

従来では、上記のような状況を避けるために、ガス拡散層電極の触媒層面側に、撥水効果の高いポリテトラフルオロエチレン等の含浸処理を施し、撥水性を付与することでガス拡散層電極の過剰な濡れを防止する方法が多く用いられており、又、ガス拡散層電極に貫通孔を形成したものも使用されている。   Conventionally, in order to avoid the above situation, the gas diffusion layer electrode is subjected to an impregnation treatment such as polytetrafluoroethylene having a high water repellency effect on the catalyst layer surface side of the gas diffusion layer electrode to impart water repellency. Many methods for preventing excessive wetting are used, and a gas diffusion layer electrode in which a through hole is formed is also used.

特許文献1においては酸素極側のガス拡散層電極面内で、反応生成水の溜る量が少ないガス導入側の撥水処理を、反応生成水の溜る量が多いガス出口側よりも少なくすることで、ガス導入側の電気抵抗を低く保ち、且つガス出口側での反応生成水の滞留を抑制し電池性能の低下を抑える方法が行なわれている。   In Patent Document 1, the water-repellent treatment on the gas introduction side where the amount of reaction product water accumulated is small in the surface of the gas diffusion layer electrode on the oxygen electrode side is made smaller than that on the gas outlet side where the amount of reaction product water accumulates. Thus, a method has been carried out in which the electric resistance on the gas introduction side is kept low and the retention of reaction product water on the gas outlet side is suppressed to suppress the deterioration of the battery performance.

又、特許文献2および3のように酸素極側のガス拡散層電極に貫通孔を施したものを用いることによって、反応生成水を貫通孔から液体状態でも排出でき、且つガス透過性もスムーズになることで、高電流密度域での使用において安定した性能の確保できる方法が行なわれている。   In addition, by using a gas diffusion layer electrode on the oxygen electrode side provided with a through hole as in Patent Documents 2 and 3, the reaction product water can be discharged from the through hole even in a liquid state, and the gas permeability is also smooth. Thus, a method that can ensure stable performance in use in a high current density region has been performed.

特許文献3については酸素極側だけでなく燃料層側のガス透過性も向上させるため、ガス拡散層電極基材に直径0.1mm以下の貫通孔を400個/cm2以上形成したものが使用されている。
特開平9−283153号公報 特開平8−111226号公報 特開2002−110182号公報
In Patent Document 3, in order to improve not only the oxygen electrode side but also the gas permeability on the fuel layer side, a gas diffusion layer electrode base material having 400 through / cm 2 or more through holes having a diameter of 0.1 mm or less is used. Has been.
JP-A-9-283153 JP-A-8-111226 JP 2002-110182 A

特許文献1記載の燃料電池については低電流密度域での使用において安定した性能を確保できると考えられるが、高電流密度域での使用においては、酸素極側で生成する水の滞留及びガス透過性の確保は厳しいと考えられる。   Regarding the fuel cell described in Patent Document 1, it is considered that stable performance can be secured when used in a low current density region. However, when used in a high current density region, water retention and gas permeation generated on the oxygen electrode side are considered. Ensuring sex is considered to be tough.

特許文献2および3に記載されるように酸素極側のガス拡散層電極に比較的均一な複数個の貫通孔を施したものは、反応生成水の排出及びガス透過性も向上すると考えられるが、高電流密度域での使用においては、部分的に高分子電解質膜が乾燥し易くなることが予想され、安定した性能の確保ができ難い可能性がある。水素イオンが輸送されるためには水の存在が必須で有り、膜が乾燥すると電気抵抗の増大によって出力密度の低下が発生することが知られている。   As described in Patent Documents 2 and 3, the gas diffusion layer electrode on the oxygen electrode side provided with a plurality of relatively uniform through holes is thought to improve the discharge of reaction product water and gas permeability. In use in a high current density region, it is expected that the polymer electrolyte membrane is partially dried easily, and it may be difficult to ensure stable performance. It is known that the presence of water is indispensable for transporting hydrogen ions, and when the membrane dries, the output density decreases due to an increase in electrical resistance.

又、特許文献3は酸素極側及び燃料層側のガス拡散層電極基材に直径0.1mm以下の貫通孔を400個/cm2以上形成したものが使用され、且つ貫通孔がガス拡散層電極の表裏で孔径が異なり、更にカーボンシートに針を突き刺して得られると記載されているが、カーボンシートは脆性材料でるため、針等で孔を空ける際に、針の形状及び孔径を均一に且つ安定して空けることが難しく、又、孔を空けたことによりカーボン粉末が発生し、装置の漏電や故障原因等になる可能性が高いことから工業的にも製造が難しいと考えられる。 Further, Patent Document 3 that form the following holes diameter 0.1 mm 400 pieces / cm 2 or more to the oxygen electrode side and the fuel layer side of the gas diffusion layer electrode substrate is used, and the through hole is a gas diffusion layer Although it is described that the hole diameter is different between the front and back of the electrode and that the needle is further pierced into the carbon sheet, since the carbon sheet is a brittle material, when making a hole with a needle etc., the shape and hole diameter of the needle should be uniform. In addition, it is difficult to stably evacuate, and it is considered that it is difficult to manufacture industrially because carbon powder is generated due to the formation of holes, which may cause electric leakage or failure of the apparatus.

本発明の目的は、高電流密度であっても安定した性能が発揮できる高分子電解質型燃料電池を提供することである。   An object of the present invention is to provide a polymer electrolyte fuel cell that can exhibit stable performance even at a high current density.

本発明の別の目的は、上記燃料電池を得るために好適な高分子電解質型燃料電池用のガス拡散層電極基材を提供することである。詳しくは、ガス透過性が高く、特に酸素極側においては反応生成水排出性も高く、高分子電解質膜の水管理(ウオーターマネージメント)が容易で局所的な乾燥を防止することのできる高分子電解質型燃料電池用のガス拡散層電極基材を提供することである。   Another object of the present invention is to provide a gas diffusion layer electrode base material for a polymer electrolyte fuel cell suitable for obtaining the fuel cell. Specifically, polymer electrolytes that have high gas permeability, especially high reaction product water drainage on the oxygen electrode side, can easily manage water (water management) of polymer electrolyte membranes, and prevent local drying It is to provide a gas diffusion layer electrode base material for a fuel cell.

本発明のさらに別の目的は、上記ガス拡散層電極基材を工業的に安定して生産可能な製造方法を提供することである。   Still another object of the present invention is to provide a production method capable of industrially and stably producing the gas diffusion layer electrode substrate.

本発明により、多孔質炭素繊維紙を有する高分子電解質型燃料電池用ガス拡散層電極基材において、
一方の面から他方の面にわたる貫通孔を複数有し、且つ
該貫通孔の密度および/または孔径が面方向に異なることを特徴とするガス拡散層電極基材が提供される。
According to the present invention, in the gas diffusion layer electrode base material for polymer electrolyte fuel cell having porous carbon fiber paper,
There is provided a gas diffusion layer electrode base material having a plurality of through holes extending from one surface to the other surface, and the density and / or hole diameter of the through holes differ in the surface direction.

前記貫通孔の密度および/または孔径が、面内の一つの方向について、一方の端から他方の端にわたって単調増加することができる。   The density of the through holes and / or the hole diameter can monotonously increase from one end to the other end in one direction in the plane.

前記貫通孔の密度および/または孔径が、面内の一つの方向について、一方の端から他方の端にわたって、単調増加して最大となり単調減少することができる。   The density of the through holes and / or the hole diameter can be monotonously increased and monotonously decreased from one end to the other end in one direction in the plane.

前記貫通孔の密度および/または孔径が、面内の一つの方向について、一方の端から他方の端にわたって、単調減少して最小となり単調増加することができる。   The density and / or the hole diameter of the through holes can be monotonously decreased and minimized and monotonously increased from one end to the other end in one in-plane direction.

前記貫通孔の孔径が30μm以上1000μm以下であり、
該貫通孔の密度の最大値が1個/cm2以上399個/cm2以下であり、
該貫通孔の密度の最小値が0個/cm2以上390個/cm2であることが好ましい。
The hole diameter of the through hole is 30 μm or more and 1000 μm or less,
The maximum density of the through holes is 1 / cm 2 or more and 399 / cm 2 or less,
It is preferable that the minimum value of the density of the through holes is 0 piece / cm 2 or more and 390 pieces / cm 2 .

前記貫通孔の密度が1個/cm2以上400個/cm2未満であり、
該貫通孔の孔径の最大値が40μm以上1000μm以下であり、
該貫通孔の孔径の最小値が30μm以上900μm以下であることが好ましい。
The density of the through holes is 1 piece / cm 2 or more and less than 400 pieces / cm 2 ,
The maximum value of the diameter of the through hole is 40 μm or more and 1000 μm or less,
It is preferable that the minimum value of the diameter of the through hole is 30 μm or more and 900 μm or less.

ガス拡散層電極基材には、炭素前駆体樹脂付着量あるいは炭素短繊維の繊維径によって若干異なるが、貫通孔を設けなくとも30μm〜60μm程度の細孔が形成されていることもあるが、ガス拡散層電極基材の強度特性を向上するために炭素前駆体樹脂付着量を比較的多くしたり、紙に使用される炭素短繊維の繊維径を小さくしたりすることが行われる。このような場合には基材が緻密化するため、細孔は比較的小さくなりガス透過性は悪くなる。従って、ガス透過性の観点から貫通孔の下限は30μm以上が好ましい。   Although the gas diffusion layer electrode base material is slightly different depending on the carbon precursor resin adhesion amount or the fiber diameter of the short carbon fiber, pores of about 30 μm to 60 μm may be formed without providing through holes. In order to improve the strength characteristics of the gas diffusion layer electrode substrate, the carbon precursor resin adhesion amount is relatively increased, or the fiber diameter of carbon short fibers used in paper is reduced. In such a case, since the base material becomes dense, the pores are relatively small and the gas permeability is deteriorated. Therefore, the lower limit of the through hole is preferably 30 μm or more from the viewpoint of gas permeability.

又、貫通孔径は大きくなるほどガス透過性は向上するが、ガス拡散層電極基材へのダメージが大きくなる傾向があるという点で不利であるため、1000μm以下が好ましい。更に好ましくは50μm以上500μm以下である。   Further, although the gas permeability is improved as the through-hole diameter is increased, it is disadvantageous in that damage to the gas diffusion layer electrode base material tends to increase. More preferably, they are 50 micrometers or more and 500 micrometers or less.

又、貫通孔密度についても、貫通孔密度が大きくなるほどガス透過性は向上するが、ガス拡散層電極基材へのダメージが大きくなる傾向があるという点で不利であるため、1個/cm2以上400個/cm2以下が好ましく、更に好ましくは3個/cm2以上200個/cm2以下である。 Further, for the through-hole density, because the higher the gas permeability through hole density is increased is improved, which is disadvantageous in that there is a tendency for damage to the gas diffusion layer electrode substrate is increased, one / cm 2 The number is preferably 400 / cm 2 or less, and more preferably 3 / cm 2 or more and 200 / cm 2 or less.

前記貫通孔周辺にヒビおよび割れが無いことが好ましい。   It is preferable that there are no cracks or cracks around the through hole.

本発明により、炭素短繊維を含む紙状体に炭素前駆体樹脂を含浸する樹脂含浸工程;
該紙状体に含浸した炭素前駆体樹脂を硬化する樹脂硬化工程;
該炭素前駆体樹脂が硬化した紙状体に、一方の面から他方の面にわたる複数の貫通孔であって、該貫通孔の密度および/または孔径が面方向に異なる貫通孔を開ける穿孔工程;
該貫通孔が開けられた紙状体を炭素化する炭素化工程
を有することを特徴とする高分子電解質型燃料電池用ガス拡散層電極基材の製造方法が提供される。
According to the present invention, a resin impregnation step of impregnating a paper precursor containing carbon short fibers with a carbon precursor resin;
A resin curing step of curing the carbon precursor resin impregnated in the paper-like body;
A perforating step in which a plurality of through holes extending from one surface to the other surface and having different density and / or hole diameter in the surface direction are formed in the paper-like body having the carbon precursor resin cured;
A method for producing a gas diffusion layer electrode base material for a polymer electrolyte fuel cell, comprising a carbonization step of carbonizing the paper-like body having the through holes formed therein is provided.

前記穿孔工程において、
針密度および/もしくは針径を変更可能な板か、または針を固定した板を使用して前記貫通孔を開けることが好ましい。
In the drilling step,
It is preferable to open the through-hole using a plate capable of changing the needle density and / or the needle diameter or a plate to which the needle is fixed.

本発明により、燃料極側ガス拡散層電極基材、燃料極側触媒層、高分子電解質膜、酸素極側触媒層および酸素極側ガス拡散層電極基材を有する高分子電解質型燃料電池において、
酸素極側ガス拡散層電極基材が、一方の面から他方の面にわたる貫通孔を複数有し、且つ、該貫通孔の密度および/または孔径が面方向に異なることを特徴とする高分子電解質形燃料電池が提供される。
According to the present invention, in a polymer electrolyte fuel cell having a fuel electrode side gas diffusion layer electrode substrate, a fuel electrode side catalyst layer, a polymer electrolyte membrane, an oxygen electrode side catalyst layer and an oxygen electrode side gas diffusion layer electrode substrate,
The oxygen electrolyte side gas diffusion layer electrode base material has a plurality of through holes extending from one surface to the other surface, and the density and / or the hole diameter of the through holes are different in the surface direction. A fuel cell is provided.

前記酸素極側ガス拡散層電極基材の貫通孔の密度および/または孔径が、酸素極側ガスの流れ方向に沿って、該酸素極側ガス拡散層電極基材の一方の端から他方の端にわたって単調増加することが好ましい。   The density and / or hole diameter of the through hole of the oxygen electrode side gas diffusion layer electrode substrate is changed from one end to the other end of the oxygen electrode side gas diffusion layer electrode substrate along the flow direction of the oxygen electrode side gas. It is preferable to increase monotonically over time.

前記燃料極側ガス拡散層電極基材が、一方の面から他方の面にわたる貫通孔を複数有し、且つ、該貫通孔の密度および/または孔径が面方向に異なることが好ましい。   It is preferable that the fuel electrode side gas diffusion layer electrode base material has a plurality of through holes extending from one surface to the other surface, and the density and / or hole diameter of the through holes are different in the surface direction.

前記燃料極側ガス拡散層電極基材の貫通孔の密度および/または孔径が、燃料極側ガスの流れ方向に沿って、該燃料極側ガス拡散層電極基材の一方の端から他方の端にわたって、単調増加するか、単調減少するか、単調増加して最大となり単調減少するか、もしくは単調減少して最小となり単調増加することが好ましい。   The density and / or hole diameter of the through hole of the fuel electrode side gas diffusion layer electrode base material varies from one end of the fuel electrode side gas diffusion layer electrode base material to the other end along the flow direction of the fuel electrode side gas. It is preferable to increase monotonously, decrease monotonically, increase monotonically to maximize and monotonically decrease, or decrease monotonously to minimize and monotonously increase.

本発明によれば、酸素極のガス拡散層電極基材の面内でガス出口側の貫通孔密度をガス導入側の貫通孔密度よりも大きくすることができる。あるいはガス出口側の貫通孔径をガス導入側の貫通孔径よりも大きくすることができる。更にこれらを組み合わせることもできる。これによって、高電流密度域での使用における反応生成水の排出及びガス透過性を向上させると共に、高分子電解質膜の水管理を比較的容易にすることが可能である。   According to the present invention, the through hole density on the gas outlet side can be made larger than the through hole density on the gas introduction side in the plane of the gas diffusion layer electrode substrate of the oxygen electrode. Alternatively, the through hole diameter on the gas outlet side can be made larger than the through hole diameter on the gas introduction side. Furthermore, these can also be combined. As a result, it is possible to improve the discharge and gas permeability of the reaction product water in use in a high current density region, and relatively easily manage the water of the polymer electrolyte membrane.

又、燃料層側のガス拡散層電極基材のガス透過性向上及び、水素ガスを効率よく触媒上で反応させるために、ガス導入側からガス出口側の間で貫通孔密度に高低分布を付けることができる。あるいはガス導入側からガス出口側の間で貫通孔径に大小の分布を付けることができる。更に貫通孔密度高低分布と貫通孔径の大小分布を組み合わせることもできる。燃料層側のガス拡散層電極基材に、酸素極のガス拡散層電極基材と同じものを用いることができ、あるいは貫通孔密度分布および/または貫通孔径分布が異なるものも用いることができる。これらを、ガスの流れや反応密度分布を勘案して適宜配置することにより、高電流密度域での使用において安定した性能を確保することが可能である。   Also, in order to improve the gas permeability of the gas diffusion layer electrode base material on the fuel layer side and to make hydrogen gas react efficiently on the catalyst, the through hole density is distributed between the gas inlet side and the gas outlet side. be able to. Alternatively, a large or small distribution can be imparted to the through-hole diameter between the gas inlet side and the gas outlet side. Further, the through hole density distribution and the through hole diameter distribution can be combined. As the gas diffusion layer electrode substrate on the fuel layer side, the same one as the gas diffusion layer electrode substrate of the oxygen electrode can be used, or one having a different through hole density distribution and / or through hole diameter distribution can be used. By arranging these appropriately in consideration of the gas flow and reaction density distribution, it is possible to ensure stable performance when used in a high current density region.

また、ガス拡散層電極基材の貫通孔付与工程を、炭素短繊維を含む紙状体に炭素前駆体樹脂を含浸し次いで硬化させた後に行ない、更に貫通孔を付与した後に炭素化することによって、ガス拡散層電極基材の貫通孔周辺にヒビあるいは割れが発生し難くいため、装置及び針種等が同一条件であれば、炭素化後に貫通孔を空けた場合よりも貫通孔径が小さく出来(貫通孔周辺が必要以上に壊れない)、貫通孔径のコントロールが比較的容易である。更に、カーボン粉末の発生を大幅に低減でき、従って貫通孔を有するガス拡散層電極基材を製造することが工業的に安定して製造することが可能となる。   Moreover, the through-hole provision process of a gas diffusion layer electrode base material is performed after impregnating the carbon precursor resin in the paper-like body containing a carbon short fiber, and making it harden | cure, and also by carbonizing after providing a through-hole. Since the cracks and cracks are less likely to occur around the through hole of the gas diffusion layer electrode substrate, the diameter of the through hole can be made smaller than when the through hole is made after carbonization if the device and needle type are the same ( The periphery of the through hole does not break more than necessary), and the control of the through hole diameter is relatively easy. Furthermore, the generation of carbon powder can be greatly reduced, and therefore, it is possible to produce a gas diffusion layer electrode base material having a through-hole in an industrially stable manner.

本発明によれば、ガス拡散電極基材のガス透過性及び電池の生成水の滞留(フラッディング現象)抑制効果が高めることができる。さらに、これらに加えて高分子電解質の局所的な乾燥を防止することができることにより、高電流密度域での使用において安定した性能を確保できる高分子電解質型燃料電池が提供された。   ADVANTAGE OF THE INVENTION According to this invention, the gas permeability of a gas diffusion electrode base material and the retention effect (flooding phenomenon) suppression effect of the produced water of a battery can be improved. Further, in addition to these, a polymer electrolyte fuel cell capable of ensuring stable performance when used in a high current density region by being able to prevent local drying of the polymer electrolyte has been provided.

また、本発明により上記のように優れたガス拡散電極を好適に製造することのできる方法が提供された。詳しくは、ガス拡散層電極基材の貫通孔付与工程を、炭素短繊維を含む紙状体に炭素前駆体樹脂を含浸し、次いで硬化させた後に行ない、更に貫通孔を形成した後に炭素化することによって、ガス拡散層電極基材の貫通孔周辺の組織が正常で、且つ安定して空けることが可能であり、更にカーボン粉末の発生を大幅に低減可能となった。   Further, the present invention provides a method capable of suitably producing an excellent gas diffusion electrode as described above. Specifically, the gas diffusion layer electrode substrate through-hole providing step is performed after impregnating the carbon precursor resin into a paper-like body containing carbon short fibers and then curing, and further carbonizing after forming the through-hole. As a result, the structure around the through hole of the gas diffusion layer electrode base material is normal and can be evacuated stably, and the generation of carbon powder can be greatly reduced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は一般的な高分子電解質型燃料電池の概略を示す断面模式図で、図2は高分子電解質型燃料電池に使用される代表的なリブ付きセパレータの概略を示す平面模式図である。   FIG. 1 is a schematic cross-sectional view showing an outline of a general polymer electrolyte fuel cell, and FIG. 2 is a schematic plan view showing an outline of a typical ribbed separator used in a polymer electrolyte fuel cell.

高分子電解質型燃料電池は、燃料極側ガス拡散層電極基材4、燃料極側触媒層5、高分子電解質膜3、酸素極側触媒層7および酸素極側ガス拡散層電極基材6をこの順に有する。さらにその外側にセパレータ8および9を有することができる。ここではセパレータがリブを有しており、これによって燃料ガス通路10、酸化剤ガス通路11が形成される。   The polymer electrolyte fuel cell comprises a fuel electrode side gas diffusion layer electrode base material 4, a fuel electrode side catalyst layer 5, a polymer electrolyte membrane 3, an oxygen electrode side catalyst layer 7 and an oxygen electrode side gas diffusion layer electrode base material 6. In this order. Furthermore, separators 8 and 9 can be provided on the outside thereof. Here, the separator has ribs, whereby the fuel gas passage 10 and the oxidant gas passage 11 are formed.

ガス拡散層電極基材に触媒層を形成したものが電極である。ガス拡散層電極基材は多孔質であり、ガス通路からガスを触媒層へ供給する機能を有する。電極基材は集電体としての機能も有する。   An electrode is formed by forming a catalyst layer on a gas diffusion layer electrode substrate. The gas diffusion layer electrode base material is porous and has a function of supplying gas from the gas passage to the catalyst layer. The electrode substrate also has a function as a current collector.

酸素極2側に供給された酸化剤ガス(O2)はガス導入口12側から矢印の如くガス通路に沿い流されてガス出口13側から排出されるが、この間に、1/2O2+2H++2e-→H2Oの電極反応が行われて水を生成するが、生成した水分は、ガス導入口12側からガス出口13側に運ばれるので出口側の方が水分量は多くなる。 The oxidant gas (O 2 ) supplied to the oxygen electrode 2 side flows from the gas inlet 12 side along the gas passage as indicated by the arrow and is discharged from the gas outlet 13 side. During this time, ½ O 2 + 2H The + + 2e → H 2 O electrode reaction is performed to generate water, but the generated moisture is transported from the gas inlet 12 side to the gas outlet 13 side, so the amount of moisture on the outlet side increases.

酸素極側ガス拡散層電極基材において、ガス導入口12側よりもガス出口13側の貫通孔密度を高くする、あるいは貫通孔径が大きくする、更に両方を併用することで、水の発生が最も多いガスの出口側13付近の反応生成水の滞留を抑制することができる。   In the oxygen-electrode-side gas diffusion layer electrode base material, the generation of water is the highest when the through-hole density on the gas outlet 13 side is made higher than the gas inlet port 12 side or the through-hole diameter is increased, and both are used in combination. It is possible to suppress stagnation of reaction product water near the outlet side 13 of a large amount of gas.

このためには、貫通孔の密度および/または孔径が、面内の一つの方向について、一方の端から他方の端にわたって単調増加するガス拡散層電極基材を酸素極側に用いる。そして上記面内の一つの方向を酸化剤ガスの流れ方向と一致させて電極基材を配置する。これにより酸素極側ガス拡散層電極基材の貫通孔の密度および/または孔径が、酸素極側ガスの流れ方向に沿って、酸素極側ガス拡散層電極基材の一方の端から他方の端にわたって単調増加することになる。   For this purpose, a gas diffusion layer electrode base material in which the density and / or hole diameter of the through holes monotonously increases from one end to the other end in one in-plane direction is used on the oxygen electrode side. Then, the electrode base material is arranged such that one direction in the plane coincides with the flow direction of the oxidant gas. Thereby, the density and / or the hole diameter of the through hole of the oxygen electrode side gas diffusion layer electrode substrate is changed from one end of the oxygen electrode side gas diffusion layer electrode substrate to the other end along the flow direction of the oxygen electrode side gas. Will increase monotonically over time.

なお、単調増加は、連続的に増加する場合だけでなく、一部分において一定値をとることも含む。すなわち階段状に増加することも含む。後述する単調減少についても同様である。   Note that the monotonous increase includes not only the case of increasing continuously but also taking a constant value in part. That is, it includes increasing in a stepped manner. The same applies to the monotonic decrease described later.

酸素極側に好適に用いることのできる電極基材の一形態として、図3には、紙面上端から下端に向かう方向に、二種類の貫通孔密度の領域を有する電極基材を示す。ガスの流れ方向を紙面上端から下端に向かう方向とすれば、ガス導入側からガス出口側にに向かって貫通孔密度が大きくなっている。ここでは貫通孔の孔径は一定としてある。図4には、図3に示した電極基材と同様であるが、三種類の貫通孔密度の領域を有する電極基材を示す。   As an embodiment of the electrode base material that can be suitably used on the oxygen electrode side, FIG. 3 shows an electrode base material having two types of through-hole density regions in the direction from the upper end to the lower end of the drawing. If the gas flow direction is the direction from the upper end to the lower end of the drawing, the through-hole density increases from the gas introduction side to the gas outlet side. Here, the hole diameter of the through hole is constant. FIG. 4 shows an electrode substrate similar to the electrode substrate shown in FIG. 3 but having three types of through-hole density regions.

酸素極側に好適に用いることのできる電極基材の別の形態として、図7には、紙面上端から下端に向かう方向に、二種類の貫通孔径の領域を有する電極基材を示す。ガスの流れ方向を紙面上端から下端に向かう方向とすれば、ガス導入側からガス出口側にに向かって貫通孔の孔径が大きくなっている。ここでは貫通孔の密度は一定としてある。図8には、図7に示した電極基材と同様であるが、三種類の貫通孔径の領域を有する電極基材を示す。   As another form of the electrode substrate that can be suitably used on the oxygen electrode side, FIG. 7 shows an electrode substrate having two types of through-hole diameter regions in the direction from the upper end to the lower end of the drawing. If the gas flow direction is a direction from the upper end to the lower end of the drawing, the diameter of the through hole increases from the gas introduction side to the gas outlet side. Here, the density of the through holes is constant. FIG. 8 shows an electrode substrate similar to the electrode substrate shown in FIG. 7, but having three types of through-hole diameter regions.

一方、燃料極1側に供給される水素ガスは基本的に酸素極2側と同様にガス導入口12側から矢印の如くガス通路に沿い流されてガス出口13側から排出されるが、酸素極2側に供給される酸化剤ガス(O2)と並行に流す場合や、対向に流す場合がある。この流れの形態によって、電池内の反応斑や高分子電解質膜の乾燥し易い部分が変化すると考えられるが、貫通孔密度高低分布および/または貫通孔径の大小分布を形成したガス拡散層電極基材を使用することで電池内の反応斑や高分子電解質膜の乾燥を改善することができる。 On the other hand, the hydrogen gas supplied to the fuel electrode 1 side is basically discharged along the gas passage as shown by the arrow from the gas inlet 12 side and discharged from the gas outlet 13 side as in the oxygen electrode 2 side. There are cases where it flows in parallel with the oxidant gas (O 2 ) supplied to the pole 2 side, or it flows in the opposite direction. It is thought that depending on the form of this flow, the reaction spots in the battery and the portion where the polymer electrolyte membrane is easy to dry are changed. Can be used to improve reaction spots in the battery and drying of the polymer electrolyte membrane.

このために、燃料極側に、図3もしくは4、図7もしくは8に示したような貫通孔の密度および/または孔径が一方向に単調増加する電極基材を用いることができる。このとき、酸素極側と同様に、ガスの流れ方向に沿って貫通孔の密度および/または孔径が単調増加するように電極基材を配置しても良いし、場合によっては逆にガスの流れ方向に沿って貫通孔の密度および/または孔径が単調減少するように電極基材を配置しても良い。つまり、燃料ガスの導入側から出口側に向かって、貫通孔の密度および/または孔径が大きくなっていくこともできるし、小さくなっていくこともできる。   For this purpose, an electrode base material in which the density and / or the hole diameter of the through-holes monotonously increase in one direction as shown in FIG. 3 or 4 and FIG. 7 or 8 can be used on the fuel electrode side. At this time, similarly to the oxygen electrode side, the electrode base material may be arranged so that the density and / or the hole diameter of the through holes monotonously increase along the gas flow direction. You may arrange | position an electrode base material so that the density of a through-hole and / or a hole diameter may decrease monotonously along a direction. That is, the density and / or hole diameter of the through holes can increase or decrease from the fuel gas introduction side to the outlet side.

あるいは、燃料極側に、図5、6、9または10に示すような電極基材を用いることもできる。図5には貫通孔の密度が、面内の一つの方向について、一方の端から他方の端にわたって、単調増加して最大となり単調減少するガス拡散層電極基材が示される。図9には貫通孔の孔径が、面内の一つの方向について、一方の端から他方の端にわたって、単調増加して最大となり単調減少するガス拡散層電極基材が示される。これらの電極基材において、上記一つの方向が燃料ガスの流れ方向と一致する場合、貫通孔密度および/または孔径が、ガスの導入側および出口側から中央部に向かって大きくなっている。   Alternatively, an electrode substrate as shown in FIG. 5, 6, 9 or 10 can be used on the fuel electrode side. FIG. 5 shows a gas diffusion layer electrode substrate in which the density of through-holes monotonously increases and monotonously decreases from one end to the other end in one in-plane direction. FIG. 9 shows a gas diffusion layer electrode substrate in which the hole diameter of the through hole monotonously increases and increases monotonously from one end to the other end in one in-plane direction. In these electrode base materials, when the one direction coincides with the flow direction of the fuel gas, the through hole density and / or the hole diameter increase from the gas introduction side and the outlet side toward the central portion.

図6には貫通孔の密度が、面内の一つの方向について、一方の端から他方の端にわたって、単調減少して最小となり単調増加するガス拡散層電極基材が示される。図10には貫通孔の孔径が、面内の一つの方向について、一方の端から他方の端にわたって、単調減少して最小となり単調増加するガス拡散層電極基材が示される。これらの電極基材において、上記一つの方向が燃料ガスの流れ方向と一致する場合、貫通孔密度および/または孔径が、ガスの導入側および出口側から中央部に向かって小さくなっている。   FIG. 6 shows a gas diffusion layer electrode substrate in which the density of through-holes monotonously decreases and monotonously increases from one end to the other end in one in-plane direction. FIG. 10 shows a gas diffusion layer electrode substrate in which the hole diameter of the through hole monotonously decreases and becomes monotonously increased from one end to the other end in one direction in the plane. In these electrode base materials, when the one direction coincides with the flow direction of the fuel gas, the through hole density and / or hole diameter decreases from the gas introduction side and the outlet side toward the central portion.

このように燃料極側においては、様々な貫通孔の密度分布および孔径分布を有する電極基材を適用可能であるが、どのような分布を採用するかは、燃料ガスの流れ方向と酸化剤ガスの流れ方向の関係、つまり並行流であるか対向流であるかなどによって決めることができる。   As described above, on the fuel electrode side, electrode base materials having various through hole density distributions and hole diameter distributions can be applied. What distribution is adopted depends on the flow direction of the fuel gas and the oxidant gas. It can be determined by the relationship of the flow direction of the flow, that is, whether it is a parallel flow or a counter flow.

本発明において、炭素短繊維は炭素繊維糸または炭素繊維のトウを3mm〜12mmにカットして得られるが、抄紙可能であれば上記範囲の長さでなくてもよい。炭素繊維には、ポリアクリロニトリル系を始め、ピッチ系、フェノール系、グラファイト系などがあるが、いずれであってもよい。   In the present invention, the short carbon fibers are obtained by cutting carbon fiber yarns or carbon fiber tows into 3 mm to 12 mm. However, the length may not be in the above range as long as papermaking is possible. Carbon fibers include polyacrylonitrile-based, pitch-based, phenol-based, and graphite-based materials, and any of them may be used.

炭素短繊維を含む紙状体とは、炭素短繊維を主原料とし、連続抄紙法あるいは手漉き法によって抄紙した炭素繊維紙のことである。   The paper-like body containing carbon short fibers is carbon fiber paper made from carbon short fibers as a main raw material by a continuous paper making method or a hand-making method.

炭素短繊維を連続抄紙する際、炭素繊維同士を結着させる目的で、適当量の有機高分子物質を混ぜることが好ましい。これにより、炭素繊維紙の強度を保持し、生産途中で炭素繊維紙から炭素繊維が剥離したり、炭素繊維の配向が変化したりするのを防止することができる。また、連続的に抄造する方法としては、円網式・長網式・短網式などがあげられる。炭素繊維同士の結着力が相対的に弱いため円網式で連続抄紙するにはバインダーを相当量必要とすることがあるので長網式・短網式の方が好ましい。手漉き抄紙のものは連続抄紙のものと比較して、厚く、嵩密度が小さいものができやすい。そのため、樹脂を含浸してプレスしてもあまり強い強度がでない傾向があるという点で不利である。また、目付のコントロールが相対的に困難である傾向があるという点で不利である。   When continuous paper making of short carbon fibers, it is preferable to mix an appropriate amount of organic polymer material for the purpose of binding the carbon fibers together. Thereby, the intensity | strength of carbon fiber paper is hold | maintained and it can prevent that carbon fiber peels from carbon fiber paper in the middle of production, or the orientation of carbon fiber changes. Examples of the continuous paper making method include a circular net type, a long net type, and a short net type. Since the binding force between the carbon fibers is relatively weak, a continuous net-type paper making process may require a considerable amount of binder, so the long-mesh type and the short-net type are preferred. Hand-made paper is easier to make thicker and less bulk density than continuous paper. Therefore, it is disadvantageous in that there is a tendency that the strength is not so strong even if the resin is impregnated and pressed. Moreover, it is disadvantageous in that it tends to be relatively difficult to control the basis weight.

炭素前駆体樹脂としては熱硬化性、熱可塑性いずれのものでも使用できる、導電性の観点から、加熱プレスにより緻密になる熱硬化性樹脂が好ましい。熱硬化性樹脂としては、常温において粘着性、或いは流動性を示す物でかつ炭素化後も導電性物質として残存し、炭素繊維との密着性が良いものが好ましく、例えばフェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、イミド樹脂、ウレタン樹脂、アラミド樹脂、ピッチなどが使用できるが、フェノール樹脂、フラン樹脂等がより好ましく用いられる。   As the carbon precursor resin, any one of thermosetting and thermoplastic can be used. From the viewpoint of conductivity, a thermosetting resin that becomes dense by heating press is preferable. As the thermosetting resin, those which are sticky or fluid at normal temperature and remain as a conductive substance even after carbonization, and those having good adhesion to carbon fibers are preferable, for example, phenol resin, furan resin, Epoxy resin, melamine resin, imide resin, urethane resin, aramid resin, pitch and the like can be used, but phenol resin, furan resin and the like are more preferably used.

炭素短繊維を抄紙することにより得られた炭素繊維紙に、炭素前駆体樹脂を含浸した後、加熱プレス成形などにより炭素前駆体樹脂を硬化し、次いで貫通孔を付与した後に、例えば窒素雰囲気下1200℃以上で焼成することにより本発明の電極基材を好適に製造することができる。   After impregnating the carbon fiber paper obtained by paper making the short carbon fiber with the carbon precursor resin, curing the carbon precursor resin by hot press molding, etc., and then providing through holes, for example, under a nitrogen atmosphere By firing at 1200 ° C. or higher, the electrode substrate of the present invention can be suitably produced.

炭素前駆体樹脂付着量は炭素短繊維を含む紙状体に対して30〜95質量%含まれることが好ましい。炭素前駆体樹脂比率(「炭素前駆体樹脂質量」÷「炭素短繊維を含む紙状体質量」)が30質量%より低いと電極基板が粗な構造となり、強度が低下する傾向にあるという点で不利である。また、95質量%より高くなるとガス拡散層電極基板の導電性が悪くなるという点で不利であるので炭素前駆体樹脂は炭素短繊維を含む紙状体に対して30〜95質量%含まれているものが好ましい。   The carbon precursor resin adhesion amount is preferably 30 to 95% by mass with respect to the paper-like body containing short carbon fibers. If the carbon precursor resin ratio (“carbon precursor resin mass” ÷ “paper mass including carbon short fibers”) is lower than 30% by mass, the electrode substrate has a rough structure and the strength tends to decrease. It is disadvantageous. Moreover, since it will be disadvantageous in that the conductivity of the gas diffusion layer electrode substrate becomes worse if it exceeds 95% by mass, the carbon precursor resin is contained in an amount of 30 to 95% by mass with respect to the paper-like material containing carbon short fibers. Is preferred.

炭素繊維紙に炭素前駆体樹脂を含浸する方法としては、炭素繊維紙に炭素前駆体樹脂を含浸させることができればよく、公知の方法を適宜採用できるが、絞り装置を用いるディップニップ(dip−nip)方法、コーターを用いて炭素繊維紙表面に樹脂を均一にコートする方法、もしくは炭素繊維紙と樹脂フィルムを重ねて樹脂フィルムを炭素繊維紙に転写する方法が、連続的に行うことができ、生産性および長尺ものも製造できるという点で好ましい。ディップニップ方法は、樹脂溶液もしくは樹脂とメタノール、エタノール等のアルコール類との混合液中に炭素繊維紙を浸し、絞り装置で取り込み液が紙全体に均一に塗布されるようにし、液量は絞り装置のロール間隔を変えることで調節する方法である。比較的粘度が低い場合はコーターや樹脂フィルムを転写する方法を用いると、より均一に樹脂を含浸することができるが、粘度が高い場合は加熱プレスの際に炭素繊維紙の内部までは浸透しにくいため、ディップニップ(dip−nip)方法が好ましい。   The carbon fiber paper can be impregnated with the carbon precursor resin as long as the carbon fiber paper can be impregnated with the carbon precursor resin, and a known method can be adopted as appropriate. ) Method, a method of uniformly coating the resin on the carbon fiber paper surface using a coater, or a method of transferring the resin film to the carbon fiber paper by stacking the carbon fiber paper and the resin film can be continuously performed. This is preferable in terms of productivity and production of long products. In the dip nip method, carbon fiber paper is immersed in a resin solution or a mixture of resin and alcohol such as methanol or ethanol, and the squeezing device applies the liquid to the entire paper evenly. This is a method of adjusting by changing the roll interval of the apparatus. If the viscosity is relatively low, the method of transferring the coater or resin film can be used to impregnate the resin more uniformly, but if the viscosity is high, the inside of the carbon fiber paper penetrates during the hot press. Since it is difficult, the dip-nip method is preferable.

炭素前駆体樹脂含浸後の炭素繊維紙を硬化する方法としては、基材の強度向上のために加熱プレスを行うことが好ましい。加熱プレスのために、電極基材に熱および圧力を加えることができれば、いかなる技術も適用でき、例としては、上下両面から剛板にてプレスする方法や金型にはめて成型する方法、あるいは連続ベルト装置を用いる方法が挙げられる。これらはいずれも加熱しながら行う。   As a method of curing the carbon fiber paper impregnated with the carbon precursor resin, it is preferable to perform a heat press in order to improve the strength of the substrate. Any technique can be applied as long as heat and pressure can be applied to the electrode base material for the heating press, such as a method of pressing with a rigid plate from both the upper and lower surfaces, a method of molding with a mold, or A method using a continuous belt device may be mentioned. All of these are performed while heating.

貫通孔を付与するために用いる、針を固定した板としては剣山のようなものや、針種を変更可能な板としてはニードルパンチ装置を例示することができる。これらを使用することで、貫通孔を付与することができる。針間隔、針径、針深度を変更することで、最終的に電極基材にした時の貫通孔径や貫通孔密度を制御することができる。   Examples of a plate with a fixed needle used for providing a through hole include a sword mountain, and a plate capable of changing the needle type includes a needle punch device. By using these, a through-hole can be provided. By changing the needle interval, the needle diameter, and the needle depth, it is possible to control the through-hole diameter and the through-hole density when the electrode substrate is finally used.

特にニードルパンチ装置を使用する場合においては、針径及び針深度が変更可能であり、30μm〜1000μmの貫通孔を任意で空ける事が容易である。また、針間隔を変えることで、貫通孔密度を変更できるため、剣山タイプよりも多機能な面で有利である。ニードルパンチ装置はバッチ処理も可能であるが、生産性の観点から連続処理に使用する方が好ましい。   In particular, when using a needle punch device, the needle diameter and needle depth can be changed, and it is easy to arbitrarily pierce through holes of 30 μm to 1000 μm. Moreover, since the through hole density can be changed by changing the needle interval, it is advantageous in terms of multiple functions as compared with the Kenzan type. The needle punch device can be batch-processed, but is preferably used for continuous processing from the viewpoint of productivity.

貫通孔径および貫通孔密度を求めるには、炭素電極基材表面の拡大写真を取り、貫通孔径および単位面積当たりの貫通孔数を測定し、それを数箇所測定し平均値を求めた。尚、貫通孔径は各貫通孔の最大径の平均値とする。   In order to obtain the through-hole diameter and the through-hole density, an enlarged photograph of the carbon electrode substrate surface was taken, the through-hole diameter and the number of through-holes per unit area were measured, and several points were measured to obtain an average value. In addition, let a through-hole diameter be the average value of the largest diameter of each through-hole.

炭素化工程における炭素化方法は、炭素前駆体樹脂が含浸及び硬化された炭素繊維紙を炭素化するための公知の方法を適宜採用することができる。   As a carbonization method in the carbonization step, a known method for carbonizing carbon fiber paper impregnated and cured with a carbon precursor resin can be appropriately employed.

本発明の電極基材としては、貫通孔径および貫通孔密度を変更することで、気体透過係数を任意で変更することが可能であるが、ガス拡散層電極基材としては500ml・mm/hr・cm2・mmAq(51ml・mm/hr・cm2・Pa)以上が好ましく、ガス拡散層電極基材の強度を確保するために50000ml・mm/hr・cm2・mmAq(5100ml・mm/hr・cm2・Pa)以下が好ましい。さらに好ましくは1500ml・mm/hr・cm2・mmAq(150ml・mm/hr・cm2・Pa)以上、30000ml・mm/hr・cm2・mmAq(3100ml・mm/hr・cm2・Pa)以下である。気体透過係数の測定には、JIS P−8117に準じて、ガーレー式デンソメーターを使用して測定する。 As the electrode base material of the present invention, the gas permeation coefficient can be arbitrarily changed by changing the through-hole diameter and the through-hole density, but as the gas diffusion layer electrode base material, 500 ml · mm / hr · cm 2 · mmAq (51 ml · mm / hr · cm 2 · Pa) or more is preferable, and in order to ensure the strength of the gas diffusion layer electrode substrate, 50000 ml · mm / hr · cm 2 · mmAq (5100 ml · mm / hr · cm 2 · Pa) or less is preferable. More preferably 1500 ml · mm / hr · cm 2 · mmAq (150 ml · mm / hr · cm 2 · Pa) or more and 30000 ml · mm / hr · cm 2 · mmAq (3100 ml · mm / hr · cm 2 · Pa) or less It is. The gas permeability coefficient is measured using a Gurley type densometer according to JIS P-8117.

〔実施例1〕
ポリアクリロニトリル(PAN)系炭素繊維の繊維束を3mmに切断し、短繊維を得た。次いで短繊維を湿式連続抄紙装置のスラリータンクで水中に解繊し、十分に分散したところにバインダーであるポリビニルアルコール(PVA)の短繊維を均一に分散させ送り出した。送り出されたウェブを網板で漉き、次いでドライヤー乾燥後、炭素繊維紙が得られた。
[Example 1]
A fiber bundle of polyacrylonitrile (PAN) carbon fiber was cut into 3 mm to obtain short fibers. Next, the short fibers were defibrated in water in a slurry tank of a wet continuous paper making apparatus, and the short fibers of polyvinyl alcohol (PVA) as a binder were uniformly dispersed and sent out. The fed web was spread with a mesh plate and then dried with a dryer to obtain carbon fiber paper.

次にこの炭素繊維紙にディップニップ法により熱硬化性樹脂を含浸させた。すなわち、この炭素繊維紙をフェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学(株)製)の20質量%エタノール溶液のトレイに、連続的に送り込み、絞り装置にて樹脂を絞り、連続的に熱風を吹きかけ乾燥させ、樹脂含浸炭素繊維紙を得た。   Next, this carbon fiber paper was impregnated with a thermosetting resin by a dip nip method. That is, this carbon fiber paper is continuously fed into a 20% ethanol tray of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink and Chemicals), and the resin is squeezed with a squeezing device. Then, it was dried by blowing hot air continuously to obtain a resin-impregnated carbon fiber paper.

次いで熱プレス装置にて160℃で5分加熱プレスし、樹脂硬化炭素繊維紙を得た。更に、樹脂硬化炭素繊維紙数枚を縦にし、テープでつなぎ、1.5m程度のシートとした。   Subsequently, it heat-pressed at 160 degreeC with the hot press apparatus for 5 minutes, and obtained the resin hardening carbon fiber paper. Further, several sheets of resin-cured carbon fiber paper were placed vertically and connected with tape to make a sheet of about 1.5 m.

次に樹脂硬化炭素繊維紙をニードルパンチ装置(大和機工製)、針種38番手、針深度0.8mmで連続処理した。尚、ニードルボード右側半分の針本数を左側半分の針本数の1/2になるように設置して処理を行ったところ、樹脂硬化炭素繊維紙右側半分の貫通孔密度が10個/cm2程度で、左側半分の貫通孔密度が20個/cm2程度に処理されたものを得た。 Next, the resin-cured carbon fiber paper was continuously processed with a needle punch device (manufactured by Yamato Kiko), 38 needle types, and a needle depth of 0.8 mm. When the number of needles on the right half of the needle board was set to be 1/2 of the number of needles on the left half, the through hole density of the right half of the resin-cured carbon fiber paper was about 10 / cm 2. Thus, a left half processed through hole density of about 20 holes / cm 2 was obtained.

続いて、上記樹脂硬化炭素繊維紙を、窒素ガス雰囲気中にて2000℃のバッチ焼成を行なうことでガス拡散層電極基材を得た。得られたガス拡散層電極基材表面の写真を撮り、貫通孔径(最大径)を測定したところ。ガス拡散層電極基材右側および左側の貫通孔径は共に190μm程度で比較的均一であった。   Subsequently, the resin-cured carbon fiber paper was subjected to batch firing at 2000 ° C. in a nitrogen gas atmosphere to obtain a gas diffusion layer electrode base material. A photograph of the surface of the obtained gas diffusion layer electrode substrate was taken and the through hole diameter (maximum diameter) was measured. Both the right and left through-hole diameters of the gas diffusion layer electrode substrate were about 190 μm and were relatively uniform.

ガス拡散層電極基材右側半分の気体透過係数は2430ml・mm/hr・cm2・mmAq(248ml・mm/hr・cm2・Pa)で、左側半分の気体透過係数は5020ml・mm/hr・cm2・mmAq(512ml・mm/hr・cm2・Pa)であった。 The gas permeability coefficient of the right half of the gas diffusion layer electrode substrate is 2430 ml · mm / hr · cm 2 · mmAq (248 ml · mm / hr · cm 2 · Pa), and the gas permeability coefficient of the left half is 5020 ml · mm / hr · cm 2 · mmAq (512 ml · mm / hr · cm 2 · Pa).

更に貫通孔付与時にカーボン粉末は殆ど発生しなかった。   Furthermore, almost no carbon powder was generated when the through holes were provided.

〔実施例2〕
樹脂硬化炭素繊維紙に貫通孔を空ける際に、ニードルボードの右側半分の針種を25番手にしたこと以外は実施例1と同様にしてガス拡散層電極基材を得たところ、樹脂硬化炭素繊維紙右側半分の貫通孔密度が10個/cm2程度で、左側半分の貫通孔密度が20個/cm2程度に処理されたものを得た。
[Example 2]
A gas diffusion layer electrode substrate was obtained in the same manner as in Example 1 except that when the through hole was made in the resin-cured carbon fiber paper, the needle type on the right half of the needle board was 25th, a gas diffusion layer electrode substrate was obtained. The through-hole density of the right half of the fiber paper was about 10 / cm 2 , and the through-hole density of the left half was about 20 / cm 2 .

続いて、上記樹脂硬化炭素繊維紙を、窒素ガス雰囲気中にて2000℃のバッチ焼成を行なうことでガス拡散層電極基材を得た。得られたガス拡散層電極基材表面の写真を撮り、貫通孔径(最大径)を測定したところ。ガス拡散層電極基材右側の貫通孔径は190μm程度で比較的均一で、左側の貫通孔径は310μm程度で若干バラツキが大きくなった。   Subsequently, the resin-cured carbon fiber paper was subjected to batch firing at 2000 ° C. in a nitrogen gas atmosphere to obtain a gas diffusion layer electrode base material. A photograph of the surface of the obtained gas diffusion layer electrode substrate was taken and the through hole diameter (maximum diameter) was measured. The diameter of the through hole on the right side of the gas diffusion layer electrode substrate was about 190 μm, which was relatively uniform, and the diameter of the left side through hole was about 310 μm, showing slight variations.

ガス拡散層電極基材右側半分の気体透過係数は2450ml・mm/hr・cm2・mmAq(250ml・mm/hr・cm2・Pa)で、左側半分の気体透過係数は7090ml・mm/hr・cm2・mmAq(723ml・mm/hr・cm2・Pa)であった。 The gas permeability coefficient of the right half of the gas diffusion layer electrode substrate is 2450 ml · mm / hr · cm 2 · mmAq (250 ml · mm / hr · cm 2 · Pa), and the gas permeability coefficient of the left half is 7090 ml · mm / hr · cm 2 · mmAq (723 ml · mm / hr · cm 2 · Pa).

更に貫通孔付与時において、右側半分は実施例1同様にカーボン粉末は殆ど発生しなかったが、左側半分は樹脂硬化炭素繊維紙の欠片が若干認められるが、カーボン粉末の発生は殆ど認められない。   Further, when the through-hole was provided, the right half hardly generated carbon powder as in Example 1, but the left half showed some pieces of resin-cured carbon fiber paper, but almost no carbon powder was observed. .

〔比較例1〕
樹脂硬化炭素繊維紙の貫通孔処理を炭素化する前でなく炭素化した後に行なうこと以外は実施例1と同様にしてガス拡散層電極基材を得た。
[Comparative Example 1]
A gas diffusion layer electrode substrate was obtained in the same manner as in Example 1 except that the through-hole treatment of the resin-cured carbon fiber paper was carried out after carbonization rather than before carbonization.

ガス拡散層電極基材右側半分の貫通孔密度が10個/cm2程度で、左側半分の貫通孔密度が20個/cm2程度に処理されたものを得た。 The gas diffusion layer electrode substrate was processed such that the right half of the through hole density was about 10 holes / cm 2 and the left half of the through hole density was about 20 holes / cm 2 .

次いで、ガス拡散層電極基材表面の電子顕微鏡写真を撮り、貫通孔径(最大径)を測定したところ。ガス拡散層電極基材の右側および左側の貫通孔径は共に300μm程度で、貫通孔径のバラツキは実施例1よりも大きかった。又、貫通孔周辺の組織に一部破損が認められた。   Next, an electron micrograph of the surface of the gas diffusion layer electrode substrate was taken, and the through-hole diameter (maximum diameter) was measured. Both the right and left through-hole diameters of the gas diffusion layer electrode substrate were about 300 μm, and the variation in the through-hole diameter was larger than that of Example 1. Moreover, some damage was recognized in the structure | tissue around a through-hole.

ガス拡散層電極基材右側半分の気体透過係数は3360ml・mm/hr・cm2・mmAq(343ml・mm/hr・cm2・Pa)で、左側半分の気体透過係数は6910ml・mm/hr・cm2・mmAq(705ml・mm/hr・cm2・Pa)であった。 The gas permeability coefficient of the right half of the gas diffusion layer electrode substrate is 3360 ml · mm / hr · cm 2 · mmAq (343 ml · mm / hr · cm 2 · Pa), and the gas permeability coefficient of the left half is 6910 ml · mm / hr · cm 2 · mmAq (705 ml · mm / hr · cm 2 · Pa).

更に貫通孔付与時にカーボンの破片およびカーボン粉末は比較的多く発生した。   Furthermore, a relatively large amount of carbon fragments and carbon powder were generated when the through-holes were provided.

高分子電解質型燃料電池の模式的断面図である。1 is a schematic cross-sectional view of a polymer electrolyte fuel cell. リブ付きセパレータの模式的平面図である。It is a typical top view of a separator with a rib. ガス拡散層電極基材に2種類の貫通孔密度領域を形成した場合の例を示した図である。It is the figure which showed the example at the time of forming two types of through-hole density area | regions in a gas diffusion layer electrode base material. ガス拡散層電極基材に3種類の貫通孔密度領域を形成し、且つ片方側の貫通孔密度がもう片側の貫通孔密度よりも高い場合の例を示した図である。It is the figure which showed the example in case three types of through-hole density area | regions are formed in a gas diffusion layer electrode base material, and the through-hole density of one side is higher than the through-hole density of the other side. ガス拡散層電極基材に1方向に貫通孔密度の高低分布を形成し、且つ中央部の貫通孔密度を高くした場合の例を示した図である。It is the figure which showed the example at the time of forming the high and low distribution of through-hole density in one direction in the gas diffusion layer electrode base material, and making the through-hole density of the center part high. ガス拡散層電極基材に1方向に貫通孔密度の高低分布を形成し、且つ中央部の貫通孔密度を低くした場合の例を示した図である。It is the figure which showed the example at the time of forming the high and low distribution of the through-hole density in one direction in the gas diffusion layer electrode base material, and making the through-hole density of the center part low. ガス拡散層電極基材に2種類の貫通孔径領域を形成した場合の例を示した図である。It is the figure which showed the example at the time of forming two types of through-hole diameter area | regions in a gas diffusion layer electrode base material. ガス拡散層電極基材に3種類の貫通孔径領域を形成し、且つ片方側の貫通孔径がもう片側の貫通孔径よりも大きい場合の例を示した図である。It is the figure which showed the example when three types of through-hole diameter area | regions are formed in a gas diffusion layer electrode base material, and the through-hole diameter of one side is larger than the through-hole diameter of the other side. ガス拡散層電極基材に1方向に貫通孔径の大小分布を形成し、且つ中央部の貫通孔径を大きくした場合の例を示した図である。It is the figure which showed the example at the time of forming the size distribution of a through-hole diameter in one direction in the gas diffusion layer electrode base material, and enlarging the through-hole diameter of the center part. ガス拡散層電極基材に1方向に貫通孔径の大小分布を形成し、且つ中央部の貫通孔径を小さくした場合の例を示した図である。It is the figure which showed the example at the time of forming the size distribution of the through-hole diameter in one direction in the gas diffusion layer electrode base material, and making the through-hole diameter of the center part small.

符号の説明Explanation of symbols

1 燃料極
2 酸素極
3 高分子電解質膜
4 ガス拡散層電極基材
5 触媒層
6 ガス拡散層電極基材
7 触媒層
8 ,9 リブ付きセパレータ
10 燃料ガス通路
11 酸化剤ガス通路
12 ガス導入口
13 ガス出口
1 Fuel Electrode 2 Oxygen Electrode 3 Polymer Electrolyte Membrane 4 Gas Diffusion Layer Electrode Base 5 Catalyst Layer 6 Gas Diffusion Layer Electrode Base 7 Catalyst Layers 8 and 9 Ribbed Separator 10 Fuel Gas Passage 11 Oxidant Gas Passage 12 Gas Inlet 13 Gas outlet

Claims (13)

炭素繊維紙を有する高分子電解質型燃料電池用ガス拡散層電極基材において、
一方の面から他方の面にわたる貫通孔を複数有し、且つ
該貫通孔の密度および/または孔径が面方向に異なることを特徴とするガス拡散層電極基材。
In the gas diffusion layer electrode substrate for polymer electrolyte fuel cell having carbon fiber paper,
A gas diffusion layer electrode base material having a plurality of through holes extending from one surface to the other surface, and the density and / or hole diameter of the through holes differ in the surface direction.
前記貫通孔の密度および/または孔径が、面内の一つの方向について、一方の端から他方の端にわたって単調増加する請求項1記載のガス拡散層電極基材。 The gas diffusion layer electrode substrate according to claim 1, wherein the density and / or the hole diameter of the through holes monotonously increase from one end to the other end in one direction in the plane. 前記貫通孔の密度および/または孔径が、面内の一つの方向について、一方の端から他方の端にわたって、単調増加して最大となり単調減少する請求項1記載のガス拡散層電極基材。 2. The gas diffusion layer electrode substrate according to claim 1, wherein the density and / or the diameter of the through-holes monotonously increase to become a maximum and monotonously decrease from one end to the other end in one in-plane direction. 前記貫通孔の密度および/または孔径が、面内の一つの方向について、一方の端から他方の端にわたって、単調減少して最小となり単調増加する請求項1記載のガス拡散層電極基材。 2. The gas diffusion layer electrode substrate according to claim 1, wherein the density and / or the diameter of the through-holes monotonously decreases to a minimum and monotonously increase from one end to the other end in one in-plane direction. 前記貫通孔の孔径が30μm以上1000μm以下であり、
該貫通孔の密度の最大値が1個/cm2以上399個/cm2以下であり、
該貫通孔の密度の最小値が0個/cm2以上390個/cm2である請求項1〜4のいずれか一項記載のガス拡散層電極基材。
The hole diameter of the through hole is 30 μm or more and 1000 μm or less,
The maximum value of the density of the through holes is 1 / cm 2 or more and 399 / cm 2 or less,
The gas diffusion layer electrode substrate according to any one of claims 1 to 4, wherein a minimum value of the density of the through holes is 0 piece / cm 2 or more and 390 pieces / cm 2 .
前記貫通孔の密度が1個/cm2以上400個/cm2未満であり、
該貫通孔の孔径の最大値が40μm以上1000μm以下であり、
該貫通孔の孔径の最小値が30μm以上900μm以下である請求項1〜4のいずれか一項記載のガス拡散層電極基材。
The density of the through holes is 1 piece / cm 2 or more and less than 400 pieces / cm 2 ,
The maximum value of the diameter of the through hole is 40 μm or more and 1000 μm or less,
The gas diffusion layer electrode substrate according to any one of claims 1 to 4, wherein the minimum value of the diameter of the through hole is 30 µm or more and 900 µm or less.
前記貫通孔周辺にヒビおよび割れがない請求項1〜6のいずれか一項記載のガス拡散層電極基材。 The gas diffusion layer electrode substrate according to any one of claims 1 to 6, wherein there are no cracks or cracks around the through hole. 炭素短繊維を含む紙状体に炭素前駆体樹脂を含浸する樹脂含浸工程;
該紙状体に含浸した炭素前駆体樹脂を硬化する樹脂硬化工程;
該炭素前駆体樹脂が硬化した紙状体に、一方の面から他方の面にわたる複数の貫通孔であって、該貫通孔の密度および/または孔径が面方向に異なる貫通孔を開ける穿孔工程;
該貫通孔が開けられた紙状体を炭素化する炭素化工程
を有することを特徴とする高分子電解質型燃料電池用ガス拡散層電極基材の製造方法。
A resin impregnation step of impregnating a carbon precursor resin into a paper-like body containing short carbon fibers;
A resin curing step of curing the carbon precursor resin impregnated in the paper-like body;
A perforating step in which a plurality of through holes extending from one surface to the other surface and having different density and / or hole diameter in the surface direction are formed in the paper-like body having the carbon precursor resin cured;
A method for producing a gas diffusion layer electrode substrate for a polymer electrolyte fuel cell, comprising a carbonization step of carbonizing the paper-like body having the through-holes.
前記穿孔工程において、
針密度および/もしくは針径を変更可能な板か、または針を固定した板を使用して前記貫通孔を開ける請求項8記載の方法。
In the drilling step,
The method according to claim 8, wherein the through-hole is opened using a plate capable of changing a needle density and / or a needle diameter, or a plate to which a needle is fixed.
燃料極側ガス拡散層電極基材、燃料極側触媒層、高分子電解質膜、酸素極側触媒層および酸素極側ガス拡散層電極基材を有する高分子電解質型燃料電池において、
酸素極側ガス拡散層電極基材が、一方の面から他方の面にわたる貫通孔を複数有し、且つ、該貫通孔の密度および/または孔径が面方向に異なることを特徴とする高分子電解質形燃料電池。
In a polymer electrolyte fuel cell having a fuel electrode side gas diffusion layer electrode substrate, a fuel electrode side catalyst layer, a polymer electrolyte membrane, an oxygen electrode side catalyst layer and an oxygen electrode side gas diffusion layer electrode substrate,
The oxygen electrolyte side gas diffusion layer electrode base material has a plurality of through holes extending from one surface to the other surface, and the density and / or the hole diameter of the through holes are different in the surface direction. Fuel cell.
前記酸素極側ガス拡散層電極基材の貫通孔の密度および/または孔径が、酸素極側ガスの流れ方向に沿って、該酸素極側ガス拡散層電極基材の一方の端から他方の端にわたって単調増加する請求項10記載の高分子電解質形燃料電池。 The density and / or hole diameter of the through hole of the oxygen electrode side gas diffusion layer electrode substrate is changed from one end to the other end of the oxygen electrode side gas diffusion layer electrode substrate along the flow direction of the oxygen electrode side gas. The polymer electrolyte fuel cell according to claim 10, which monotonically increases over time. 前記燃料極側ガス拡散層電極基材が、一方の面から他方の面にわたる貫通孔を複数有し、且つ、該貫通孔の密度および/または孔径が面方向に異なる請求項10または11記載の高分子電解質形燃料電池。 The said fuel electrode side gas diffusion layer electrode base material has several through-holes ranging from one surface to the other surface, and the density and / or hole diameter of this through-hole differ in a surface direction. Polymer electrolyte fuel cell. 前記燃料極側ガス拡散層電極基材の貫通孔の密度および/または孔径が、燃料極側ガスの流れ方向に沿って、該燃料極側ガス拡散層電極基材の一方の端から他方の端にわたって、単調増加するか、単調減少するか、単調増加して最大となり単調減少するか、もしくは単調減少して最小となり単調増加する
請求項12記載の高分子電解質形燃料電池。
The density and / or hole diameter of the through hole of the fuel electrode side gas diffusion layer electrode base material varies from one end of the fuel electrode side gas diffusion layer electrode base material to the other end along the flow direction of the fuel electrode side gas. 13. The polymer electrolyte fuel cell according to claim 12, wherein the polymer electrolyte fuel cell increases monotonically, decreases monotonically, increases monotonously and then increases monotonically, or decreases monotonously and decreases monotonously and increases monotonously.
JP2003275295A 2003-07-16 2003-07-16 Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell Pending JP2005038738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275295A JP2005038738A (en) 2003-07-16 2003-07-16 Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275295A JP2005038738A (en) 2003-07-16 2003-07-16 Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2005038738A true JP2005038738A (en) 2005-02-10

Family

ID=34211995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275295A Pending JP2005038738A (en) 2003-07-16 2003-07-16 Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2005038738A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085517A (en) * 2003-09-05 2005-03-31 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2006236688A (en) * 2005-02-23 2006-09-07 Fujitsu Ltd Fuel cell
JP2006253038A (en) * 2005-03-11 2006-09-21 Equos Research Co Ltd Separator unit and fuel cell stack
WO2006126685A1 (en) * 2005-05-27 2006-11-30 Kabushiki Kaisha Toshiba Fuel cell
WO2007011073A1 (en) * 2005-07-21 2007-01-25 Gs Yuasa Corporation Passive hydrogen generator and packaged fuel cell power generation system using same
JP2007018742A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Fuel cell
WO2007083838A1 (en) * 2006-01-19 2007-07-26 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007194074A (en) * 2006-01-19 2007-08-02 Toyota Motor Corp Fuel cell
JP2008066208A (en) * 2006-09-11 2008-03-21 Honda Motor Co Ltd Fuel cell
JP2008509530A (en) * 2004-08-04 2008-03-27 コーニング インコーポレイテッド Variable resistance electrode structure
JP2008218383A (en) * 2007-02-05 2008-09-18 Toyota Motor Corp Fuel cell and fuel cell mounting vehicle
JP2008235026A (en) * 2007-03-20 2008-10-02 Toshiba Corp Fuel distribution adjustment method, fuel distribution adjustment film, manufacturing method of fuel distribution adjustment film, fuel cell, and manufacturing method of fuel cell
WO2008132836A1 (en) * 2007-04-23 2008-11-06 Mitsui Chemicals, Inc. Gas generating device and carbon electrode for gas generation
JP2008287943A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Gas passage forming member for fuel cell and fuel cell
US20090029222A1 (en) * 2007-07-24 2009-01-29 Joongmyeon Bae Fuel cell with structured gas diffusion layer and manufacturing method of gas diffusion layer
WO2009096577A1 (en) * 2008-01-28 2009-08-06 Canon Kabushiki Kaisha Fuel cell unit and fuel cell stack
WO2009110467A1 (en) * 2008-03-04 2009-09-11 東邦テナックス株式会社 Carbon fiber paper and manufacturing method for the same
JP2009277503A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp Fuel cell, and fuel cell stack
US20100068584A1 (en) * 2006-10-20 2010-03-18 Industrial Technology Research Institute Flat fuel cell assembly
WO2010050378A1 (en) * 2008-10-28 2010-05-06 セイコーインスツル株式会社 Fuel cell and fuel cell system
WO2010050377A1 (en) * 2008-10-28 2010-05-06 セイコーインスツル株式会社 Fuel cell and fuel cell system
JP2010231922A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Fuel cell
JP2011065926A (en) * 2009-09-18 2011-03-31 Mitsubishi Rayon Co Ltd Porous carbon electrode base material and its manufacturing method
JP2012204236A (en) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd Fuel cell gas diffusion layer and manufacturing method thereof
WO2013151016A1 (en) * 2012-04-05 2013-10-10 日産自動車株式会社 Fuel cell
US8685586B2 (en) 2004-12-08 2014-04-01 Toyota Jidosha Kabushiki Kaisha Fuel cell separator
US8703347B2 (en) * 2006-10-20 2014-04-22 Industrial Technology Research Institute Flat fuel cell assembly having gas barrier material layer
JP2015096464A (en) * 2014-12-16 2015-05-21 三菱レイヨン株式会社 Porous carbon electrode base material
US20170309928A1 (en) * 2016-04-26 2017-10-26 Hyundai Motor Company Fuel cell stack and method of manufacturing fuel cell stack
US10326148B2 (en) 2012-10-19 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Fuel cell gas diffusion layer and method of manufacturing same
US10727511B2 (en) 2012-07-17 2020-07-28 Toyota Shatai Kabushiki Kaisha Fuel cell
JP2020149843A (en) * 2019-03-13 2020-09-17 株式会社豊田中央研究所 Fuel cell system

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085517A (en) * 2003-09-05 2005-03-31 Fuji Electric Holdings Co Ltd Solid polymer fuel cell
JP2008509530A (en) * 2004-08-04 2008-03-27 コーニング インコーポレイテッド Variable resistance electrode structure
US8685586B2 (en) 2004-12-08 2014-04-01 Toyota Jidosha Kabushiki Kaisha Fuel cell separator
JP2006236688A (en) * 2005-02-23 2006-09-07 Fujitsu Ltd Fuel cell
JP2006253038A (en) * 2005-03-11 2006-09-21 Equos Research Co Ltd Separator unit and fuel cell stack
WO2006126685A1 (en) * 2005-05-27 2006-11-30 Kabushiki Kaisha Toshiba Fuel cell
JP2007018742A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Fuel cell
WO2007011073A1 (en) * 2005-07-21 2007-01-25 Gs Yuasa Corporation Passive hydrogen generator and packaged fuel cell power generation system using same
WO2007083838A1 (en) * 2006-01-19 2007-07-26 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007194074A (en) * 2006-01-19 2007-08-02 Toyota Motor Corp Fuel cell
JP2008066208A (en) * 2006-09-11 2008-03-21 Honda Motor Co Ltd Fuel cell
US9048466B2 (en) 2006-10-20 2015-06-02 Industrial Technology Research Institute Flat fuel cell assembly with air channel defined by case
US8703347B2 (en) * 2006-10-20 2014-04-22 Industrial Technology Research Institute Flat fuel cell assembly having gas barrier material layer
US20100068584A1 (en) * 2006-10-20 2010-03-18 Industrial Technology Research Institute Flat fuel cell assembly
JP2008218383A (en) * 2007-02-05 2008-09-18 Toyota Motor Corp Fuel cell and fuel cell mounting vehicle
US8318380B2 (en) 2007-02-05 2012-11-27 Toyota Jidosha Kabushiki Kaisha Fuel cell and vehicle having fuel cell
JP2008235026A (en) * 2007-03-20 2008-10-02 Toshiba Corp Fuel distribution adjustment method, fuel distribution adjustment film, manufacturing method of fuel distribution adjustment film, fuel cell, and manufacturing method of fuel cell
JPWO2008132836A1 (en) * 2007-04-23 2010-07-22 三井化学株式会社 GAS GENERATOR, GAS GENERATION METHOD, AND METHOD FOR MANUFACTURING CARBON ELECTRODE FOR GAS GENERATION
WO2008132836A1 (en) * 2007-04-23 2008-11-06 Mitsui Chemicals, Inc. Gas generating device and carbon electrode for gas generation
JP5437794B2 (en) * 2007-04-23 2014-03-12 三井化学株式会社 GAS GENERATOR, GAS GENERATION METHOD, AND METHOD FOR MANUFACTURING CARBON ELECTRODE FOR GAS GENERATION
US8329008B2 (en) 2007-04-23 2012-12-11 Mitsui Chemicals, Inc. Gas generating device and carbon electrode for gas generation
KR101201587B1 (en) 2007-04-23 2012-11-14 미쓰이 가가쿠 가부시키가이샤 Gas generating device and carbon electrode for gas generation
JP2008287943A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Gas passage forming member for fuel cell and fuel cell
US20090029222A1 (en) * 2007-07-24 2009-01-29 Joongmyeon Bae Fuel cell with structured gas diffusion layer and manufacturing method of gas diffusion layer
WO2009096577A1 (en) * 2008-01-28 2009-08-06 Canon Kabushiki Kaisha Fuel cell unit and fuel cell stack
JP2009206076A (en) * 2008-01-28 2009-09-10 Canon Inc Fuel battery cell, and fuel cell stack
WO2009110467A1 (en) * 2008-03-04 2009-09-11 東邦テナックス株式会社 Carbon fiber paper and manufacturing method for the same
JP2009277503A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp Fuel cell, and fuel cell stack
JP5311586B2 (en) * 2008-10-28 2013-10-09 セイコーインスツル株式会社 Fuel cell and fuel cell system
WO2010050378A1 (en) * 2008-10-28 2010-05-06 セイコーインスツル株式会社 Fuel cell and fuel cell system
GB2477043B (en) * 2008-10-28 2013-09-04 Seiko Instr Inc Fuel cell and fuel cell system
JP5311587B2 (en) * 2008-10-28 2013-10-09 セイコーインスツル株式会社 Fuel cell and fuel cell system
GB2477043A (en) * 2008-10-28 2011-07-20 Seiko Instr Inc Fuel cell and fuel cell system
US9406951B2 (en) 2008-10-28 2016-08-02 Seiko Instruments Inc. Fuel cell and fuel cell system as described and claimed in
US9190674B2 (en) 2008-10-28 2015-11-17 Seiko Instruments Inc. Fuel cell and fuel cell system
WO2010050377A1 (en) * 2008-10-28 2010-05-06 セイコーインスツル株式会社 Fuel cell and fuel cell system
JP2010231922A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Fuel cell
JP2011065926A (en) * 2009-09-18 2011-03-31 Mitsubishi Rayon Co Ltd Porous carbon electrode base material and its manufacturing method
JP2012204236A (en) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd Fuel cell gas diffusion layer and manufacturing method thereof
WO2013151016A1 (en) * 2012-04-05 2013-10-10 日産自動車株式会社 Fuel cell
US10727511B2 (en) 2012-07-17 2020-07-28 Toyota Shatai Kabushiki Kaisha Fuel cell
US10326148B2 (en) 2012-10-19 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Fuel cell gas diffusion layer and method of manufacturing same
JP2015096464A (en) * 2014-12-16 2015-05-21 三菱レイヨン株式会社 Porous carbon electrode base material
US20170309928A1 (en) * 2016-04-26 2017-10-26 Hyundai Motor Company Fuel cell stack and method of manufacturing fuel cell stack
US10763519B2 (en) * 2016-04-26 2020-09-01 Hyundai Motor Company Fuel cell stack and method of manufacturing fuel cell stack
JP2020149843A (en) * 2019-03-13 2020-09-17 株式会社豊田中央研究所 Fuel cell system
JP7202226B2 (en) 2019-03-13 2023-01-11 株式会社豊田中央研究所 fuel cell system

Similar Documents

Publication Publication Date Title
JP2005038738A (en) Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell
JP4859334B2 (en) Carbon fiber electrode substrate for electrochemical cells
US6511768B1 (en) Electrode substrate for electrochemical cells based on low-cost manufacturing processes
EP3217456B1 (en) Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same
JP2010182681A (en) Porous electrode substrate and method for manufacturing the same
JP2010073699A (en) Water transport plate and its use method
CN107078310B (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
US20180219228A1 (en) Gas diffusion electrode
WO2005124907A1 (en) Porous electrode base material and process for producing the same
CN109314252B (en) Gas diffusion electrode and fuel cell
EP3389123B1 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
TWI794685B (en) Gas Diffusion Layers for Fuel Cells
JP2018018665A (en) Gas diffusion layer base material and method of manufacturing the same
CN110024193B (en) Gas diffusion electrode and method for producing same
KR20120023584A (en) Method for preparing carbon substrate comprising activated carbon fiber, carbon substrate prepared thereby
JP2004311431A (en) Porous carbon board and its manufacturing method
CN115315835A (en) Method for producing gas diffusion electrode base material
KR20180053680A (en) Gas diffusion electrode and manufacturing method thereof
JP4559767B2 (en) Carbon electrode substrate manufacturing method
CN112740446A (en) Gas diffusion layer, membrane electrode assembly, and fuel cell
KR102591887B1 (en) Carbon sheet, gas diffusion electrode substrate, winding body, and fuel cell
KR20190103175A (en) Gas Diffusion Electrodes and Fuel Cells
JP2010257748A (en) Porous electrode base material and method of manufacturing the same
JP5790186B2 (en) Method for producing gas diffusion electrode substrate