JP2015096464A - Porous carbon electrode base material - Google Patents

Porous carbon electrode base material Download PDF

Info

Publication number
JP2015096464A
JP2015096464A JP2014253881A JP2014253881A JP2015096464A JP 2015096464 A JP2015096464 A JP 2015096464A JP 2014253881 A JP2014253881 A JP 2014253881A JP 2014253881 A JP2014253881 A JP 2014253881A JP 2015096464 A JP2015096464 A JP 2015096464A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon electrode
resin
electrode substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014253881A
Other languages
Japanese (ja)
Other versions
JP6172131B2 (en
Inventor
浜田 光夫
Mitsuo Hamada
光夫 浜田
中村 誠
Makoto Nakamura
誠 中村
三原 和茂
Kazushige Mihara
和茂 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014253881A priority Critical patent/JP6172131B2/en
Publication of JP2015096464A publication Critical patent/JP2015096464A/en
Application granted granted Critical
Publication of JP6172131B2 publication Critical patent/JP6172131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a porous carbon electrode base material having suppressed formation of open holes.SOLUTION: There is provided a sheet shape porous carbon electrode base material having the number of open holes having length of a major axis of 1 mm or more of 0.2 or less per 1 m. The porous carbon electrode base material has a thickness of 0.05 to 0.4 mm, bulk density of 0.3 to 0.8 g/cm, flexural strength of 30 MPa or more, flexural deflection of 1.5 mm or more and area of 15 mor more, and is wound by paper tube having length of 50 m or more and outer diameter of 180 mm, the porous carbon electrode base material is constituted by carbon short fiber and carbide derived from a thermosetting resin binding the fiber short fibers to each other, the content of the carbide derived from the thermosetting resin is 20 to 60 mass%.

Description

本発明は、固体高分子型燃料電池に用いる多孔質炭素電極基材およびその製造方法に関する。   The present invention relates to a porous carbon electrode substrate used for a polymer electrolyte fuel cell and a method for producing the same.

固体高分子型燃料電池に用いられる多孔質炭素電極基材は、電極反応に関わる物質の拡散性、高い導電性といった特性が求められている。また、これら機能の他に電極部材の加工性を高めるために、長尺のロール形態の多孔質炭素電極基材が求められている。このような多孔質炭素電極基材の製造方法としては、特許文献1および2に、炭素短繊維を主成分とする炭素繊維紙に熱硬化性樹脂を含浸させ、得られた樹脂含浸紙を連続で加熱プレス成型し、焼成する方法が開示されている。   A porous carbon electrode base material used for a polymer electrolyte fuel cell is required to have characteristics such as diffusibility of a substance involved in electrode reaction and high conductivity. Moreover, in order to improve the workability of an electrode member in addition to these functions, a porous carbon electrode substrate in the form of a long roll is required. As a method for producing such a porous carbon electrode substrate, Patent Documents 1 and 2 describe that carbon fiber paper mainly composed of carbon short fibers is impregnated with a thermosetting resin, and the obtained resin-impregnated paper is continuously used. Discloses a method of heat press molding and firing.

国際公開第01/056103号パンフレットInternational Publication No. 01/056103 Pamphlet 国際公開第02/006032号パンフレットInternational Publication No. 02/006032 Pamphlet

しかしながら、特許文献1および2に開示されている製造方法により多孔質炭素電極基材を製造した場合、焼成工程において多孔質炭素電極基材に貫通孔が形成される。このような貫通孔を含む多孔質炭素電極基材は、撥水処理などの後加工で斑が形成される問題が発生する。さらに、貫通孔を含む多孔質炭素電極基材を燃料電池に組み込んだ場合、面内で不均一な発電が生じる。面内の不均一な発電は、電解質膜の劣化を促進するため、燃料電池の耐久性にも悪影響を与えてしまう。すなわち、貫通孔が存在する箇所を燃料電池用の多孔質炭素電極基材として使用することは避けざるを得ないが、製造した多孔質炭素電極基材に多数の貫通孔があると、歩留まりが低下する。   However, when a porous carbon electrode substrate is manufactured by the manufacturing methods disclosed in Patent Documents 1 and 2, through holes are formed in the porous carbon electrode substrate in the firing step. The porous carbon electrode base material including such through-holes has a problem that spots are formed by post-processing such as water repellent treatment. Furthermore, when a porous carbon electrode substrate including through holes is incorporated in a fuel cell, non-uniform power generation occurs in the plane. In-plane non-uniform power generation promotes deterioration of the electrolyte membrane, and thus adversely affects the durability of the fuel cell. In other words, it is inevitable to use the portion where the through hole exists as a porous carbon electrode base material for a fuel cell. However, if the manufactured porous carbon electrode base material has a large number of through holes, the yield is increased. descend.

本発明の目的は、貫通孔の形成が抑制された多孔質炭素電極基材およびその製造方法を提供することにある。   An object of the present invention is to provide a porous carbon electrode base material in which formation of through holes is suppressed and a method for producing the same.

本発明は、(a)炭素短繊維から有機高分子化合物としてパルプ状物10〜50質量%を含む炭素繊維紙を得る工程と、
(b)前記炭素繊維紙に熱硬化性樹脂を含浸させて、樹脂含浸紙を得る工程と、
(c)前記樹脂含浸紙を加熱プレス成形して、樹脂硬化シートを得る工程と、
(d)前記樹脂硬化シートを不活性雰囲気下の焼成炉内に走行させて、該焼成炉の下部で排気しつつ、前記樹脂硬化シートを焼成する工程と
を有し、前記焼成炉の幅に対する樹脂硬化シートの幅の比率(シート幅比率)が90%以下であって、前記シート幅比率が45%以下の樹脂硬化シートの少なくとも2枚を並べて、前記焼成炉内に走行させる多孔質炭素電極基材の製造方法である。
The present invention includes (a) a step of obtaining carbon fiber paper containing 10 to 50% by mass of a pulp-like material as an organic polymer compound from short carbon fibers;
(B) impregnating the carbon fiber paper with a thermosetting resin to obtain a resin-impregnated paper;
(C) heat press molding the resin-impregnated paper to obtain a resin-cured sheet;
(D) running the resin-cured sheet into a firing furnace under an inert atmosphere and firing the resin-cured sheet while exhausting at a lower portion of the firing furnace, and with respect to the width of the firing furnace Porous carbon electrode in which at least two resin cured sheets having a width ratio (sheet width ratio) of 90% or less and a sheet width ratio of 45% or less are arranged and run in the firing furnace. It is a manufacturing method of a base material.

本発明は、シート状の多孔質炭素電極基材であって、1mm以上の長径を有する貫通孔の個数が、1m2あたり0.2個以下である多孔質炭素電極基材である。 The present invention is a sheet-like porous carbon electrode substrate, wherein the number of through-holes having a major axis of 1 mm or more is 0.2 or less per m 2 .

本発明によれば、貫通孔の形成が抑制された多孔質炭素電極基材およびその製造方法が提供される。この多孔質炭素電極基材は、電池発電特性や後加工の生産性向上に寄与する。   ADVANTAGE OF THE INVENTION According to this invention, the porous carbon electrode base material with which formation of the through-hole was suppressed and its manufacturing method are provided. This porous carbon electrode base material contributes to improving battery power generation characteristics and post-processing productivity.

<多孔質炭素電極基材の製造方法>
本発明では、以下の工程を有する方法により多孔質炭素電極基材を製造するが、このとき、焼成炉の幅に対する樹脂硬化シートの幅の比率(シート幅比率)が、90%以下であることが必須である。
工程(a):炭素短繊維から炭素繊維紙を得る。
工程(b):前記炭素繊維紙に熱硬化性樹脂を含浸させて、樹脂含浸紙を得る。
工程(c):前記樹脂含浸紙を加熱プレス成形して、樹脂硬化シートを得る。
工程(d):前記樹脂硬化シートを不活性雰囲気下の焼成炉内に走行させて、前記樹脂硬化シートを焼成する。
<Method for producing porous carbon electrode substrate>
In the present invention, a porous carbon electrode substrate is produced by a method having the following steps. At this time, the ratio of the width of the cured resin sheet to the width of the firing furnace (sheet width ratio) is 90% or less. Is essential.
Step (a): Carbon fiber paper is obtained from carbon short fibers.
Step (b): The carbon fiber paper is impregnated with a thermosetting resin to obtain a resin-impregnated paper.
Step (c): The resin-impregnated paper is hot press-molded to obtain a cured resin sheet.
Step (d): The cured resin sheet is fired by running the cured resin sheet in a firing furnace under an inert atmosphere.

(工程(a):炭素繊維紙の製造)
工程(a)で炭素繊維紙を製造する方法としては、液体の媒体中に炭素短繊維を分散させて抄造する湿式法や、空気中に炭素短繊維を分散させて降り積もらせる乾式法が適用できるが、中でも湿式法が好ましい。工程(a)は、連続的に行われる。
(Process (a): Production of carbon fiber paper)
As a method for producing carbon fiber paper in the step (a), a wet method in which carbon short fibers are dispersed in a liquid medium and paper making, or a dry method in which carbon short fibers are dispersed in air and applied are applied. Among them, the wet method is preferable. Step (a) is performed continuously.

炭素繊維紙に含まれる炭素短繊維は、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれであっても良いが、機械的強度が比較的高いポリアクリロニトリル系炭素繊維が好ましい。なお、ポリアクリロニトリル系炭素繊維とは、原料としてアクリロニトリルを主成分とするポリマーを用いて製造されるものである。具体的には、アクリロニトリル系繊維を紡糸する製糸工程;200〜400℃の空気雰囲気中でアクリロニトリル系繊維を加熱焼成して酸化繊維に転換する耐炎化工程;窒素、アルゴン、ヘリウム等の不活性雰囲気中でさらに300〜2500℃に加熱して炭化する炭化工程;を経て得られる炭素繊維であり、複合材料強化繊維として好適に使用できるものである。そのため、他の炭素繊維に比べて強度が強く、機械的強度の強い炭素繊維紙を形成することができる。ポリアクリロニトリル系炭素繊維は、多孔質炭素電極基材の機械特性維持の観点から、炭素繊維紙中に50質量%以上含まれることが好ましく、70質量%以上含まれることがより好ましい。特に、用いる炭素単繊維が、ポリアクリロニトリル系炭素繊維のみであることが好ましい。   The short carbon fibers contained in the carbon fiber paper may be any of polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, etc., but polyacrylonitrile-based carbon fibers having relatively high mechanical strength are preferred. The polyacrylonitrile-based carbon fiber is produced using a polymer mainly composed of acrylonitrile as a raw material. Specifically, a spinning process for spinning acrylonitrile fibers; a flameproofing process in which acrylonitrile fibers are heated and fired in an air atmosphere at 200 to 400 ° C. to convert them into oxidized fibers; an inert atmosphere such as nitrogen, argon, or helium It is a carbon fiber obtained through a carbonization step in which it is further heated to 300 to 2500 ° C. and carbonized, and can be suitably used as a composite material reinforcing fiber. Therefore, it is possible to form a carbon fiber paper that has higher strength and higher mechanical strength than other carbon fibers. From the viewpoint of maintaining the mechanical properties of the porous carbon electrode substrate, the polyacrylonitrile-based carbon fiber is preferably contained in the carbon fiber paper by 50% by mass or more, and more preferably by 70% by mass or more. In particular, it is preferable that the carbon single fiber to be used is only a polyacrylonitrile-based carbon fiber.

炭素短繊維の平均繊維長は、多孔質炭素電極基材の強度や均一な分散性の観点から、2〜18mmにすることが好ましく、2〜10mmとすることがより好ましく、3〜6mmとすることがさらに好ましい。炭素短繊維の平均繊維長を2mm以上とすることで、炭素短繊維同士の絡み合いが起こるようになり、多孔質炭素電極基材の強度が強くなる。また、炭素短繊維の平均繊維長を18mm以下とすることで、炭素短繊維の分散媒体中への分散性が良好となり、炭素繊維紙における分散斑が少なくなる。   The average fiber length of the short carbon fibers is preferably 2 to 18 mm, more preferably 2 to 10 mm, and more preferably 3 to 6 mm from the viewpoint of the strength and uniform dispersibility of the porous carbon electrode substrate. More preferably. By setting the average fiber length of the short carbon fibers to 2 mm or more, the short carbon fibers are entangled with each other, and the strength of the porous carbon electrode base material is increased. Moreover, the dispersibility in the dispersion medium of a carbon short fiber becomes favorable because the average fiber length of a carbon short fiber shall be 18 mm or less, and the dispersion spot in carbon fiber paper decreases.

炭素短繊維を分散させる液体の媒体としては、工業的に安価に使用できる水が好ましい。   The liquid medium in which the short carbon fibers are dispersed is preferably water that can be used industrially at low cost.

炭素短繊維から炭素繊維紙は、バインダーとして有機高分子化合物を含むことが好ましい。有機高分子化合物としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ポリエステル、ポリプロピレン、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル樹脂、ポリウレタン樹脂などの熱可塑性樹脂やフェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂などの熱硬化樹脂の他、熱可塑性エラストマー、ブタジエン・スチレン共重合体(SBR)、ブタジエン・アクリロニトリル共重合体(NBR)等のエラストマー、ゴム、セルロースなどを用いることができる。有機高分子化合物は、1種類を単独で用いても良いし、2種類以上併用することもできる。   The short carbon fiber to carbon fiber paper preferably contains an organic polymer compound as a binder. Examples of the organic polymer compound include polyvinyl alcohol (PVA), polyvinyl acetate, polyester, polypropylene, polyethylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, acrylic resin, polyurethane resin, and other thermoplastic resins, phenol resins, epoxy resins, Thermosetting resins such as melamine resin, urea resin, alkyd resin, unsaturated polyester resin, acrylic resin, polyurethane resin, thermoplastic elastomer, butadiene / styrene copolymer (SBR), butadiene / acrylonitrile copolymer (NBR) Elastomer such as rubber, rubber, cellulose and the like can be used. One organic polymer compound may be used alone, or two or more organic polymer compounds may be used in combination.

有機高分子化合物の形態としては、パルプ状物や短繊維が適している。ここでいうパルプ状物とは、繊維状の幹から直径が数μm以下のフィブリルを多数分岐した構造で、このパルプ状物を用いたシート状物は繊維同士の絡み合いが効率よく形成されており、薄いシート状物であってもその取り扱い性に優れているという特徴を有している。また、短繊維とは、繊維糸または繊維のトウを所定の長さにカットして得られるものである。短繊維の長さは、バインダーとしての結着性や分散性の点から、2〜12mmが好ましい。   As the form of the organic polymer compound, pulp-like materials and short fibers are suitable. The pulp-like material referred to here is a structure in which a large number of fibrils having a diameter of several μm or less are branched from a fibrous trunk, and in the sheet-like material using this pulp-like material, the entanglement of fibers is efficiently formed. Even if it is a thin sheet-like product, it has a feature that it is excellent in handleability. The short fiber is obtained by cutting fiber yarns or fiber tows into a predetermined length. The length of the short fiber is preferably 2 to 12 mm from the viewpoint of binding properties and dispersibility as a binder.

有機高分子化合物としては、ポリビニルアルコール、ポリエチレン、ポリアクリロニトリル、セルロースまたはポリ酢酸ビニルのパルプ状物または短繊維が好ましい。これらの有機高分子化合物は抄紙工程での結着力に優れるため、これらの有機高分子化合物を用いることで炭素短繊維の脱落が少なくなる。また、これら有機高分子化合物は、多孔質炭素電極基材を製造する最終段階の炭素化過程で大部分が分解・揮発してしまい、空孔を形成する。この空孔の存在により、水およびガスの透過性が向上する。   The organic polymer compound is preferably a polyvinyl alcohol, polyethylene, polyacrylonitrile, cellulose or polyvinyl acetate pulp or short fiber. Since these organic polymer compounds are excellent in binding power in the papermaking process, the use of these organic polymer compounds reduces the loss of short carbon fibers. In addition, most of these organic polymer compounds are decomposed and volatilized in the final carbonization process for producing the porous carbon electrode substrate to form pores. The presence of these pores improves water and gas permeability.

炭素繊維紙における有機高分子化合物の含有率は、5〜60質量%とすることが好ましく、10〜50質量%とすることがより好ましい。炭素繊維紙に後述する熱硬化性樹脂を含浸し、焼成して得られる多孔質炭素電極基材の電気抵抗を低くするためには、有機高分子化合物の含有量は少ない方がよいことから、炭素繊維紙における有機高分子化合物の含有率は60質量%以下が好ましい。炭素繊維紙の強度および形状を保つという観点から、炭素繊維紙における有機高分子化合物の含有率は5質量%以上が好ましい。   The content of the organic polymer compound in the carbon fiber paper is preferably 5 to 60% by mass, and more preferably 10 to 50% by mass. In order to lower the electrical resistance of the porous carbon electrode substrate obtained by impregnating the carbon fiber paper with a thermosetting resin described later and firing, it is better that the content of the organic polymer compound is smaller, The content of the organic polymer compound in the carbon fiber paper is preferably 60% by mass or less. From the viewpoint of maintaining the strength and shape of the carbon fiber paper, the content of the organic polymer compound in the carbon fiber paper is preferably 5% by mass or more.

(工程(b):含浸)
炭素繊維紙に含浸させる熱硬化性樹脂としては、常温において粘着性または流動性を示す樹脂で、かつ炭素化後も導電性物質として残存する物質が好ましく、フェノール樹脂、フラン樹脂等を用いることができる。フェノール樹脂としては、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプのフェノール樹脂を用いることができる。また、レゾールタイプの流動性フェノール樹脂に、公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできる。ただし、この場合、硬化剤として例えばヘキサメチレンジアミンを含有した、自己架橋タイプとすることが好ましい。フェノール樹脂として、市販品を利用することも可能である。なお、フェノール類としては、例えば、フェノール、レゾルシン、クレゾール、キシロール等が用いられる。アルデヒド類としては、例えば、ホルマリン、パラホルムアルデヒド、フルフラール等が用いられる。また、これらを混合物として用いることができる。
(Process (b): Impregnation)
The thermosetting resin impregnated into the carbon fiber paper is preferably a resin that exhibits adhesiveness or fluidity at room temperature and remains as a conductive material even after carbonization, and a phenol resin, a furan resin, or the like is used. it can. As the phenol resin, a resol-type phenol resin obtained by a reaction between phenols and aldehydes in the presence of an alkali catalyst can be used. In addition, a novolac type phenolic resin which shows a solid heat-fusible property and is produced by the reaction of phenols and aldehydes under an acidic catalyst by a known method can be dissolved and mixed in the resol type flowable phenolic resin. . However, in this case, it is preferable to use a self-crosslinking type containing, for example, hexamethylenediamine as a curing agent. A commercially available product can be used as the phenol resin. As phenols, for example, phenol, resorcin, cresol, xylol and the like are used. As aldehydes, for example, formalin, paraformaldehyde, furfural and the like are used. Moreover, these can be used as a mixture.

炭素繊維紙に熱硬化性樹脂を含浸させて得られる樹脂含浸紙における熱硬化性樹脂の含有率は、30〜70質量%であることが好ましい。熱硬化性樹脂の含有率を30質量%以上とすることで、得られる多孔質炭素電極基材の構造が密になり、強度が高くなる。また、熱硬化性樹脂の含有率を70質量%以下とすることで、得られる多孔質炭素電極基材の空孔率およびガス透過性を良好に保つことができる。なお、樹脂含浸紙とは、加熱加圧前の、炭素繊維紙に熱硬化性樹脂を含浸したものをいうが、樹脂含浸の際に溶媒を用いた場合には溶媒を除去したものをいう。   The content of the thermosetting resin in the resin-impregnated paper obtained by impregnating the carbon fiber paper with the thermosetting resin is preferably 30 to 70% by mass. By setting the content of the thermosetting resin to 30% by mass or more, the structure of the obtained porous carbon electrode substrate becomes dense and the strength becomes high. Moreover, the porosity and gas permeability of the obtained porous carbon electrode base material can be kept favorable by making the content rate of a thermosetting resin into 70 mass% or less. The resin-impregnated paper refers to a paper obtained by impregnating a carbon fiber paper with a thermosetting resin before heating and pressurization, but when the solvent is used at the time of resin impregnation, it means a paper from which the solvent is removed.

熱硬化性樹脂と導電性物質の混合物を炭素繊維紙に含浸させてもよい。導電性物質としては、炭素質ミルド繊維、カーボンブラック、アセチレンブラック、等方性黒鉛粉などが挙げられる。導電性物質の混合量は、熱硬化性樹脂に対して1〜10質量%が好ましい。導電性物質の混合量を1質量%以上とすることで、導電性改善の効果が十分になる。また、導電性物質の混合量が10質量%を超えても導電性改善の効果が飽和する傾向にあるので、導電性物質の混合量が10質量%以下とすることでコストアップを抑制することができる。   Carbon fiber paper may be impregnated with a mixture of a thermosetting resin and a conductive material. Examples of the conductive material include carbonaceous milled fiber, carbon black, acetylene black, and isotropic graphite powder. The mixing amount of the conductive substance is preferably 1 to 10% by mass with respect to the thermosetting resin. By setting the mixing amount of the conductive substance to 1% by mass or more, the effect of improving the conductivity becomes sufficient. Moreover, since the effect of improving the conductivity tends to be saturated even if the mixing amount of the conductive material exceeds 10% by mass, the increase in cost can be suppressed by setting the mixing amount of the conductive material to 10% by mass or less. Can do.

熱硬化性樹脂と場合により導電性物質とを含む溶液を炭素繊維紙に含浸する方法としては、絞り装置を用いる方法、または別途作製した熱硬化性樹脂フィルムを炭素繊維紙に重ねる方法が好ましい。絞り装置を用いる方法では、含浸溶液に炭素繊維紙を含浸し、絞り装置で取り込み液が炭素繊維紙全体に均一に塗布されるようにし、液量は絞り装置のロール間隔を変えることで調節する方法である。溶液の粘度が比較的低い場合は、スプレー法等を用いることもできる。熱硬化樹脂フィルムを炭素繊維紙に重ねる方法では、まず熱硬化性樹脂と場合により導電性物質とを含む溶液を離型紙にコーティングし、熱硬化性樹脂フィルムとする。その後、炭素繊維紙に熱硬化性樹脂フィルムを積層して、加熱加圧処理を行い、熱硬化性樹脂を炭素繊維紙に含浸させる方法である。   As a method for impregnating carbon fiber paper with a solution containing a thermosetting resin and optionally a conductive material, a method using a squeezing device or a method of superimposing a separately prepared thermosetting resin film on carbon fiber paper is preferable. In the method using the squeezing device, the impregnation solution is impregnated with carbon fiber paper so that the intake liquid is uniformly applied to the entire carbon fiber paper with the squeezing device, and the liquid amount is adjusted by changing the roll interval of the squeezing device. Is the method. When the viscosity of the solution is relatively low, a spray method or the like can be used. In the method of superposing a thermosetting resin film on carbon fiber paper, first, a release paper is coated with a solution containing a thermosetting resin and optionally a conductive substance to obtain a thermosetting resin film. Thereafter, a thermosetting resin film is laminated on the carbon fiber paper, a heat and pressure treatment is performed, and the carbon fiber paper is impregnated with the thermosetting resin.

(工程(c):加熱プレス成形)
工程(c)では、樹脂含浸紙中の熱硬化性樹脂を硬化して、シート厚みを制御する重要な工程である。工程(c)は、生産性の観点から、連続的に行われる。
(Process (c): Heat press molding)
Step (c) is an important step of curing the thermosetting resin in the resin-impregnated paper and controlling the sheet thickness. Step (c) is continuously performed from the viewpoint of productivity.

使用するプレス装置としては、連続式加熱ロールプレス装置または一対のエンドレスベルトを備えた連続式加熱プレス装置(ダブルベルトプレス装置)を用いることが好ましい。加熱ロールプレス装置では、1組または2組以上の多段プレスを採用することができる。ダブルベルトプレス装置では、予熱段階で熱硬化性樹脂が軟化したところで樹脂含浸紙にほとんど張力をかけずにベルトで搬送することができるので、製造中の樹脂硬化シートの破壊が生じにくく、工程通過性に優れる。したがって、ダブルベルトプレス装置を用いることがより好ましい。   As a press apparatus to be used, it is preferable to use a continuous heating roll press apparatus or a continuous heating press apparatus (double belt press apparatus) provided with a pair of endless belts. In the heated roll press apparatus, one set or two or more sets of multi-stage presses can be adopted. In the double belt press machine, when the thermosetting resin is softened in the preheating stage, the resin-impregnated paper can be transported by a belt with almost no tension. Excellent in properties. Therefore, it is more preferable to use a double belt press apparatus.

加熱プレス前に予熱処理を行うことが好ましい。加熱プレス前に樹脂含浸紙に熱を加えて熱硬化性樹脂を一旦軟化させることで、炭素繊維紙に熱硬化性樹脂を良くなじませることができる。その上で加熱プレスを行うと、炭素短繊維同士の結着が効果的に行われ、機械特性に優れ、ハンドリング性の高い多孔質炭素電極基材を製造することができる。予熱処理において採用される加熱手段は、加熱ロールなどの伝熱加熱、加熱領域を設けた対流加熱、遠赤外線等の放射加熱のいずれか、またはそれらの組み合わせでも良いが、熱ロス低減の観点から、加熱ロール等を使用した伝熱加熱であることが好ましい。   It is preferable to perform a preheat treatment before the hot pressing. By applying heat to the resin-impregnated paper before the heat pressing to soften the thermosetting resin, the thermosetting resin can be well adapted to the carbon fiber paper. When heated and pressed, the short carbon fibers are effectively bound to each other, and a porous carbon electrode substrate having excellent mechanical properties and high handling properties can be produced. The heating means employed in the preheat treatment may be any one of heat transfer heating such as a heating roll, convection heating provided with a heating region, radiation heating such as far infrared rays, or a combination thereof, from the viewpoint of reducing heat loss. Heat transfer heating using a heating roll or the like is preferable.

樹脂含浸紙を2枚積層した樹脂含浸紙積層体を加熱プレス成形することが好ましい。積層する樹脂含浸紙の枚数が多くなるほど、1枚の炭素繊維紙の坪量を小さくすることができ、炭素繊維紙の表面状態は良好になる。ただし、3枚以上の樹脂含浸紙を積層すると、炭素繊維紙の生産性が低下するだけでなく、プレスミスが多くなる場合がある。   It is preferable to heat press-mold a resin-impregnated paper laminate in which two resin-impregnated papers are laminated. As the number of resin-impregnated papers to be laminated increases, the basis weight of one carbon fiber paper can be reduced, and the surface state of the carbon fiber paper becomes better. However, when three or more resin-impregnated papers are laminated, not only the productivity of carbon fiber paper is lowered, but also press errors may be increased.

得られる樹脂硬化シートは、ケイ素含有量が300ppm以下であることが好ましく、100ppm以下であることがより好ましい。樹脂硬化シートのケイ素含有量を300ppm以下にすることで、樹脂硬化シートを次の工程で焼成炉内に走行させた際に焼成炉壁にケイ素化合物が付着することを抑制することができる。なお、焼成炉壁にケイ素化合物が付着すると、走行している樹脂硬化シートの上にケイ素化合物が落ち、さらに高温で処理されることにより樹脂硬化シート中の炭素短繊維と反応し貫通孔が形成される。したがって、貫通孔の形成を抑制するためには、焼成炉内に持ち込むケイ素化合物の量を低減することが有効である。   The resulting cured resin sheet preferably has a silicon content of 300 ppm or less, and more preferably 100 ppm or less. By setting the silicon content of the resin cured sheet to 300 ppm or less, it is possible to suppress the silicon compound from adhering to the firing furnace wall when the cured resin sheet is run in the firing furnace in the next step. In addition, when a silicon compound adheres to the firing furnace wall, the silicon compound falls on the traveling resin cured sheet, and is further processed at a high temperature to react with carbon short fibers in the resin cured sheet to form through holes. Is done. Therefore, in order to suppress the formation of through holes, it is effective to reduce the amount of silicon compound brought into the firing furnace.

(工程(d):焼成)
工程(d)では、樹脂硬化シートを焼成する。具体的には、樹脂硬化シートを不活性雰囲気下の焼成炉内に走行させる。工程(d)は、連続的に行われる。
(Process (d): Firing)
In the step (d), the resin cured sheet is fired. Specifically, the resin cured sheet is run in a firing furnace under an inert atmosphere. Step (d) is performed continuously.

最終的に得られる多孔質炭素電極基材の機械特性や導電性の観点から、工程(d)は、最高温度が少なくとも600℃以上(好ましくは700℃以上)である熱処理する工程(予備炭素化工程)と、最高温度が少なくとも1500℃以上(好ましくは1600℃以上)である熱処理する工程(炭素化工程)とから構成されることが好ましい。   From the viewpoint of mechanical properties and conductivity of the finally obtained porous carbon electrode base material, the step (d) is a step of performing a heat treatment (preliminary carbonization) having a maximum temperature of at least 600 ° C (preferably 700 ° C or more). Step) and a heat treatment step (carbonization step) in which the maximum temperature is at least 1500 ° C. or higher (preferably 1600 ° C. or higher).

工程(d)において、焼成炉の幅に対する樹脂硬化シートの幅の比率(シート幅比率)が、90%以下であることが必須である。これは、焼成炉内の不活性気体が滞留することなくスムーズに排気される必要があるためである。シート幅比率が90%を超えると、樹脂硬化シートを挟んで上側と下側の不活性気体の循環が妨げられることになり、焼成炉内を浮遊しているケイ素含有化合物などの不純物が排気されずに濃縮してしまい、貫通孔が形成される要因となってしまう。   In the step (d), it is essential that the ratio of the width of the cured resin sheet to the width of the firing furnace (sheet width ratio) is 90% or less. This is because the inert gas in the firing furnace needs to be exhausted smoothly without stagnation. When the sheet width ratio exceeds 90%, the circulation of the inert gas on the upper and lower sides across the resin cured sheet is hindered, and impurities such as silicon-containing compounds floating in the firing furnace are exhausted. It will concentrate without becoming a factor that a through hole is formed.

また、シート幅比率が45%以下の樹脂硬化シートの少なくとも2枚を並べて、焼成炉内に走行させることがより好ましい。この方法であれば、焼成炉内の不活性気体が樹脂硬化シートの上側にも下側にも滞留することなく、不活性気体の置換がスムーズに行われ、ケイ素含有化合物の浮遊を抑制することができる。   More preferably, at least two resin cured sheets having a sheet width ratio of 45% or less are arranged side by side and run in a firing furnace. With this method, the inert gas in the baking furnace does not stay on the upper side or the lower side of the cured resin sheet, and the inert gas is smoothly replaced, thereby suppressing the floating of the silicon-containing compound. Can do.

工程(d)において、前記焼成炉におけるシート走行路の上方に、炭素材料で構成されるカバーシートを配置しておいて、その下方を樹脂硬化シートが連続的に走行して、焼成されることが好ましい。炭素材料としては、例えば、別途作製した多孔質炭素電極基材を用いることができる。走行させる樹脂硬化シートをカバーシートで覆うことで、ケイ素含有化合物の付着を防止することができ、貫通孔の形成を抑制することができる。   In the step (d), a cover sheet made of a carbon material is disposed above the sheet traveling path in the firing furnace, and the resin-cured sheet continuously travels under the cover sheet and fired. Is preferred. As the carbon material, for example, a separately prepared porous carbon electrode substrate can be used. By covering the traveling resin cured sheet with the cover sheet, adhesion of the silicon-containing compound can be prevented, and formation of through holes can be suppressed.

工程(d)では、炭素化炉の排気が下部排気であることが好ましい。上部排気では、排ガスダクトへ固形分および有機物が付着し、これが樹脂硬化シートに落下することで、貫通孔が形成される場合がある。   In the step (d), it is preferable that the exhaust of the carbonization furnace is a lower exhaust. In the upper exhaust, solid content and organic matter adhere to the exhaust gas duct, which may drop onto the resin cured sheet, thereby forming a through hole.

得られた多孔質炭素電極基材は、所望する幅にスリットして使用することもできる。その場合、加熱プレス成形工程を行った後の樹脂硬化シート、または焼成工程を経た後の多孔質炭素電極基材を、所望の幅にスリットすることが好ましい。回転ローラに設けられた受け刃と、円盤形状のスリット刃との協働によって、シートを切断する方式が好ましい。さらに、スリット直後に発生する切粉を吸引除去することが好ましい。   The obtained porous carbon electrode base material can be used by slitting to a desired width. In that case, it is preferable to slit the resin-cured sheet after the hot press molding step or the porous carbon electrode base material after the firing step to a desired width. A method of cutting the sheet by cooperation of a receiving blade provided on the rotating roller and a disk-shaped slit blade is preferable. Furthermore, it is preferable to suck and remove chips generated immediately after the slit.

<多孔質炭素電極基材>
(貫通孔について)
本発明の多孔質炭素電極基材は、連続したシート状であって、1mm以上の長径を有する貫通孔の個数が、1m2あたり0.2個以下であることが必須である。本発明においては、後加工で連続加工できるように、15m2以上の面積を有する連続したシート状であることが重要である。
<Porous carbon electrode substrate>
(About through holes)
The porous carbon electrode substrate of the present invention is a continuous sheet, and it is essential that the number of through holes having a major axis of 1 mm or more is 0.2 or less per 1 m 2 . In the present invention, it is important that the sheet is a continuous sheet having an area of 15 m 2 or more so that it can be continuously processed by post-processing.

貫通孔を含む多孔質炭素電極基材は、撥水処理などの後加工で斑が形成される問題が発生する。さらに、貫通孔を含む多孔質炭素電極基材を燃料電池に組み込んだ場合、面内で不均一な発電が生じる。面内の不均一な発電は、電解質膜の劣化を促進するため、燃料電池の耐久性にも悪影響を与えてしまう。したがって、貫通孔が存在する箇所を燃料電池用の多孔質炭素電極基材として使用することは避けざるを得ない。ただし、貫通孔が平均で0.2個/m2を越えて存在すると、燃料電池用の多孔質炭素電極基材の歩留まりが低下する。したがって、1mm以上の長径を有する貫通孔は、平均で0.2個/m2以下であることが必須であり、平均で0.1個/m2以下であることが好ましい。 The porous carbon electrode base material including the through holes has a problem that spots are formed by post-processing such as water repellent treatment. Furthermore, when a porous carbon electrode substrate including through holes is incorporated in a fuel cell, non-uniform power generation occurs in the plane. In-plane non-uniform power generation promotes deterioration of the electrolyte membrane, and thus adversely affects the durability of the fuel cell. Therefore, it is inevitable to use the portion where the through hole exists as a porous carbon electrode substrate for a fuel cell. However, if the number of through-holes exceeds 0.2 / m 2 on average, the yield of the porous carbon electrode substrate for fuel cells is lowered. Therefore, it is essential that the number of through-holes having a major axis of 1 mm or more is 0.2 / m 2 or less on average, and preferably 0.1 / m 2 or less on average.

(曲げ強度、曲げたわみについて)
本発明の多孔質炭素電極基材の厚みは、抵抗値の観点から、0.05〜0.4mmであることが好ましく、0.1〜0.3mmであることがより好ましい。多孔質炭素電極基材の厚みを0.05mm以上とすることで、厚み方向の強度が高くなり、セルスタックを組んだときのハンドリングに耐えられるようになる。また、多孔質炭素電極基材の厚みを0.4mm以下とすることで、その電気抵抗が低くなり、スタックを積層した際のトータルの厚みが小さくなる。
(About bending strength and bending deflection)
The thickness of the porous carbon electrode substrate of the present invention is preferably 0.05 to 0.4 mm, more preferably 0.1 to 0.3 mm, from the viewpoint of resistance value. By setting the thickness of the porous carbon electrode base material to 0.05 mm or more, the strength in the thickness direction becomes high, and the handling when the cell stack is assembled can be made. Moreover, by setting the thickness of the porous carbon electrode base material to 0.4 mm or less, the electrical resistance is lowered, and the total thickness when stacks are stacked is reduced.

本発明の多孔質炭素電極基材の嵩密度は、0.3〜0.8g/cm3であることが好ましく、0.4〜0.7g/cm3であることがより好ましい。多孔質炭素電極基材の嵩密度を0.3g/cm3以上とすることで、電気抵抗が低くなり、かつ満足できる柔軟性も得られる。また、多孔質炭素電極基材の嵩密度を0.8g/cm3以下とすることで、ガス透過性が良好になり、燃料電池の性能が向上する。 The bulk density of the porous carbon electrode substrate of the present invention is preferably from 0.3 to 0.8 g / cm 3, more preferably 0.4 to 0.7 g / cm 3. By setting the bulk density of the porous carbon electrode substrate to 0.3 g / cm 3 or more, the electric resistance is lowered and satisfactory flexibility can be obtained. Moreover, gas permeability becomes favorable and the performance of a fuel cell improves because the bulk density of a porous carbon electrode base material shall be 0.8 g / cm < 3 > or less.

本発明の多孔質炭素電極基材の曲げ強度は、歪み速度10mm/min、支点間距離2cm、試験片幅1cmの条件において、30MPa以上であることが好ましく、40MPa以上であることがより好ましい。多孔質炭素電極基材の曲げ強度を30MPa以上とすることで、取り扱いが容易になり、例えばロールに巻き取る際に割れにくくなるだけでなく、多孔質炭素電極基材の曲げの際に亀裂が生じないものとすることができる。   The bending strength of the porous carbon electrode substrate of the present invention is preferably 30 MPa or more, and more preferably 40 MPa or more, under the conditions of a strain rate of 10 mm / min, a fulcrum distance of 2 cm, and a test piece width of 1 cm. By making the bending strength of the porous carbon electrode substrate 30 MPa or more, handling becomes easy, for example, not only is it difficult to break when wound on a roll, but cracks are also generated when the porous carbon electrode substrate is bent. It may not occur.

本発明の多孔質炭素電極基材の曲げのたわみは、上記曲げ強度と同じ条件において、1.5mm以上であることが好ましく、2.0mm以上であることがより好ましい。多孔質炭素電極基材の曲げたわみが1.5mm以上とすることで、連続的にロールに巻き取る際に、割れにくく、長尺の多孔質炭素電極基材を作製・取り扱うことが容易になる。   The bending deflection of the porous carbon electrode substrate of the present invention is preferably 1.5 mm or more, and more preferably 2.0 mm or more under the same conditions as the bending strength. When the bending deflection of the porous carbon electrode substrate is 1.5 mm or more, it is difficult to break when continuously wound on a roll, and it becomes easy to produce and handle a long porous carbon electrode substrate. .

(紙管直径について)
本発明の多孔質炭素電極基材は、長さが50m以上であって、外径が180mmを超えない紙管に巻き取られていることが好ましい。多孔質炭素電極基材が長尺でロール状に巻き取ることができれば、その生産性が高くなるだけでなく、その後工程のMEA(Membrane/Electrode Assembly:膜電極集合体)製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。このためにも、外径が180mmを超えない紙管に巻き取り可能な程度に柔軟であることが好ましい。さらに、外径が180mmを超えない紙管に巻き取ることができれば、多孔質炭素電極基材としての製品形態をコンパクトにでき、梱包や輸送コストの面でも有利である。
(About paper tube diameter)
The porous carbon electrode substrate of the present invention is preferably wound around a paper tube having a length of 50 m or more and an outer diameter not exceeding 180 mm. If the porous carbon electrode substrate is long and can be wound in a roll shape, not only the productivity will be increased, but also the subsequent MEA (Membrane / Electrode Assembly) production will be performed continuously. Can greatly contribute to cost reduction of the fuel cell. For this reason, it is preferable that the outer diameter is flexible enough to be wound around a paper tube not exceeding 180 mm. Furthermore, if it can be wound on a paper tube whose outer diameter does not exceed 180 mm, the product form as the porous carbon electrode substrate can be made compact, which is advantageous in terms of packaging and transportation costs.

(熱硬化性樹脂由来の炭化物の含有率について)
本発明の多孔質炭素電極基材は、炭素短繊維と、熱硬化性樹脂由来の炭化物とから構成されており、炭素短繊維同士が熱硬化性樹脂由来の炭化物により結着されている構造であることが好ましい。炭化物は、熱硬化性樹脂由来であるが、熱硬化性樹脂の種類や炭素繊維紙への含浸量により、最終的に多孔質炭素電極基材に炭化物として残る割合が異なってくる。多孔質炭素電極基材を100質量%とした場合に、炭素短繊維分を除いた熱硬化樹脂由来の炭化物の含有率は、多孔質炭素電極基材中の炭素短繊維の結着や多孔質炭素電極基材柔軟性発現の観点から、20〜60質量%であることが好ましい。
(About the content of carbide derived from thermosetting resin)
The porous carbon electrode base material of the present invention is composed of short carbon fibers and carbides derived from thermosetting resins, and the carbon short fibers are bound together by carbides derived from thermosetting resins. Preferably there is. The carbide is derived from a thermosetting resin, but the ratio of the remaining carbon as a carbide on the porous carbon electrode base material varies depending on the type of thermosetting resin and the amount of carbon fiber paper impregnated. When the porous carbon electrode base material is 100% by mass, the content of the carbide derived from the thermosetting resin excluding the short carbon fiber content is the binding of carbon short fibers in the porous carbon electrode base material or the porous material. It is preferable that it is 20-60 mass% from a viewpoint of carbon electrode base-material flexibility expression.

以下、実施例により本発明をさらに具体的に説明する。なお、実施例で行った評価・検査の方法は、以下の通りである。   Hereinafter, the present invention will be described more specifically with reference to examples. The evaluation / inspection methods performed in the examples are as follows.

1)多孔質炭素電極基材の貫通孔の数
光源(京都電機器株式会社製、商品名:LST−40)の上方150mmの位置に多孔質炭素電極基材を通し、その透過光から目視で貫通孔を確認した。そして、確認された貫通孔のサイズを定規で測定し、最も長い径(長径)が1mm以上の貫通孔をカウントした。
1) Number of through-holes in porous carbon electrode base material The porous carbon electrode base material is passed through a position 150 mm above the light source (Kyoto Denki Co., Ltd., trade name: LST-40), and visually observed from the transmitted light. A through hole was confirmed. And the size of the confirmed through-hole was measured with the ruler, and the through-hole whose longest diameter (major axis) is 1 mm or more was counted.

2)多孔質炭素電極基材のケイ素含有量
多孔質電極基材2〜3gを投入したルツボにNa2CO3粉体0.2gを加え、ガスバーナーで溶融させた。そして、目視で溶融が全体に行き渡ったことを確認後、少なくとも5分以上加熱した。次いで、純水(Siが入っていないもの)を10ml加えて溶解させた後、50mlポリ製フラスコに移す作業を数回繰り返し、ポリ製メスフラスコで50mlに定容した。そして、ICP発光分析によりケイ素分析を行った。
2) Silicon content of porous carbon electrode base material 0.2 g of Na 2 CO 3 powder was added to a crucible charged with 2-3 g of the porous electrode base material and melted with a gas burner. And after visually confirming that the melting had spread throughout, it was heated for at least 5 minutes. Next, 10 ml of pure water (without Si) was added and dissolved, and then transferred to a 50 ml poly flask several times, and the volume was adjusted to 50 ml with a poly volumetric flask. Then, silicon analysis was performed by ICP emission analysis.

3)厚み
マイクロメータ(株式会社ミツトヨ製、商品名:MDC−25MJ)により、幅方向に5点測定し、その平均厚みを算出した。
3) Thickness Using a micrometer (trade name: MDC-25MJ, manufactured by Mitutoyo Corporation), five points were measured in the width direction, and the average thickness was calculated.

4)嵩密度
200mm×300mmサイズのサンプルを5枚切り出し、電子天秤にて秤量した。そして、3)で測定した平均厚みを使用して、嵩密度を算出した。
4) Bulk density Five 200 mm × 300 mm samples were cut out and weighed with an electronic balance. And the bulk density was computed using the average thickness measured by 3).

5)多孔質炭素電極基材の曲げ強度
曲げ強度試験装置を用いて測定した。支点間距離2cm、歪み速度10mm/minで10mm幅のサンプルに荷重をかけていき、荷重がかかり始めた点から試験片が破断したときの加圧くさびの破断荷重を測定して、次式より求めた。
5) Bending strength of porous carbon electrode substrate It measured using the bending strength test apparatus. Apply a load to a 10 mm wide sample at a fulcrum distance of 2 cm and a strain rate of 10 mm / min, and measure the breaking load of the pressure wedge when the test piece breaks from the point where the load began to be applied. Asked.

Figure 2015096464
Figure 2015096464

P=破断荷重(N)、L=支点間距離(mm)、W=サンプル幅(mm)、h=サンプル厚み(mm)
なお、連続サンプルについては、長手方向の値を測定した。
P = break load (N), L = distance between fulcrums (mm), W = sample width (mm), h = sample thickness (mm)
In addition, about the continuous sample, the value of the longitudinal direction was measured.

6)多孔質炭素電極基材の曲げたわみ
曲げ強度試験装置を用いて測定した。支点間距離2cm、歪み速度10mm/minで10mm幅のサンプルに荷重をかけていき、荷重がかかり始めた点から試験片が破断したときの加圧くさびの移動距離を測定して、その値を曲げたわみとした。
6) Bending Deflection of Porous Carbon Electrode Base Material It was measured using a bending strength test apparatus. A load is applied to a 10 mm wide sample at a fulcrum distance of 2 cm and a strain rate of 10 mm / min, and the moving distance of the pressure wedge when the test piece breaks from the point where the load starts to be applied is measured. It was bent and bent.

7)熱硬化性樹脂由来の炭化物の含有率
多孔質炭素電極基材を100質量%としたときに、炭素繊維分を除いた熱硬化樹脂由来の炭化物の含有率であり、以下の式により算出した。
7) Content of carbide derived from thermosetting resin The content of carbide derived from thermosetting resin excluding the carbon fiber content when the porous carbon electrode base material is 100% by mass, and is calculated by the following formula. did.

Figure 2015096464
C:多孔質炭素電極基材中の熱硬化性樹脂由来の炭化物の含有率(質量%)
Gw:多孔質炭素電極基材の目付(g/m2
Pw:炭素繊維紙の目付(g/m2
F:炭素繊維紙中の炭素繊維の割合(質量%)
Figure 2015096464
C: Content (% by mass) of carbide derived from the thermosetting resin in the porous carbon electrode substrate
Gw: basis weight of porous carbon electrode substrate (g / m 2 )
Pw: basis weight of carbon fiber paper (g / m 2 )
F: Ratio of carbon fiber in carbon fiber paper (mass%)

〔実施例1〕
平均繊維長3mmにカットしたポリアクリロニトリル系炭素短繊維(三菱レイヨン株式会社製、商品名:パイロフィルTR50S、平均単繊維径:7μm)、ポリビニルアルコール(PVA)短繊維(クラレ株式会社製、商品名:VBP105−1、繊維長3mm)、ポリエチレンパルプ(三井化学株式会社製、商品名:SWP)を用意した。ポリアクリロニトリル系炭素短繊維を湿式短網連続抄紙装置のスラリータンクで水中に均一に分散解繊し、十分に分散したところにPVA短繊維およびポリエチレンパルプを表1の組成になるように均一に分散し、送り出した。送り出されたウェブを短網板に通し、ドライヤー乾燥後、幅1000mm、坪量43g/m2のロール形態の炭素繊維紙を得た。
[Example 1]
Polyacrylonitrile carbon short fibers cut to an average fiber length of 3 mm (Mitsubishi Rayon Co., Ltd., trade name: Pyrofil TR50S, average single fiber diameter: 7 μm), polyvinyl alcohol (PVA) short fibers (Kuraray Co., Ltd., trade name: VBP105-1, fiber length 3 mm) and polyethylene pulp (trade name: SWP, manufactured by Mitsui Chemicals, Inc.) were prepared. Polyacrylonitrile-based short carbon fibers are uniformly dispersed and defibrated in water in a slurry tank of a wet short net continuous paper making machine, and when sufficiently dispersed, PVA short fibers and polyethylene pulp are uniformly dispersed so as to have the composition shown in Table 1. And sent out. The fed web was passed through a short mesh plate, and after drying the dryer, a carbon fiber paper in the form of a roll having a width of 1000 mm and a basis weight of 43 g / m 2 was obtained.

次に、炭素繊維紙をフェノール樹脂(DIC株式会社製、商品名:フェノライトJ−325)のメタノール溶液に浸漬し、炭素繊維紙100質量部に対し53質量部付着させ、さらに幅850mmにスリットして、フェノール樹脂を付着させた樹脂含浸紙を得た。この樹脂含浸紙をダブルベルトプレス装置を用いてプレス成形した。その際の条件としては、予熱条件を熱風温度150℃、予熱ロール温度を230℃、プレスロール温度を260℃、線圧を8×104N/mとした。その結果、幅850mm×長さ100mの樹脂硬化シートを得た。 Next, the carbon fiber paper is immersed in a methanol solution of phenol resin (manufactured by DIC Corporation, trade name: Phenolite J-325), 53 parts by mass are attached to 100 parts by mass of the carbon fiber paper, and further slit to a width of 850 mm. Thus, a resin-impregnated paper having a phenol resin attached thereto was obtained. This resin-impregnated paper was press-molded using a double belt press apparatus. As the conditions at that time, the preheating conditions were a hot air temperature of 150 ° C., a preheating roll temperature of 230 ° C., a press roll temperature of 260 ° C., and a linear pressure of 8 × 10 4 N / m. As a result, a cured resin sheet having a width of 850 mm and a length of 100 m was obtained.

得られた樹脂硬化シートを、窒素ガス雰囲気下の焼成炉(幅:1m)内を走行させて、140℃/minの昇温速度条件にて最高温度800℃で熱処理を行った。その後、さらに窒素ガス雰囲気下の焼成炉内を走行させて、最高温度2000℃で熱処理を行った。なお、樹脂硬化シートのシート幅比率は85%であった。こうして得られた長さ100mの多孔質炭素電極基材を幅400mmにスリットした後、外径172mmの紙管に巻き取った。得られた多孔質炭素電極基材の検査結果を表1および2に示した。また、多孔質炭素電極基材に含まれる熱硬化性樹脂由来の炭化物の含有率は、31質量%であった。   The obtained cured resin sheet was run in a firing furnace (width: 1 m) in a nitrogen gas atmosphere, and heat-treated at a maximum temperature of 800 ° C. under a temperature increase rate of 140 ° C./min. Then, it was further run in a firing furnace under a nitrogen gas atmosphere, and heat treatment was performed at a maximum temperature of 2000 ° C. The sheet width ratio of the resin cured sheet was 85%. The porous carbon electrode substrate having a length of 100 m thus obtained was slit into a width of 400 mm and then wound on a paper tube having an outer diameter of 172 mm. The inspection results of the obtained porous carbon electrode substrate are shown in Tables 1 and 2. Moreover, the content rate of the carbide | carbonized_material derived from the thermosetting resin contained in a porous carbon electrode base material was 31 mass%.

〔実施例2〕
実施例1と同様の方法で、幅1000mm、坪量34g/m2のロール形態の炭素繊維紙を得た。
[Example 2]
In the same manner as in Example 1, a carbon fiber paper in the form of a roll having a width of 1000 mm and a basis weight of 34 g / m 2 was obtained.

次に、炭素繊維紙をフェノール樹脂(DIC株式会社製、商品名:フェノライトJ−325)のメタノール溶液に浸漬し、炭素繊維紙100質量部に対し53質量部付着させさらに幅650mmにスリットして、フェノール樹脂を付着させた樹脂含浸紙を得た。この樹脂含浸紙をダブルベルトプレス装置を用いてプレスを行った。その際の条件としては、予熱条件として熱風温度を150℃、予熱ロール温度を230℃とし、プレスロール温度を260℃、線圧を8×104N/mとした。その結果、幅650mm×長さ100mの樹脂硬化シートを得た。 Next, carbon fiber paper is immersed in a methanol solution of phenol resin (manufactured by DIC Corporation, trade name: Phenolite J-325), and 53 parts by mass are attached to 100 parts by mass of carbon fiber paper, and further slit to a width of 650 mm. Thus, a resin-impregnated paper having a phenol resin attached thereto was obtained. This resin-impregnated paper was pressed using a double belt press. The preheating conditions were as follows: the hot air temperature was 150 ° C., the preheating roll temperature was 230 ° C., the press roll temperature was 260 ° C., and the linear pressure was 8 × 10 4 N / m. As a result, a cured resin sheet having a width of 650 mm and a length of 100 m was obtained.

得られた樹脂硬化シートを、窒素ガス雰囲気下の焼成炉(幅:1m)内を走行させて、140℃/minの昇温速度条件にて最高温度800℃で熱処理を行った。その後、さらに窒素ガス雰囲気下の焼成炉内を走行させて、最高温度2000℃で熱処理を行った。なお、樹脂硬化シートのシート幅比率は65%であった。こうして得られた長さ100mの多孔質炭素電極基材を幅300mmにスリットした後、外径172mmの紙管に巻き取った。得られた多孔質炭素電極基材の検査結果を表2に示した。また、多孔質炭素電極基材に含まれる熱硬化性樹脂由来の炭化物の含有率は、45質量%であった。   The obtained cured resin sheet was run in a firing furnace (width: 1 m) in a nitrogen gas atmosphere, and heat-treated at a maximum temperature of 800 ° C. under a temperature increase rate of 140 ° C./min. Then, it was further run in a firing furnace under a nitrogen gas atmosphere, and heat treatment was performed at a maximum temperature of 2000 ° C. The sheet width ratio of the cured resin sheet was 65%. The porous carbon electrode substrate having a length of 100 m thus obtained was slit to a width of 300 mm and then wound on a paper tube having an outer diameter of 172 mm. The inspection results of the obtained porous carbon electrode substrate are shown in Table 2. Moreover, the content rate of the carbide | carbonized_material derived from the thermosetting resin contained in a porous carbon electrode base material was 45 mass%.

〔比較例1〕
実施例1と同様の方法で、坪量43g/m2のロール形態の1000mm幅の炭素繊維紙を得た。
[Comparative Example 1]
In the same manner as in Example 1, a 1000 mm wide carbon fiber paper having a roll shape with a basis weight of 43 g / m 2 was obtained.

次に、炭素繊維紙を、フェノール樹脂(DIC株式会社製、商品名フェノライトJ−325)のメタノール溶液に浸漬し、炭素繊維紙100質量部に対し53質量部付着させ、さらに幅950mmにスリットして、フェノール樹脂を付着させた樹脂含浸紙を得た。この樹脂含浸紙をダブルベルトプレス装置を用いてプレスを行った。その際の条件としては、予熱条件として熱風温度を150℃、予熱ロール温度を230℃とし、プレスロール温度を260℃、線圧を8×104N/mとした。その結果、幅950mm×長さ100mの樹脂硬化シートを得た。 Next, the carbon fiber paper is immersed in a methanol solution of a phenol resin (manufactured by DIC Corporation, trade name Phenolite J-325), and 53 parts by mass is attached to 100 parts by mass of the carbon fiber paper, and further slit to a width of 950 mm. Thus, a resin-impregnated paper having a phenol resin attached thereto was obtained. This resin-impregnated paper was pressed using a double belt press. The preheating conditions were as follows: the hot air temperature was 150 ° C., the preheating roll temperature was 230 ° C., the press roll temperature was 260 ° C., and the linear pressure was 8 × 10 4 N / m. As a result, a cured resin sheet having a width of 950 mm and a length of 100 m was obtained.

得られた樹脂硬化シートを、窒素ガス雰囲気下の焼成炉(幅:1m)内を走行させて、140℃/minの昇温速度条件にて最高温度800℃で熱処理を行った。その後、さらに窒素ガス雰囲気下の焼成炉内を走行させて、最高温度2000℃で熱処理を行った。なお、樹脂硬化シートのシート幅比率は95%であった。こうして得られた長さ100mの多孔質炭素電極基材を幅400mmにスリットした後、外径172mmの紙管に巻き取った。得られた多孔質炭素電極基材の検査結果を表2に示した。また、多孔質炭素電極基材に含まれる熱硬化性樹脂由来の炭化物の含有率は、32質量%であった。   The obtained cured resin sheet was run in a firing furnace (width: 1 m) in a nitrogen gas atmosphere, and heat-treated at a maximum temperature of 800 ° C. under a temperature increase rate of 140 ° C./min. Then, it was further run in a firing furnace under a nitrogen gas atmosphere, and heat treatment was performed at a maximum temperature of 2000 ° C. The sheet width ratio of the resin cured sheet was 95%. The porous carbon electrode substrate having a length of 100 m thus obtained was slit into a width of 400 mm and then wound on a paper tube having an outer diameter of 172 mm. The inspection results of the obtained porous carbon electrode substrate are shown in Table 2. Moreover, the content rate of the carbide | carbonized_material derived from the thermosetting resin contained in a porous carbon electrode base material was 32 mass%.

Figure 2015096464
Figure 2015096464

Figure 2015096464
Figure 2015096464

Claims (5)

シート状の多孔質炭素電極基材であって、1mm以上の長径を有する貫通孔の個数が、1mあたり0.2個以下である多孔質炭素電極基材。 A porous carbon electrode substrate, which is a sheet-like porous carbon electrode substrate, wherein the number of through-holes having a major axis of 1 mm or more is 0.2 or less per 1 m 2 . 厚みが0.05〜0.4mmであり、嵩密度が0.3〜0.8g/cmであり、曲げ強度が30MPa以上であり、曲げたわみが1.5mm以上である請求項1に記載の多孔質炭素電極基材。 The thickness is 0.05 to 0.4 mm, the bulk density is 0.3 to 0.8 g / cm 3 , the bending strength is 30 MPa or more, and the bending deflection is 1.5 mm or more. Porous carbon electrode substrate. 15m以上の面積を有する請求項1または2に記載の多孔質炭素電極基材。 The porous carbon electrode substrate according to claim 1 or 2, having an area of 15 m 2 or more. 長さが50m以上であり、外径が180mmを超えない紙管に巻き取られている請求項1〜3のいずれかに記載の多孔質炭素電極基材。   The porous carbon electrode substrate according to any one of claims 1 to 3, wherein the porous carbon electrode substrate is wound around a paper tube having a length of 50 m or more and an outer diameter not exceeding 180 mm. 炭素短繊維と、前記炭素短繊維同士を結着させている、熱硬化性樹脂由来の炭化物とから構成されており、前記熱硬化性樹脂由来の炭化物の含有率が、20〜60質量%である請求項1〜4のいずれかに記載の多孔質炭素電極基材。   It is comprised from the carbon short fiber and the carbide | carbonized_material derived from the thermosetting resin which has bound the said carbon short fiber, The content rate of the carbide | carbonized_material derived from the said thermosetting resin is 20-60 mass%. The porous carbon electrode substrate according to any one of claims 1 to 4.
JP2014253881A 2014-12-16 2014-12-16 Porous carbon electrode substrate Active JP6172131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253881A JP6172131B2 (en) 2014-12-16 2014-12-16 Porous carbon electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253881A JP6172131B2 (en) 2014-12-16 2014-12-16 Porous carbon electrode substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009216889A Division JP5728802B2 (en) 2009-09-18 2009-09-18 Porous carbon electrode substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015096464A true JP2015096464A (en) 2015-05-21
JP6172131B2 JP6172131B2 (en) 2017-08-02

Family

ID=53373974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253881A Active JP6172131B2 (en) 2014-12-16 2014-12-16 Porous carbon electrode substrate

Country Status (1)

Country Link
JP (1) JP6172131B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059309A (en) * 2015-09-14 2017-03-23 日本バイリーン株式会社 Conductive porous body, solid polymer type fuel battery and method of manufacturing conductive porous body
KR20180087291A (en) 2015-12-11 2018-08-01 도레이 카부시키가이샤 Carbon sheet, gas diffusion electrode substrate and fuel cell
JP2019167650A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Method for cutting porous carbon substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270191A (en) * 2001-03-08 2002-09-20 Mitsubishi Rayon Co Ltd Carbon electrode material and manufacturing method thereof
JP2004152584A (en) * 2002-10-30 2004-05-27 Toray Ind Inc Gas diffuser, membrane-electrode junction, and fuel cell
JP2004259711A (en) * 2000-01-27 2004-09-16 Mitsubishi Rayon Co Ltd Carbon fiber paper and porous carbon electrode base material for fuel cells
JP2005038738A (en) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259711A (en) * 2000-01-27 2004-09-16 Mitsubishi Rayon Co Ltd Carbon fiber paper and porous carbon electrode base material for fuel cells
JP2002270191A (en) * 2001-03-08 2002-09-20 Mitsubishi Rayon Co Ltd Carbon electrode material and manufacturing method thereof
JP2004152584A (en) * 2002-10-30 2004-05-27 Toray Ind Inc Gas diffuser, membrane-electrode junction, and fuel cell
JP2005038738A (en) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059309A (en) * 2015-09-14 2017-03-23 日本バイリーン株式会社 Conductive porous body, solid polymer type fuel battery and method of manufacturing conductive porous body
KR20180087291A (en) 2015-12-11 2018-08-01 도레이 카부시키가이샤 Carbon sheet, gas diffusion electrode substrate and fuel cell
US11837732B2 (en) 2015-12-11 2023-12-05 Toray Industries, Inc. Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP2019167650A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Method for cutting porous carbon substrate
JP7087528B2 (en) 2018-03-23 2022-06-21 三菱ケミカル株式会社 Cutting method of porous carbon base material

Also Published As

Publication number Publication date
JP6172131B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5260581B2 (en) Porous electrode substrate and method for producing the same
KR100425889B1 (en) Porous Carbon Electrode Substrate
JP5485212B2 (en) Porous carbon electrode substrate and method for producing the same
JP2006040886A (en) Porous electrode substrate and its manufacturing method
WO2005124907A1 (en) Porous electrode base material and process for producing the same
JP6575281B2 (en) Winding method of porous carbon fiber sheet for polymer electrolyte fuel cell
JP7136252B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP4266699B2 (en) Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP6172131B2 (en) Porous carbon electrode substrate
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP5297701B2 (en) Method for producing electrode substrate for polymer electrolyte fuel cell
JP4345538B2 (en) Method for producing carbon fiber sheet
JP5398297B2 (en) Method for producing porous carbon electrode substrate
JP4801354B2 (en) Electrode base material for polymer electrolyte fuel cell and method for producing the same
JP2009280437A (en) Method for producing porous carbon sheet
JP5250328B2 (en) Method for producing carbonaceous electrode substrate
JP2006004858A5 (en)
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP2011040386A (en) Porous carbon electrode base material for fuel cell
JP5394426B2 (en) Porous carbon electrode substrate
JP5560977B2 (en) Method for producing porous carbon electrode substrate
JP2010182682A (en) Method for manufacturing porous electrode substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R151 Written notification of patent or utility model registration

Ref document number: 6172131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151