JP5398297B2 - Method for producing porous carbon electrode substrate - Google Patents

Method for producing porous carbon electrode substrate Download PDF

Info

Publication number
JP5398297B2
JP5398297B2 JP2009037839A JP2009037839A JP5398297B2 JP 5398297 B2 JP5398297 B2 JP 5398297B2 JP 2009037839 A JP2009037839 A JP 2009037839A JP 2009037839 A JP2009037839 A JP 2009037839A JP 5398297 B2 JP5398297 B2 JP 5398297B2
Authority
JP
Japan
Prior art keywords
paper
carbon
short fiber
porous carbon
phenol resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009037839A
Other languages
Japanese (ja)
Other versions
JP2010192379A (en
JP2010192379A5 (en
Inventor
誠 中村
光夫 浜田
和茂 三原
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009037839A priority Critical patent/JP5398297B2/en
Publication of JP2010192379A publication Critical patent/JP2010192379A/en
Publication of JP2010192379A5 publication Critical patent/JP2010192379A5/ja
Application granted granted Critical
Publication of JP5398297B2 publication Critical patent/JP5398297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Ceramic Products (AREA)
  • Paper (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、多孔質炭素電極基材及びその製造方法に関するものである。   The present invention relates to a porous carbon electrode substrate and a method for producing the same.

炭素繊維をベースとした多孔質炭素電極基材は、固体高分子型燃料電池用のガス拡散層に用いられる。ガス拡散層は、電極反応に使用される水素・酸素などの反応ガスを効率良く電極反応が行われる触媒層に運搬する必要がある。自動車用途など高い出力密度が要求される用途においては、電流密度が高い領域で燃料電池を運転するため、単位面積当たりに必要なガス量及び発生する水の量は増加する。従って、このような場合には、反応に必要なガスを効率よく供給し、反応による生成水を効率よく排出する点がポイントとなり、ガスの流れ、水の流れを制御することが重要となる。   A porous carbon electrode base material based on carbon fiber is used for a gas diffusion layer for a polymer electrolyte fuel cell. The gas diffusion layer needs to transport a reaction gas such as hydrogen and oxygen used for the electrode reaction to the catalyst layer where the electrode reaction is efficiently performed. In applications that require high power density, such as automobile applications, the fuel cell is operated in a region where the current density is high, so the amount of gas required per unit area and the amount of water generated increase. Therefore, in such a case, it is important to efficiently supply the gas necessary for the reaction and efficiently discharge the water produced by the reaction, and it is important to control the gas flow and the water flow.

上記課題に対して、特許文献1では、焼成時に焼失する繊維を混抄させることで面内にガスが広がりやすくなる多孔質炭素電極基材が記載されている。しかし、このような方法で製造された多孔質炭素電極基材は貫通方向に対して面方向のガス透過度が高すぎるため、生成水の排出効率が低下する。また、径の太い繊維を混抄しているため、凹凸が大きくなる。そのため、セルスタックを組んだとき他部材に損傷を与えることも懸念され、更なる改良が望まれる。   With respect to the above problem, Patent Document 1 describes a porous carbon electrode base material in which a gas easily spreads in a plane by mixing fibers that are burned off during firing. However, since the porous carbon electrode base material manufactured by such a method has a gas permeability in the plane direction that is too high with respect to the penetration direction, the discharge efficiency of the generated water is lowered. Moreover, since the fiber with a large diameter is mixed, unevenness becomes large. Therefore, there is a concern that other members may be damaged when the cell stack is assembled, and further improvement is desired.

また、特許文献2では、2層の緻密な層の間にかさ密度の小さい層を入れる方法が提案されている。圧縮残留歪みを抑制するために表層のかさ密度を高くしているが、これにより全体のガス透過性が低下するため、ガスの透過性、排水性の観点から不十分である。   Patent Document 2 proposes a method in which a layer having a low bulk density is placed between two dense layers. Although the bulk density of the surface layer is increased in order to suppress the compressive residual strain, this reduces the overall gas permeability, which is insufficient from the viewpoint of gas permeability and drainage.

また、特許文献3では、炭素繊維を配向させることでガス流路溝間部のガス拡散電極基材の面内方向における電気伝導性を高める方法が示されている。このような方法により、一方向の面内のガス透過度が高くなるが、貫通方向に対して面方向のガス透過度は十分に大きいとは言えず、更なる改良が望まれている。   Patent Document 3 discloses a method of increasing the electrical conductivity in the in-plane direction of the gas diffusion electrode base material between the gas flow channel grooves by orienting the carbon fibers. By such a method, the gas permeability in a plane in one direction is increased, but it cannot be said that the gas permeability in the plane direction is sufficiently large with respect to the penetration direction, and further improvement is desired.

特開2006−190518号公報JP 2006-190518 A 特開2007−176750号公報JP 2007-176750 A 特開2006−222024号公報JP 2006-222024 A

本発明は、燃料電池用のガス拡散層に用いた場合、燃料電池電極反応部に反応ガスを効率よく分配することができる多孔質炭素電極基材の製造方法を提供する。 The present invention provides a method for producing a porous carbon electrode substrate that can efficiently distribute a reaction gas to a fuel cell electrode reaction part when used in a gas diffusion layer for a fuel cell.

本発明に係る多孔質炭素電極基材の製造方法は、
2枚以上の炭素短繊維紙がフェノール樹脂炭化物を介して積層されてなる、炭素短繊維の繊維配向度が2〜5である多孔質炭素電極基材の製造方法であって、
(1)炭素短繊維とバインダーとを含む紙料を抄紙する工程、
(2)前記抄紙後の紙料を連続して抄紙用フェルトの間に挟んで0〜0.05MPaの圧力で押圧し、水分率を80〜85%とした後、乾燥して炭素短繊維紙を得る工程、
(3)2枚以上の前記炭素短繊維紙にフェノール樹脂を含浸し、積層する工程、
(4)前記積層した炭素短繊維紙を、加熱しながら5〜18MPa以下の圧力でプレスして前記フェノール樹脂を硬化した後、炭素化する工程、
とを有する方法である。
The method for producing a porous carbon electrode substrate according to the present invention comprises:
A method for producing a porous carbon electrode substrate in which two or more carbon short fiber papers are laminated via a phenolic resin carbide, and the degree of fiber orientation of the carbon short fibers is 2 to 5,
(1) A step of making a paper material containing short carbon fibers and a binder,
(2) The paper stock after paper making is continuously sandwiched between felts for paper making and pressed at a pressure of 0 to 0.05 MPa to make the moisture content 80 to 85%, and then dried to produce carbon short fiber paper. Obtaining a step,
(3) impregnating and laminating two or more carbon short fiber papers with a phenolic resin;
(4) A step of carbonizing the laminated short carbon fiber paper while pressing the phenol resin by pressing at a pressure of 5 to 18 MPa while heating,
It is the method which has these.

本発明に係る方法によれば、貫通方向と面方向のガス透過度が適正化された多孔質炭素電極基材を製造することができ、燃料電池用のガス拡散層に用いた場合、燃料電池電極反応部に反応ガスを効率よく分配することができる。   According to the method of the present invention, it is possible to manufacture a porous carbon electrode base material in which the gas permeability in the penetration direction and the plane direction is optimized, and when used in a gas diffusion layer for a fuel cell, the fuel cell The reaction gas can be efficiently distributed to the electrode reaction part.

本発明における抄紙後の紙料の押圧、乾燥工程を示す概略図である。It is the schematic which shows the press of the stock after papermaking in this invention, and a drying process. 面方向のガス透過度を測定するガス透過度測定装置の一例を示した図である。It is the figure which showed an example of the gas permeability measuring apparatus which measures the gas permeability of a surface direction. 最大面圧の測定方法において観測される圧力分布の様子を示した図である。It is the figure which showed the mode of the pressure distribution observed in the measuring method of the maximum surface pressure. 実施例1における樹脂硬化炭素短繊維紙の蛍光顕微鏡による断面写真を示した図である。It is the figure which showed the cross-sectional photograph by the fluorescence microscope of the resin hardening carbon short fiber paper in Example 1. FIG.

[多孔質炭素電極基材の製造方法]
本発明に係る多孔質炭素電極基材の製造方法は、
2枚以上の炭素短繊維紙がフェノール樹脂炭化物を介して積層されてなる、炭素短繊維の繊維配向度が2〜5である多孔質炭素電極基材の製造方法であって、
(1)炭素短繊維とバインダーとを含む紙料を抄紙する工程、
(2)前記抄紙後の紙料を連続して抄紙用フェルトの間に挟んで0〜0.05MPaの圧力で押圧し、水分率を80〜85%とした後、乾燥して炭素短繊維紙を得る工程、
(3)前記炭素短繊維紙にフェノール樹脂を含浸し、フェノール樹脂を含浸した2枚以上の炭素短繊維紙を積層する工程、
(4)前記積層した炭素短繊維紙を、加熱しながら5〜18MPa以下の圧力でプレスして前記フェノール樹脂を硬化した後、炭素化する工程、
とを有する方法である。
[Method for producing porous carbon electrode substrate]
The method for producing a porous carbon electrode substrate according to the present invention comprises:
A method for producing a porous carbon electrode substrate in which two or more carbon short fiber papers are laminated via a phenolic resin carbide, and the degree of fiber orientation of the carbon short fibers is 2 to 5,
(1) A step of making a paper material containing short carbon fibers and a binder,
(2) The paper stock after paper making is continuously sandwiched between felts for paper making and pressed at a pressure of 0 to 0.05 MPa to make the moisture content 80 to 85%, and then dried to produce carbon short fiber paper. Obtaining a step,
(3) pre-Symbol phenol resin impregnated into short carbon fiber paper, laminating two or more short carbon fiber paper impregnated with phenolic resin,
(4) A step of carbonizing the laminated short carbon fiber paper while pressing the phenol resin by pressing at a pressure of 5 to 18 MPa while heating,
It is the method which has these.

[工程(1):紙料の抄紙工程]
本発明に係る製造方法においては、まず、炭素短繊維とバインダーとを含む紙料を抄紙する。
[Process (1): Paper making process]
In the production method according to the present invention, first, a paper material containing short carbon fibers and a binder is made.

<炭素短繊維>
本発明で用いる炭素短繊維の原料である炭素繊維は、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維及びレーヨン系炭素繊維等が挙げられるが、ポリアクリロニトリル系炭素繊維が好ましい。特に、用いる炭素繊維がポリアクリロニトリル系炭素繊維のみとすることが多孔質炭素電極基材の機械的強度を比較的高くすることができるため、より好ましい。
<Short carbon fiber>
Examples of the carbon fiber that is a raw material of the short carbon fiber used in the present invention include polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, and rayon-based carbon fiber, and polyacrylonitrile-based carbon fiber is preferable. In particular, it is more preferable that the carbon fiber to be used is only polyacrylonitrile-based carbon fiber because the mechanical strength of the porous carbon electrode substrate can be made relatively high.

炭素短繊維の直径は、3〜9μmであることが、炭素短繊維の生産コスト、分散性の面から好ましい。また、4〜8μmであることが多孔質炭素電極基材の平滑性の面からより好ましい。炭素短繊維の繊維長は、2〜12mmであることが、分散性の観点から好ましい。   The diameter of the short carbon fiber is preferably 3 to 9 μm from the viewpoint of production cost and dispersibility of the short carbon fiber. Moreover, it is more preferable from the surface of the smoothness of a porous carbon electrode base material that it is 4-8 micrometers. The fiber length of the short carbon fibers is preferably 2 to 12 mm from the viewpoint of dispersibility.

<バインダー>
本発明の製造方法では、バインダーとしては、炭素短繊維との抄紙により炭素繊維紙中で各成分をつなぎとめる糊剤として働き、紙料を形成できる有機高分子化合物であれば、いずれも使用することができるが、特にポリビニルアルコールを用いることが好ましい。ポリビニルアルコールは、抄紙工程での結着力に優れるため炭素短繊維の脱落が少なく、バインダーとして好ましい。本発明では、ポリビニルアルコール等の親水性樹脂を繊維状として用いることも可能である。ポリビニルアルコール等の親水性樹脂は熱水中で膨潤し、乾燥後炭素繊維を結着するが、水分率が高いほど大きく膨潤する。本発明の方法では、抄紙下面に水分が集まるため、抄紙下面でポリビニルアルコール等の親水性樹脂が膨潤し、強く炭素繊維を結着する。
<Binder>
In the production method of the present invention, any binder can be used as long as it is an organic polymer compound that can function as a glue that holds each component in carbon fiber paper by paper making with short carbon fibers and can form a stock. However, it is particularly preferable to use polyvinyl alcohol. Polyvinyl alcohol is preferable as a binder because it has excellent binding power in the paper making process, and the short carbon fibers do not fall off. In the present invention, it is also possible to use a hydrophilic resin such as polyvinyl alcohol as a fiber. A hydrophilic resin such as polyvinyl alcohol swells in hot water and binds carbon fibers after drying. The higher the moisture content, the larger the swelling. In the method of the present invention, moisture collects on the lower surface of the paper making, so that a hydrophilic resin such as polyvinyl alcohol swells on the lower surface of the paper making and strongly binds the carbon fibers.

<紙料の抄紙方法>
本発明においては、抄紙方法は特に限定されないが、例えば湿式抄紙法により抄紙することができる。具体的には、炭素短繊維とバインダーとを含む紙料を水中に均一に分散させた後、湿式連続抄紙装置により連続的に抄紙することができる。水中に分散させる炭素短繊維とバインダーの質量比は、炭素短繊維/バインダー=70/30〜95/5であることが好ましい。また、紙料と水の質量比は、紙料/水=1/50〜1/1000であることが好ましい。抄紙後の紙料の水分率は、85〜90%であることが好ましい。本抄紙工程における抄紙後の紙料の水分率の調節は、フェルトの張りや分散液を漉きだした際の脱水の強さの調整等により行うことができる。
<Paper making method>
In the present invention, the papermaking method is not particularly limited, but papermaking can be performed by, for example, a wet papermaking method. Specifically, after a paper stock containing carbon short fibers and a binder is uniformly dispersed in water, paper can be continuously produced by a wet continuous paper machine. The mass ratio of the short carbon fibers to be dispersed in water and the binder is preferably short carbon fibers / binder = 70/30 to 95/5. The mass ratio of the stock and water is preferably stock / water = 1/50 to 1/1000. The moisture content of the stock after paper making is preferably 85 to 90%. The moisture content of the stock after paper making in this paper making process can be adjusted by adjusting the strength of dehydration when the felt is spread or the dispersion liquid is sprinkled.

[工程(2):抄紙用フェルトによる押圧、乾燥工程]
次に、抄紙後の紙料を抄紙用フェルトの間に挟んで、0〜0.05MPaの圧力で押圧し、水分率を80〜85%とした後、乾燥して炭素短繊維紙を得る。
[Step (2): Pressing with paper felt, drying step]
Next, the paper stock after paper making is sandwiched between felts for paper making and pressed at a pressure of 0 to 0.05 MPa to make the moisture content 80 to 85%, and then dried to obtain carbon short fiber paper.

<抄紙用フェルト>
本発明の製造方法に用いる抄紙用フェルトは、水を多く含む抄紙後の紙料を移送する機能、押圧した際水分を搾り取る機能、面を平滑にする機能を有しているものが好ましい。例えば、日本フェルト株式会社製の抄紙用フェルトが挙げられる。
<Felt for papermaking>
The papermaking felt used in the production method of the present invention preferably has a function of transferring a paper stock after papermaking containing a lot of water, a function of squeezing moisture when pressed, and a function of smoothing the surface. For example, a papermaking felt manufactured by Nippon Felt Co., Ltd. can be mentioned.

<押圧の圧力>
本発明の製造方法では、前記抄紙後の紙料を抄紙用フェルトの間に挟んで0〜0.05MPaの圧力で押圧する。湿式抄紙法で得られる抄紙後の紙料は、水分を多く含んでいるため、乾燥する前に抄紙用フェルトの間に挟んで押圧し、水分率を調節する。
<Pressing pressure>
In the production method of the present invention, the paper material after paper making is sandwiched between felts for paper making and pressed at a pressure of 0 to 0.05 MPa. Since the paper stock after paper making obtained by the wet paper making method contains a lot of moisture, it is sandwiched and pressed between papermaking felts before drying to adjust the moisture content.

例えば、図1に示すように、抄紙後の紙料1を連続して抄紙用フェルト2で搬送し、2つのローラにより、抄紙用フェルト2を介して押圧する。   For example, as shown in FIG. 1, the paper stock 1 after papermaking is continuously conveyed by a papermaking felt 2 and pressed by the two rollers through the papermaking felt 2.

本発明における押圧の圧力は、0〜0.05MPaであり、好ましくは0〜0.02MPaである。押圧が0.05MPaをこえる場合は、水分率が本発明で規定する範囲より小さくなるだけでなく、抄紙用フェルト面に多く含まれている水分が紙料全体に広がり、バインダーの分布、最終的にはフェノール樹脂炭化物の分布が均一になるため、面方向のガス透過度を高くすることができない。ガス透過度が適正化された多孔質炭素電極基材を製造するためには、水分が抄紙用フェルト面に集まっていることが必須である。なお、抄紙後の紙料の水分率が本発明の範囲内であれば、押圧はしなくてもよい。   The pressing pressure in the present invention is 0 to 0.05 MPa, preferably 0 to 0.02 MPa. When the pressure exceeds 0.05 MPa, not only the moisture content is smaller than the range specified in the present invention, but also the moisture contained in the felt surface for papermaking spreads throughout the stock, the distribution of binder, and finally Since the distribution of the phenol resin carbide becomes uniform, the gas permeability in the surface direction cannot be increased. In order to produce a porous carbon electrode base material with an optimized gas permeability, it is essential that moisture is collected on the papermaking felt surface. If the moisture content of the stock after paper making is within the range of the present invention, it is not necessary to press.

また、一般的な紙の場合は、パルプ同士が十分に絡み合っているため抄紙用フェルトの間に挟んで押圧することに問題ないが、炭素繊維紙の場合は、紙がはがれたり抄紙用フェルトに貼り付いたりする場合があるため、ポリエチレンパルプ又はビニロン繊維を紙料に混合してもよい。一方、あらかじめ水分率を高くしておけば、バインダーが乾燥する際、炭素繊維とより強く接着するため、ポリエチレンパルプやビニロン繊維を混抄しなくても良い。   In the case of general paper, the pulp is sufficiently intertwined, so there is no problem with pressing between papermaking felts, but in the case of carbon fiber paper, the paper is peeled off or the papermaking felt is used. Since it may stick, polyethylene pulp or vinylon fiber may be mixed with the paper stock. On the other hand, if the moisture content is set high in advance, when the binder is dried, it adheres more strongly to the carbon fiber, so that it is not necessary to mix polyethylene pulp or vinylon fiber.

<水分率>
本発明の製造方法では、押圧後の紙料に含まれる水分率が80〜85%であることが必須である。水分率が80%より小さい場合は、乾燥させたときのバインダーの効きが弱いため炭素短繊維紙の強度が低く、また、好ましいガス透過度を有する多孔質炭素電極基材が得られない。水分率が85%より大きい場合は、十分に水が絞れていないため、乾燥のムラが生じやすい。
<Moisture content>
In the production method of the present invention, it is essential that the moisture content contained in the pressed paper is 80 to 85%. When the moisture content is less than 80%, the strength of the short carbon fiber paper is low because the effect of the binder when dried is low, and a porous carbon electrode substrate having a preferable gas permeability cannot be obtained. When the moisture content is larger than 85%, water is not sufficiently squeezed, and thus uneven drying tends to occur.

水分率は、前述したように押圧の圧力をコントロールすることで調整することができる。また、押圧しない場合(押圧の圧力:0MPa)には、抄紙用フェルトによる吸水により、水分率が80〜85%となるように調節する。   The moisture content can be adjusted by controlling the pressing pressure as described above. Moreover, when not pressing (pressing pressure: 0 MPa), the moisture content is adjusted to 80 to 85% by water absorption by the papermaking felt.

<水分率の測定方法>
水分率の測定は、抄紙後の紙料をサンプリングし、乾燥前後の質量を測定する方法と非接触式の水分計をラインにおいてモニターする方法があるが、本発明においては、前者の乾燥前後の質量を測定する方法で行う。水分率は、以下の式で算出される。
水分率(%)=(1−乾燥後の質量/乾燥前の質量)×100。
<Method for measuring moisture content>
The moisture content can be measured by sampling the paper stock after paper making and measuring the mass before and after drying and by monitoring a non-contact type moisture meter in the line. In the present invention, the former before and after drying. This is done by measuring the mass. The moisture content is calculated by the following formula.
Moisture content (%) = (1-mass after drying / mass before drying) × 100.

<乾燥>
前記押圧後、抄紙後の紙料を乾燥する。炭素短繊維と炭素短繊維とをバインダーでつなぎとめるためには、水分が残っている状態で熱を加えて乾燥する。熱を加えないで乾燥した場合は、バインダーが膨潤しないため、炭素短繊維紙の強度が弱くなり好ましくない。
<Dry>
After the pressing, the post-paper stock is dried. In order to connect the short carbon fiber and the short carbon fiber with a binder, heat is applied in the state where moisture remains, and the carbon short fiber is dried. When dried without applying heat, the binder does not swell, so the strength of the short carbon fiber paper becomes weak, which is not preferable.

前記乾燥は、例えば、図1に示すように、抄紙後の紙料1を押圧後、連続的に熱ロール3に接触させることで、水分を蒸発させることができる。熱ロール3の温度としては、安定に抄紙するための強度と伸度を保持できる観点から、100〜140℃が好ましい。前記乾燥工程により、炭素短繊維紙を得ることができる。   For example, as shown in FIG. 1, the drying can evaporate moisture by continuously pressing the stock 1 after paper making and then contacting the hot roll 3. The temperature of the hot roll 3 is preferably 100 to 140 ° C. from the viewpoint of maintaining strength and elongation for stable papermaking. Carbon short fiber paper can be obtained by the drying step.

[工程(3):フェノール樹脂の含浸、積層工程]
次に、2枚以上の前記炭素短繊維紙にフェノール樹脂を含浸し、積層する。
[Process (3): Impregnation with phenolic resin, lamination process]
Next, two or more carbon short fiber papers are impregnated with a phenol resin and laminated.

<フェノール樹脂>
本発明で用いるフェノール樹脂としては、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂を挙げることができる。
<Phenolic resin>
As a phenol resin used by this invention, the resol type phenol resin obtained by reaction of phenols and aldehydes in presence of an alkali catalyst can be mentioned.

レゾールタイプフェノール樹脂は、公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできる。この場合は硬化剤、例えばヘキサメチレンジアミンを含有した、自己架橋タイプのものが好ましい。   The resol type phenol resin can also be dissolved and mixed with a novolac type phenol resin which is produced by the reaction of phenols and aldehydes in the presence of an acidic catalyst by a known method and exhibits solid heat-fusibility. In this case, a self-crosslinking type containing a curing agent such as hexamethylenediamine is preferred.

前記フェノール類としては、例えば、フェノール、レゾルシン、クレゾール、キシレノール等が用いられる。前記アルデヒド類としては、例えばホルムアルデヒド(ホルマリン)、パラホルムアルデヒド、フルフラール等が用いられる。また、これらを混合物として用いることができる。フェノール樹脂として市販品を利用することも可能であり、例えば、「フェノライトJ−325」(商品名、DIC(株)製)等を用いることができる。   Examples of the phenols include phenol, resorcin, cresol, xylenol, and the like. Examples of the aldehydes include formaldehyde (formalin), paraformaldehyde, furfural and the like. Moreover, these can be used as a mixture. Commercially available products can also be used as the phenol resin, and for example, “Phenolite J-325” (trade name, manufactured by DIC Corporation) and the like can be used.

<フェノール樹脂の含浸方法>
炭素短繊維紙にフェノール樹脂を含浸する方法としては、炭素短繊維紙にフェノール樹脂を含浸させることができればよく、特段の制限はない。しかし、コーターを用いて炭素短繊維紙表面にフェノール樹脂を均一にコートする方法(例えば、キスコート法)、絞り装置を用いるdip−nip方法、もしくは炭素短繊維紙とフェノール樹脂を含んだ樹脂フィルムを重ねてフェノール樹脂を炭素短繊維紙に転写する方法が、連続的に行うことができ、生産性及び長尺ものも製造できるという点で好ましい。
<Impregnation method of phenol resin>
The method for impregnating the carbon short fiber paper with the phenol resin is not particularly limited as long as the carbon short fiber paper can be impregnated with the phenol resin. However, a method of uniformly coating a phenolic resin on the surface of carbon short fiber paper using a coater (for example, kiss coating method), a dip-nip method using a drawing device, or a resin film containing carbon short fiber paper and phenolic resin The method of transferring the phenol resin to the carbon short fiber paper in a superimposed manner is preferable in that it can be continuously performed and productivity and a long product can be manufactured.

<フェノール樹脂量>
炭素短繊維紙に含浸するフェノール樹脂の樹脂量は、炭素短繊維紙に含まれる炭素短繊維100質量部に対し、70〜150質量部とすることが好ましい。ガス透過度が高い多孔質炭素電極基材を製造するには、多孔質炭素電極基材中のフェノール樹脂炭化物の比率が25〜40質量%になるようにフェノール樹脂を含浸しておく必要があるため、70〜150質量部のフェノール樹脂を含浸させることが好ましい。
<Phenolic resin amount>
The resin amount of the phenol resin impregnated in the carbon short fiber paper is preferably 70 to 150 parts by mass with respect to 100 parts by mass of the carbon short fiber contained in the carbon short fiber paper. In order to produce a porous carbon electrode substrate having a high gas permeability, it is necessary to impregnate the phenol resin so that the ratio of the phenol resin carbide in the porous carbon electrode substrate is 25 to 40% by mass. Therefore, it is preferable to impregnate 70 to 150 parts by mass of phenol resin.

<炭素短繊維紙の積層>
本発明の炭素短繊維紙は、押圧をしない、又は極力小さくなるように制御しているため、片面のバインダーの接着力が強く、もう一方が弱い状態になる。このような場合、炭素短繊維紙を積層せずに焼成すると両面での収縮率に差が生じるため、シートが反る場合がある。このため、収縮率が対称になるように炭素短繊維紙を2枚以上積層することが必須である。
<Lamination of carbon short fiber paper>
Since the carbon short fiber paper of the present invention is controlled so as not to be pressed or to be as small as possible, the adhesive force of the binder on one side is strong and the other is weak. In such a case, if the carbon short fiber paper is baked without being laminated, a difference occurs in the shrinkage rate on both sides, and the sheet may be warped. For this reason, it is essential to laminate two or more carbon short fiber papers so that the shrinkage rate is symmetric.

また、本発明では、抄紙下面側が表面となるように炭素短繊維紙を積層することが好ましい。本発明の炭素短繊維紙は、抄紙下面でバインダーが大きく膨潤し、強く留められているため、最終製品としても抄紙下面側にフェノール樹脂炭化物が集まった状態となる。抄紙下面側が表面となるようにすることで、表層にフェノール樹脂炭化物が多く、内層にはフェノール樹脂炭化物が少ない構造となる。ガス透過度を適正化する、すなわち面内方向のガス透過度を高くするためには、多孔質炭素電極基材表層より内部のガス透過性が良い状態であることが好ましい。   Moreover, in this invention, it is preferable to laminate | stack carbon short fiber paper so that the papermaking lower surface side may become the surface. In the short carbon fiber paper of the present invention, the binder is greatly swollen and firmly held on the lower surface of the paper, so that the phenol resin carbide is collected on the lower surface of the paper as the final product. By making the papermaking lower surface side the surface, the surface layer has a large amount of phenol resin carbide, and the inner layer has a structure with less phenol resin carbide. In order to optimize the gas permeability, that is, to increase the gas permeability in the in-plane direction, it is preferable that the gas permeability inside is better than the surface layer of the porous carbon electrode substrate.

[工程(4):フェノール樹脂の硬化・炭素化工程]
前記フェノール樹脂を含浸した2枚以上の炭素短繊維紙を、加熱しながら5〜18MPaの圧力でプレスして該フェノール樹脂を硬化した後、炭素化する。
[Process (4): Phenolic resin curing and carbonization process]
Two or more carbon short fiber papers impregnated with the phenol resin are pressed at a pressure of 5 to 18 MPa while being heated to cure the phenol resin, and then carbonized.

<フェノール樹脂の硬化方法>
2枚以上積層された炭素短繊維紙に含まれるフェノール樹脂を硬化させる方法としては、上下両面から平滑な剛板にて熱プレスする方法や、連続ベルトプレス装置を用いてプレスする方法を用いることができる。これにより、フェノール樹脂を硬化させるだけでなく、炭素短繊維紙表面を平滑にすることができる。特に、連続ベルトプレス装置を用いてプレスする方法が、長尺の多孔質炭素電極基材を製造できる観点から好ましい。
<Phenolic resin curing method>
As a method of curing the phenolic resin contained in the carbon short fiber paper laminated two or more sheets, a method of hot pressing with a smooth rigid plate from both the upper and lower surfaces and a method of pressing using a continuous belt press device are used. Can do. Thereby, not only the phenol resin can be cured, but also the carbon short fiber paper surface can be made smooth. In particular, a method of pressing using a continuous belt press apparatus is preferable from the viewpoint of producing a long porous carbon electrode substrate.

連続ベルトプレス装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法と液圧ヘッドプレスにより面圧でプレスする方法があるが、後者の方がより平滑な多孔質炭素電極基材が得られるという点で好ましい。効果的に表面を平滑にするためには、フェノール樹脂が最も軟化する温度でプレスし、その後加熱又は冷却によりフェノール樹脂を固定する方法がより好ましい。   There are two methods of pressing in a continuous belt press device: a method of applying pressure to the belt with a roll press using a linear pressure and a method of pressing with a surface pressure using a hydraulic head press. The latter is a smoother porous carbon electrode substrate. This is preferable in that a material is obtained. In order to effectively smooth the surface, a method of pressing at a temperature at which the phenol resin is most softened and then fixing the phenol resin by heating or cooling is more preferable.

<プレス圧力>
2枚以上のフェノール樹脂を含浸した炭素短繊維紙をプレスする際の圧力としては、5〜18MPaである必要がある。プレス圧力が5MPaより低い場合は、2枚のシートが十分に接着されず剥離する。また、プレス圧力が18MPaより高い場合は、かさ密度が高くなり、ガス透過度が面方向、貫通方向ともに低くなるため好ましくない。好ましくは、プレス圧力は、7〜15MPaである。
<Pressing pressure>
The pressure for pressing the carbon short fiber paper impregnated with two or more phenolic resins needs to be 5 to 18 MPa. When the pressing pressure is lower than 5 MPa, the two sheets are not sufficiently bonded and peeled off. On the other hand, when the pressing pressure is higher than 18 MPa, the bulk density increases and the gas permeability decreases in both the surface direction and the penetration direction, which is not preferable. Preferably, the press pressure is 7 to 15 MPa.

なお、剛板に挟んで、また、連続ベルトプレス装置で炭素短繊維紙に含浸したフェノール樹脂の硬化を行う際は、剛板やベルトにフェノール樹脂が付着しないようにあらかじめ剥離剤を塗るか、又は炭素短繊維紙と剛板やベルトとの間に離型紙を挟んでプレスを行うことで、より表面の平滑化を行うことができるため好ましい。   In addition, when curing the phenolic resin impregnated in the carbon short fiber paper with a continuous belt press device sandwiched between rigid plates, apply a release agent in advance so that the phenolic resin does not adhere to the rigid plate or belt, Alternatively, it is preferable to perform press with a release paper sandwiched between carbon short fiber paper and a rigid plate or belt because the surface can be further smoothed.

<フェノール樹脂の炭素化方法>
硬化後のフェノール樹脂の炭素化は、不活性処理雰囲気下にて1000〜3000℃の温度範囲で、炭素短繊維紙の全長にわたって連続して焼成処理することが好ましい。炭素化は、不活性ガス中で行うことで、多孔質炭素電極基材の導電性を高めることができる。また、炭素短繊維紙の全長にわたって連続して行うことが好ましい。多孔質炭素電極基材が長尺であれば、多孔質炭素電極基材の生産性が向上するだけでなく、その後工程のMembrane Electrode Assembly(MEA)製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。本発明の炭素化においては、不活性雰囲気下にて1000〜3000℃の温度範囲で焼成する炭素化処理の前に、300〜800℃の程度の不活性雰囲気での前処理を行ってもよい。
<Carbonization method of phenol resin>
The carbonization of the phenol resin after curing is preferably performed by continuous firing over the entire length of the short carbon fiber paper in a temperature range of 1000 to 3000 ° C. in an inert treatment atmosphere. Carbonization can be performed in an inert gas to increase the conductivity of the porous carbon electrode substrate. Moreover, it is preferable to carry out continuously over the entire length of the carbon short fiber paper. If the porous carbon electrode base material is long, not only the productivity of the porous carbon electrode base material is improved, but also the Membrane Electrode Assembly (MEA) production in the subsequent process can be performed continuously, and the fuel cell This can greatly contribute to cost reduction. In the carbonization of the present invention, a pretreatment in an inert atmosphere of about 300 to 800 ° C. may be performed before the carbonization treatment for firing in a temperature range of 1000 to 3000 ° C. in an inert atmosphere. .

以上の工程により、所望の多孔質炭素電極基材を得ることができる。   The desired porous carbon electrode substrate can be obtained by the above steps.

<繊維配向度>
本発明の方法により製造される多孔質炭素電極基材は、炭素短繊維の繊維配向度が2〜5であり、好ましくは、2.5〜4である。繊維配向度は、多孔質炭素電極基材の縦方向(MD方向、貫通方向)と横方向(CD方向、面方向)の曲げ強度比(MD/CD)から算出される。
<Fiber orientation>
The porous carbon electrode substrate produced by the method of the present invention has a fiber orientation degree of short carbon fibers of 2 to 5, preferably 2.5 to 4. The fiber orientation degree is calculated from the bending strength ratio (MD / CD) in the longitudinal direction (MD direction, penetration direction) and lateral direction (CD direction, plane direction) of the porous carbon electrode substrate.

繊維配向度が2より小さい場合は、セパレータガス流路から流れる反応ガスが触媒層の反応部に十分広がらないため好ましくない。一方、繊維配向度が5より大きい場合は、フェノール樹脂を硬化する工程で厚みが薄くなり、後述する好ましいかさ密度のものが得られにくいため、好ましくない。   When the fiber orientation degree is less than 2, the reaction gas flowing from the separator gas flow path does not spread sufficiently to the reaction part of the catalyst layer, which is not preferable. On the other hand, when the fiber orientation degree is larger than 5, it is not preferable because the thickness becomes thin in the step of curing the phenol resin, and it is difficult to obtain a preferable bulk density described later.

<炭素短繊維を配向させる方法>
炭素短繊維を配向させる方法としては、前記工程(1)の抄紙工程において、供給された紙料をワイヤ側の最初のプレ脱水ゾーンで脱水する方法が挙げられる。一般的に、炭素短繊維分散液を流速の速い状態でワイヤに漉き出し、水を急激に脱水すると炭素短繊維は配向する。これにより、繊維配向度を前記範囲に制御することが可能である。
<Method for orienting short carbon fibers>
Examples of the method for orienting the short carbon fibers include a method of dehydrating the supplied paper stock in the first pre-dehydration zone on the wire side in the paper making step of the step (1). In general, when a carbon short fiber dispersion is sprinkled on a wire at a high flow rate and water is rapidly dehydrated, the carbon short fibers are oriented. Thereby, the fiber orientation degree can be controlled within the above range.

<繊維配向度の測定方法>
繊維配向度は、多孔質炭素電極基材の曲げ強度から求めることができる。曲げ強度の測定は、まず、多孔質炭素電極基材のMD方向又はCD方向がそれぞれ試験片の長辺になるように、80mm×10mmのサイズに10枚切り取る。曲げ強度試験装置(商品名:「SV−200」、株式会社今田製作所製)を用いて、支点間距離は20mmにし、歪み速度10mm/minで試験片に荷重をかけていき、荷重がかかり始めた点から試験片が破断したときの加圧くさびの破断荷重を10枚の試験片に対し測定し、次式より求める。
<Measurement method of fiber orientation degree>
The fiber orientation degree can be determined from the bending strength of the porous carbon electrode substrate. For the measurement of the bending strength, first, 10 sheets are cut into a size of 80 mm × 10 mm so that the MD direction or CD direction of the porous carbon electrode substrate is the long side of the test piece, respectively. Using a bending strength test device (trade name: “SV-200”, manufactured by Imada Seisakusho Co., Ltd.), the distance between the fulcrums is 20 mm, and a load is applied to the test piece at a strain rate of 10 mm / min. The breaking load of the pressure wedge when the test piece breaks from the measured points is measured for 10 test pieces and is obtained from the following equation.

P:破断荷重(N)
L:支点間距離(mm)
W:試験片の幅(mm)
h:試験片の高さ(mm)。
P: Breaking load (N)
L: Distance between fulcrums (mm)
W: Specimen width (mm)
h: Height of the test piece (mm).

[多孔質炭素電極基材]
本発明に係る多孔質炭素電極基材は、本発明に係る方法により製造された多孔質炭素電極基材であって、以下の(A)及び(B)を満足するものである。
(A)面方向のガス透過度が0.05〜0.10ml/min/Paである
(測定条件:ガス流速200ml/min ガス透過面積0.785cm2
(B)(貫通方向のガス透過度)/(面方向のガス透過度)が100〜200である。
[Porous carbon electrode substrate]
The porous carbon electrode substrate according to the present invention is a porous carbon electrode substrate produced by the method according to the present invention, and satisfies the following (A) and (B).
(A) face the direction of the gas permeability is 0.05~0.10ml / min / Pa (Measurement conditions: Gas flow rate 200 ml / min gas permeation area 0.785 cm 2)
(B) (Gas permeability in the penetration direction) / (Gas permeability in the surface direction) is 100 to 200.

また、本発明に係る多孔質炭素電極基材は、前記(A)及び(B)に加えて、以下の(C)及び(D)の条件を満足することが好ましい。
(C)かさ密度が0.23〜0.30g/m2である
(D)1.0MPaの圧力を加えたとき最大面圧が1.0〜2.0MPaである。
The porous carbon electrode substrate according to the present invention preferably satisfies the following conditions (C) and (D) in addition to the above (A) and (B).
(C) Bulk pressure is 0.23 to 0.30 g / m 2 (D) When a pressure of 1.0 MPa is applied, the maximum surface pressure is 1.0 to 2.0 MPa.

<面方向のガス透過度>
本発明に係る多孔質炭素電極基材は、面方向のガス透過度が0.05〜0.10ml/min/Pa(測定条件:ガス流速200ml/min ガス透過面積0.785cm2)である。面方向にガス透過させることは多孔質炭素電極基材の重要な機能であり、この値が適正範囲にあることで、反応ガスの反応部への運搬及び生成水の系外への排出が効率良く行われる。面方向のガス透過度が0.05ml/min/Paより小さい場合は、反応ガスを十分に触媒反応層に運搬することができないため好ましくない。また面方向のガス透過度が0.10ml/min/Paより大きい場合は逆に反応ガスの流れが強くなるため、高分子膜の乾燥が進みやすくなるため好ましくない。
<Gas permeability in the surface direction>
The porous carbon electrode substrate according to the present invention has a gas permeability in the plane direction of 0.05 to 0.10 ml / min / Pa (measuring condition: gas flow rate 200 ml / min gas permeation area 0.785 cm 2 ). Permeating the gas in the surface direction is an important function of the porous carbon electrode base material, and when this value is within the appropriate range, the reaction gas can be transported to the reaction part and the generated water discharged efficiently. Well done. When the gas permeability in the surface direction is smaller than 0.05 ml / min / Pa, the reaction gas cannot be sufficiently conveyed to the catalytic reaction layer, which is not preferable. On the other hand, when the gas permeability in the surface direction is larger than 0.10 ml / min / Pa, the flow of the reaction gas becomes strong and the drying of the polymer film is likely to proceed.

<面方向のガス透過度の測定方法>
図2に示すように、加圧部の外形が30mmφ、ガス流通部の径が10mmφの円筒状の圧縮治具(圧縮部面積6.28cm2)に36mmφに切り出した多孔質炭素電極基材を挟み、1MPa相当の荷重5を加える。円筒の上方から200ml/minの流速で空気4を流したときの基材内側と基材外側の圧力差を測定し、以下の式より算出する。なお、ガス透過面積は0.785cm2である。
ガス透過度(ml/min/Pa)=流速(ml/min)/基材内側と基材外側の圧力差(Pa)。
<Measurement method of gas permeability in surface direction>
As shown in FIG. 2, a porous carbon electrode base material cut out to 36 mmφ in a cylindrical compression jig (compression portion area 6.28 cm 2 ) having an outer shape of a pressurizing portion of 30 mmφ and a diameter of a gas flow portion of 10 mmφ. A load 5 corresponding to 1 MPa is applied. The pressure difference between the inside of the substrate and the outside of the substrate when air 4 is allowed to flow from above the cylinder at a flow rate of 200 ml / min is calculated from the following equation. The gas permeation area is 0.785 cm 2 .
Gas permeability (ml / min / Pa) = flow rate (ml / min) / pressure difference (Pa) between the inside and outside of the substrate.

<(貫通方向のガス透過度)/(面方向のガス透過度)>
本発明に係る多孔質炭素電極基材は、(貫通方向のガス透過度)/(面方向のガス透過度)が100〜200である。(貫通方向のガス透過度)/(面方向のガス透過度)が100より小さい場合、すなわち貫通方向と比較して面方向のガス透過度が高すぎる場合は、反応ガスが貫通方向に流れにくく、触媒層に十分浸透する前に排出されるため好ましくない。また、(貫通方向のガス透過度)/(面方向のガス透過度)が200より大きい場合は、反応ガスが面方向の触媒層全面に行き渡らないため、反応効率が低下し好ましくない。より好ましくは、120〜170である。
<(Gas permeability in penetration direction) / (Gas permeability in plane direction)>
The porous carbon electrode substrate according to the present invention has a (gas permeability in the penetration direction) / (gas permeability in the plane direction) of 100 to 200. When (the gas permeability in the penetration direction) / (the gas permeability in the plane direction) is smaller than 100, that is, when the gas permeability in the plane direction is too high compared to the penetration direction, the reaction gas hardly flows in the penetration direction. , Because it is discharged before it sufficiently penetrates the catalyst layer. On the other hand, when (gas permeability in the penetration direction) / (gas permeability in the plane direction) is larger than 200, the reaction gas does not reach the entire surface of the catalyst layer in the plane direction. More preferably, it is 120-170.

<貫通方向のガス透過度の測定方法>
前記面方向のガス透過度の測定方法と同様の方法で多孔質炭素電極基材を挟み、ガス流路を貫通方向に変え、円筒の上方から200ml/minの流速で空気を流したときの基材上部と基材下部の圧力差を測定し、以下の式より算出する。なお、ガス透過面積は0.785cm2である。
ガス透過度(ml/min/Pa)=流速(ml/min)/基材上部と基材下部の圧力差(Pa)。
<Measurement method of gas permeability in penetration direction>
The base when the porous carbon electrode substrate is sandwiched by the same method as the gas permeability measurement method in the plane direction, the gas flow path is changed to the penetration direction, and air is flowed from above the cylinder at a flow rate of 200 ml / min. The pressure difference between the upper part of the material and the lower part of the base material is measured and calculated from the following formula. The gas permeation area is 0.785 cm 2 .
Gas permeability (ml / min / Pa) = flow rate (ml / min) / pressure difference (Pa) between the upper part of the substrate and the lower part of the substrate.

<かさ密度>
本発明に係る多孔質炭素電極基材は、かさ密度が0.23〜0.30g/m2であることが好ましい。より好ましくは0.24〜0.29g/m2である。かさ密度が0.23より小さい場合は、張り合わせた炭素短繊維紙が剥離しやすくなる場合がある。また、かさ密度が0.30より大きい場合は、ガス透過性及び排水性が低下する場合がある。
<Bulk density>
The porous carbon electrode substrate according to the present invention preferably has a bulk density of 0.23 to 0.30 g / m 2 . More preferably, it is 0.24-0.29 g / m < 2 >. When the bulk density is smaller than 0.23, the bonded short carbon fiber paper may be easily peeled off. Moreover, when the bulk density is greater than 0.30, gas permeability and drainage may be deteriorated.

<かさ密度の測定方法>
まず、厚み測定装置(商品名「ダイヤルシックネスゲージ7321」、株式会社ミツトヨ製)を使用し、多孔質炭素電極基材の厚みを測定する。なお、このときの測定子の大きさは直径10mmで、測定圧力は1.5kPaで行う。かさ密度は、測定した厚みを用いて、以下の式により算出する。なお、坪量の測定は、電子天秤により行うことができる。
かさ密度(g/cm3)=坪量(g/m2)/厚み(mm)/1000
<最大面圧>
本発明に係る多孔質炭素電極基材は、1.0MPaの圧力を加えたとき最大面圧が1.0〜2.0MPaであることが好ましい。より好ましくは、1.0〜1.8MPaである。
<Measurement method of bulk density>
First, the thickness of the porous carbon electrode substrate is measured using a thickness measuring device (trade name “Dial Thickness Gauge 7321”, manufactured by Mitutoyo Corporation). In this case, the size of the probe is 10 mm in diameter, and the measurement pressure is 1.5 kPa. The bulk density is calculated by the following formula using the measured thickness. The basis weight can be measured with an electronic balance.
Bulk density (g / cm 3 ) = basis weight (g / m 2 ) / thickness (mm) / 1000
<Maximum surface pressure>
The porous carbon electrode substrate according to the present invention preferably has a maximum surface pressure of 1.0 to 2.0 MPa when a pressure of 1.0 MPa is applied. More preferably, it is 1.0-1.8 MPa.

最大面圧とは、多孔質炭素電極基材に圧力を加えた場合、圧力分布ができるが、そのとき最も高い圧力がかかる部分の圧力値のことである。圧力分布は、感圧紙などを多孔質炭素電極基材と重ねて圧力をかけることで測定できる。その一例を図3に示す。圧力分布が大きいものは、色が濃い部分すなわち圧力が高い部分が多く、その圧力値も大きくなる。圧力分布は、多孔質炭素電極基材の厚み斑や目付け斑、炭素短繊維の分散斑などにより発生し、斑のある部分に圧力が集中する。最大面圧が2.0MPaより大きいときは、セルを組んだときに面圧が高いところで電解質膜に大きなダメージを与えるなど燃料電池の耐久性を下げる可能性があるため好ましくない。一般的にかさ密度が高い場合は、厚み斑が少なくても圧力分布が大きくなりやすい。   The maximum surface pressure is a pressure value at a portion where the highest pressure is applied when a pressure distribution is generated when pressure is applied to the porous carbon electrode substrate. The pressure distribution can be measured by applying pressure by overlapping a pressure sensitive paper or the like with the porous carbon electrode substrate. An example is shown in FIG. In the case of a large pressure distribution, there are many dark portions, that is, high pressure portions, and the pressure value becomes large. The pressure distribution is generated due to thickness spots or weight spots of the porous carbon electrode base material, dispersion spots of short carbon fibers, and the like, and the pressure concentrates on the spots. When the maximum surface pressure is larger than 2.0 MPa, it is not preferable because the durability of the fuel cell may be lowered, for example, a large damage is caused to the electrolyte membrane when the surface pressure is high when the cells are assembled. In general, when the bulk density is high, the pressure distribution tends to be large even if there are few thickness spots.

<最大面圧の測定方法>
多孔質炭素電極基材のサンプルを20mm×20mmに切り出し、万能圧縮試験機(株式会社今田製作所製)の上に多孔質炭素電極基材及び圧力測定フィルム(商品名:「プレスケールLLW」、富士フィルム株式会社製)を載せ、1MPaの圧力で圧縮する。圧縮後、図3に示すように圧力測定フィルムに色がついたことを確認し、圧力解析システム(商品名:「FPD−9210」、富士フィルム株式会社製)にて圧力を読み込み、その中で最も高い圧力を示す部分を「最大面圧」とする。
<Measurement method of maximum surface pressure>
A sample of a porous carbon electrode substrate was cut into 20 mm × 20 mm, and a porous carbon electrode substrate and a pressure measurement film (trade name: “Prescale LLW”, Fuji on a universal compression tester (manufactured by Imada Manufacturing Co., Ltd.) Film Co., Ltd.) is placed and compressed at a pressure of 1 MPa. After compression, it was confirmed that the pressure measurement film was colored as shown in FIG. 3, and the pressure was read with a pressure analysis system (trade name: “FPD-9210”, manufactured by Fuji Film Co., Ltd.). The portion showing the highest pressure is defined as “maximum surface pressure”.

以下、本発明を実施例により、さらに具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

(実施例1)
平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維(7μm径CF)(商品名:「パイロフィルTR50S」、三菱レイヨン株式会社製)86質量部、ポリビニルアルコール(PVA)(商品名:「VPB107」、株式会社クラレ製)14質量部を、水10000質量部を分散媒体として均一に分散させた。その後、湿式連続抄紙装置で連続的に抄紙した。抄紙後の紙料の水分率は、89%であった。引き続き、抄紙後の紙料を、2枚の抄紙用フェルト(日本フェルト(株)製)の間に押圧せずに挟んだ(押圧の圧力:0MPa)。該抄紙用フェルトに挟んだ抄紙後の紙料の水分率は、挟む前と同様に82%であった。その後、熱ロールに接触させて乾燥し、炭素繊維の目付が約21g/m2の長尺の炭素短繊維紙を得て、ロール状に巻き取った。
Example 1
Polyacrylonitrile (PAN) -based carbon fiber (7 μm diameter CF) having an average fiber diameter of 7 μm and an average fiber length of 3 mm (trade name: “Pyrofil TR50S”, manufactured by Mitsubishi Rayon Co., Ltd.) 86 parts by mass, polyvinyl alcohol (PVA) ( 14 parts by mass of a product name: “VPB107” (manufactured by Kuraray Co., Ltd.) was uniformly dispersed using 10,000 parts by mass of water as a dispersion medium. Thereafter, the paper was continuously made with a wet continuous paper machine. The moisture content of the stock after papermaking was 89%. Subsequently, the paper stock after papermaking was sandwiched between two papermaking felts (manufactured by Nippon Felt Co., Ltd.) without being pressed (pressing pressure: 0 MPa). The moisture content of the stock after paper making was sandwiched between the paper felts was 82%, as before. Then, it was made to contact with a hot roll and dried to obtain a long carbon short fiber paper having a carbon fiber basis weight of about 21 g / m 2 and wound into a roll.

この炭素短繊維紙にフェノール樹脂(商品名:「フェノライトJ−325」、DIC(株)製)の28質量%メタノール溶液を連続的に両面からキスコート法によりコートし、最高温度90℃で1分間乾燥することにより、フェノール樹脂を含む炭素短繊維紙を得てロール状に巻き取った。   This carbon short fiber paper was continuously coated with a 28% by mass methanol solution of a phenolic resin (trade name: “Phenolite J-325”, manufactured by DIC Corporation) from both sides by the kiss coating method. The carbon short fiber paper containing a phenol resin was obtained by drying for minutes, and it wound up in roll shape.

前記フェノール樹脂を含む炭素短繊維紙の抄紙時における下面が表面にくるように2枚の炭素短繊維紙を積層してから、離形剤コーティング基材で挟み、ダブルベルトプレス装置にて連続的に加熱プレス(プレス時最大荷重:10MPa)し、樹脂硬化炭素短繊維紙を得た。該樹脂硬化炭素短繊維紙の断面を見ると、表層にフェノール樹脂硬化物が多く偏在している様子が観察された。蛍光顕微鏡による樹脂硬化炭素短繊維紙の断面写真を図4に示す。   Two carbon short fiber papers are laminated so that the bottom surface of the carbon short fiber paper containing the phenolic resin is on the surface, and then sandwiched with a release agent coating substrate, and continuously with a double belt press device. Were subjected to heat pressing (maximum load during pressing: 10 MPa) to obtain a resin-cured carbon short fiber paper. When the cross section of the resin-cured short carbon fiber paper was viewed, it was observed that a large amount of phenol resin cured product was unevenly distributed on the surface layer. A cross-sectional photograph of the resin-cured short carbon fiber paper by a fluorescence microscope is shown in FIG.

続いて、前記樹脂硬化炭素短繊維紙を、窒素ガス雰囲気中にて最高温度800℃の連続焼成炉に10分間通した後、最高温度2200℃の連続焼成炉において10分間加熱し、炭素化することで、長さ100mの多孔質炭素電極基材を連続的に得た。該多孔質炭素電極基材の各物性を表1に示す。得られた多孔質炭素電極基材のかさ密度は0.25g/cm3であった。MD方向とCD方向の曲げ強度比(MD/CD)は2.0で縦に配向しており、面方向のガス透過度及び(貫通方向のガス透過度)/(面方向のガス透過度)の値も良好であり、燃料電池用のガス拡散層に用いる電極基材として適当であった。 Subsequently, the resin-cured short carbon fiber paper is passed through a continuous firing furnace having a maximum temperature of 800 ° C. for 10 minutes in a nitrogen gas atmosphere, and then heated for 10 minutes in a continuous firing furnace having a maximum temperature of 2200 ° C. to be carbonized. Thus, a porous carbon electrode substrate having a length of 100 m was continuously obtained. Table 1 shows the physical properties of the porous carbon electrode substrate. The bulk density of the obtained porous carbon electrode substrate was 0.25 g / cm 3 . The bending strength ratio (MD / CD) in the MD direction and the CD direction is 2.0, which is oriented vertically, and the gas permeability in the plane direction and the gas permeability in the penetration direction / (the gas permeability in the plane direction). This value was also good, and it was suitable as an electrode substrate used for a gas diffusion layer for a fuel cell.

(実施例2)
ダブルベルトプレス装置にて連続的に加えるプレス圧力を14MPaにした以外は、実施例1と同様の方法で多孔質炭素電極基材を連続的に得た。該多孔質炭素電極基材の各物性を表1に示す。
(Example 2)
A porous carbon electrode substrate was continuously obtained in the same manner as in Example 1 except that the pressing pressure continuously applied by the double belt press apparatus was 14 MPa. Table 1 shows the physical properties of the porous carbon electrode substrate.

(実施例3)
繊維配向度を2.0から4.0に変えた以外は、実施例1と同様の方法で多孔質炭素電極基材を連続的に得た。該多孔質炭素電極基材の各物性を表1に示す。
(Example 3)
A porous carbon electrode substrate was continuously obtained in the same manner as in Example 1 except that the fiber orientation was changed from 2.0 to 4.0. Table 1 shows the physical properties of the porous carbon electrode substrate.

(比較例1)
抄紙後の紙料を抄紙用フェルトの間に挟んで、0.2MPaで押圧し、水分率を70質量%にした以外は、実施例1と同様の方法で多孔質炭素電極基材を連続的に得た。該多孔質炭素電極基材は、(貫通方向のガス透過度)/(面方向のガス透過度)が大きく(すなわち貫通方向に比べて面方向のガス透過度が小さく)、燃料電池用のガス拡散層に用いる電極基材としては適当でなかった。
(Comparative Example 1)
The porous carbon electrode substrate was continuously formed in the same manner as in Example 1 except that the paper stock after paper making was sandwiched between felts for paper making and pressed at 0.2 MPa to make the moisture content 70% by mass. I got it. The porous carbon electrode base material has a large (gas permeability in the penetration direction) / (gas permeability in the plane direction) (that is, a gas permeability in the plane direction is smaller than that in the penetration direction). It was not suitable as an electrode substrate used for the diffusion layer.

(比較例2)
実施例1と同じ、フェノール樹脂を含む炭素短繊維紙を2枚20cm×20cmに切り出し、炭素短繊維の配向方向が直交するように重ねあわせ、離形剤コーティング基材で挟み、バッチ装置にて3分間加熱プレス(プレス時最大荷重:1.3MPa)し、樹脂硬化炭素短繊維紙を得た。続いて、該樹脂硬化炭素短繊維紙を、最高温度2000℃の連続焼成炉において10時間焼成し、多孔質炭素電極基材を得た。得られた多孔質炭素電極基材のMD/CDは1.1であった。該多孔質炭素電極基材は、比較例1と同様に、(貫通方向のガス透過度)/(面方向のガス透過度)が大きいため、燃料電池用のガス拡散層に用いる電極基材としては適当でなかった。
(Comparative Example 2)
As in Example 1, two carbon short fiber papers containing phenolic resin were cut into 20 cm × 20 cm, overlapped so that the orientation directions of the carbon short fibers were orthogonal, sandwiched between release agent coating substrates, and in a batch apparatus Heat press for 3 minutes (maximum load during pressing: 1.3 MPa) to obtain a resin-cured carbon short fiber paper. Subsequently, the resin-cured carbon short fiber paper was fired for 10 hours in a continuous firing furnace having a maximum temperature of 2000 ° C. to obtain a porous carbon electrode substrate. MD / CD of the obtained porous carbon electrode base material was 1.1. Since the porous carbon electrode base material has a large (gas permeability in the penetration direction) / (gas permeability in the plane direction) as in Comparative Example 1, the porous carbon electrode base material is used as an electrode base material used for a gas diffusion layer for a fuel cell. Was not appropriate.

(比較例3)
ダブルベルトプレス装置にて連続的に加えるプレス圧力を20MPaにした以外は、実施例1と同様の方法で多孔質炭素電極基材を連続的に得た。該多孔質炭素電極基材は、かさ密度が高く、ガス透過度が面方向、貫通方向ともに実施例より低く、燃料電池用のガス拡散層に用いる電極基材としては適当でなかった。
(Comparative Example 3)
A porous carbon electrode substrate was continuously obtained in the same manner as in Example 1 except that the pressing pressure continuously applied by a double belt press apparatus was 20 MPa. The porous carbon electrode base material has a high bulk density, and the gas permeability is lower in both the surface direction and the penetration direction than in the examples, and is not suitable as an electrode base material used for a gas diffusion layer for a fuel cell.

(参考例)
平均繊維径が7μmのポリアクリロニトリル(PAN)系炭素繊維の繊維束を切断し、平均繊維長が3mmの短繊維を得た。次にこの短繊維束100質量部と、直径100μmのビニロン繊維200質量部を水中で解繊し、十分に分散したところにバインダーであるポリビニルアルコール(PVA)の短繊維を60質量部となるように均一に分散させ、標準角形シートマシンを用いてJIS P−8222法に準拠して抄紙を行った。得られた炭素短繊維紙は単位面積当たりの質量が90g/m2であった。
(Reference example)
A fiber bundle of polyacrylonitrile (PAN) -based carbon fibers having an average fiber diameter of 7 μm was cut to obtain short fibers having an average fiber length of 3 mm. Next, 100 parts by mass of the short fiber bundle and 200 parts by mass of vinylon fibers having a diameter of 100 μm are defibrated in water, and when sufficiently dispersed, the short fiber of polyvinyl alcohol (PVA) as a binder is 60 parts by mass. Then, paper was made using a standard square sheet machine according to JIS P-8222 method. The obtained carbon short fiber paper had a mass per unit area of 90 g / m 2 .

この炭素短繊維紙をフェノール樹脂(商品名:「フェノライトJ−325」、DIC(株)製)の10質量%メタノール溶液に浸漬し、引き上げて炭素短繊維紙100質量部に対し、フェノール樹脂を200質量部付着させ、熱風で乾燥した。その後、該フェノール樹脂を含浸した炭素短繊維紙を2枚重ねて離型紙に挟んで、バッチプレス装置にて180℃、1.3MPaの条件下に5分間置き、フェノール樹脂を硬化させた。   This carbon short fiber paper is immersed in a 10% by mass methanol solution of a phenol resin (trade name: “Phenolite J-325”, manufactured by DIC Corporation) and pulled up to 100 parts by mass of the carbon short fiber paper. 200 parts by mass were attached and dried with hot air. Thereafter, two carbon short fiber papers impregnated with the phenol resin were stacked and sandwiched between release papers, and placed in a batch press apparatus under conditions of 180 ° C. and 1.3 MPa for 5 minutes to cure the phenol resin.

続いて、窒素ガス雰囲気中バッチ炭素化炉にて2000℃で1時間加熱し、炭素化することで多孔質炭素電極基材を得た。該多孔質炭素電極基材は実施例と比較して面方向のガス透過度が高く、また、最大面圧が高いことからセルを組んだとき周辺部材に局所的な圧力がかかる可能性があり、耐久性の観点から適当でなかった。   Then, the porous carbon electrode base material was obtained by heating at 2000 degreeC in a nitrogen gas atmosphere at 2000 degreeC for 1 hour, and carbonizing. The porous carbon electrode base material has higher gas permeability in the surface direction compared to the examples, and since the maximum surface pressure is high, there is a possibility that local pressure is applied to peripheral members when cells are assembled. From the viewpoint of durability, it was not appropriate.

1 抄紙後の紙料
2 抄紙用フェルト
3 熱ロール
4 空気
5 荷重
1 Papermaking after papermaking 2 Felt for papermaking 3 Heat roll 4 Air 5 Load

Claims (5)

2枚以上の炭素短繊維紙がフェノール樹脂炭化物を介して積層されてなる、炭素短繊維の繊維配向度が2〜5である多孔質炭素電極基材の製造方法であって、
(1)炭素短繊維とバインダーとを含む紙料を抄紙する工程、
(2)前記抄紙後の紙料を連続して抄紙用フェルトの間に挟んで0〜0.05MPaの圧力で押圧し、水分率を80〜85%とした後、乾燥して炭素短繊維紙を得る工程、
(3)前記炭素短繊維紙にフェノール樹脂を含浸し、フェノール樹脂を含浸した2枚以上の炭素短繊維紙を積層する工程、
(4)前記積層した炭素短繊維紙を、加熱しながら5〜18MPaの圧力でプレスして前記フェノール樹脂を硬化した後、炭素化する工程、
とを有する方法。
A method for producing a porous carbon electrode substrate in which two or more carbon short fiber papers are laminated via a phenolic resin carbide, and the degree of fiber orientation of the carbon short fibers is 2 to 5,
(1) A step of making a paper material containing short carbon fibers and a binder,
(2) The paper stock after paper making is continuously sandwiched between felts for paper making and pressed at a pressure of 0 to 0.05 MPa to make the moisture content 80 to 85%, and then dried to produce carbon short fiber paper. Obtaining a step,
(3) impregnating the carbon short fiber paper with a phenol resin, and laminating two or more carbon short fiber papers impregnated with the phenol resin;
(4) A step of carbonizing the laminated short carbon fiber paper while pressing the phenol resin by pressing at a pressure of 5 to 18 MPa while heating.
And a method comprising:
前記バインダーが、ポリビニルアルコールである請求項1に記載の多孔質炭素電極基材の製造方法。   The method for producing a porous carbon electrode substrate according to claim 1, wherein the binder is polyvinyl alcohol. 前記工程(3)において、前記2枚以上の炭素短繊維紙の抄紙下面側が、表面となるように積層する請求項1又は2に記載の多孔質炭素電極基材の製造方法。   The method for producing a porous carbon electrode substrate according to claim 1 or 2, wherein in the step (3), the two or more carbon short fiber papers are laminated so that a papermaking lower surface side is a surface. 前記工程(3)において、前記炭素短繊維紙へのフェノール樹脂の含浸が、キスコート法により前記炭素短繊維紙の両面にフェノール樹脂を付着させるものである請求項1から3のいずれか1項に記載の多孔質炭素電極基材の製造方法。   The said process (3) WHEREIN: Impregnation of the phenol resin to the said carbon short fiber paper is what makes a phenol resin adhere to both surfaces of the said carbon short fiber paper by a kiss coat method. The manufacturing method of the porous carbon electrode base material of description. 前記工程(3)において、前記炭素短繊維紙に含浸させるフェノール樹脂の量が、前記炭素短繊維紙中の炭素短繊維100質量部に対し、70〜150質量部である請求項1から4のいずれか1項に記載の多孔質炭素電極基材の製造方法。   The amount of the phenol resin impregnated in the carbon short fiber paper in the step (3) is 70 to 150 parts by mass with respect to 100 parts by mass of the carbon short fibers in the carbon short fiber paper. The manufacturing method of the porous carbon electrode base material of any one.
JP2009037839A 2009-02-20 2009-02-20 Method for producing porous carbon electrode substrate Expired - Fee Related JP5398297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037839A JP5398297B2 (en) 2009-02-20 2009-02-20 Method for producing porous carbon electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037839A JP5398297B2 (en) 2009-02-20 2009-02-20 Method for producing porous carbon electrode substrate

Publications (3)

Publication Number Publication Date
JP2010192379A JP2010192379A (en) 2010-09-02
JP2010192379A5 JP2010192379A5 (en) 2012-03-01
JP5398297B2 true JP5398297B2 (en) 2014-01-29

Family

ID=42818180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037839A Expired - Fee Related JP5398297B2 (en) 2009-02-20 2009-02-20 Method for producing porous carbon electrode substrate

Country Status (1)

Country Link
JP (1) JP5398297B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485211B2 (en) * 2011-03-24 2014-05-07 三菱レイヨン株式会社 Method for producing porous electrode substrate
WO2013147174A1 (en) 2012-03-30 2013-10-03 三菱レイヨン株式会社 Porous electrode base material, method for manufacturing same and precursor sheet
CN104981929B (en) 2013-02-13 2017-07-04 东丽株式会社 Gas diffusion layer for fuel cell and its manufacture method
JP5988009B1 (en) 2015-01-28 2016-09-07 東レ株式会社 Porous carbon sheet and precursor fiber sheet thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60950A (en) * 1983-06-17 1985-01-07 新神戸電機株式会社 Manufacture of laminated board
JPS62270331A (en) * 1986-05-19 1987-11-24 日東紡績株式会社 Carbon fiber sheet-shaped article
KR20010112912A (en) * 2000-01-27 2001-12-22 나가이 야타로 Porous Carbon Electrode Substrate and Its Production Method and Carbon Fiber Paper
JP2003183994A (en) * 2001-10-09 2003-07-03 Mitsubishi Rayon Co Ltd Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP2003151568A (en) * 2001-11-09 2003-05-23 Mitsubishi Rayon Co Ltd Electrode material for solid high polymer fuel cell and its manufacturing method
JP3954860B2 (en) * 2002-02-15 2007-08-08 東邦テナックス株式会社 Polyacrylonitrile-based carbon fiber nonwoven fabric, carbon fiber nonwoven fabric roll, and method for producing carbon fiber nonwoven fabric
JP2004139835A (en) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd Fuel cell
JP4371662B2 (en) * 2003-01-07 2009-11-25 東邦テナックス株式会社 Carbon fiber sheet and manufacturing method thereof
JP4461695B2 (en) * 2003-03-24 2010-05-12 東レ株式会社 Porous carbon electrode substrate and method for producing the same
JP4559767B2 (en) * 2004-04-13 2010-10-13 三菱レイヨン株式会社 Carbon electrode substrate manufacturing method
JP4801354B2 (en) * 2005-01-04 2011-10-26 三菱レイヨン株式会社 Electrode base material for polymer electrolyte fuel cell and method for producing the same
JP4959945B2 (en) * 2005-02-14 2012-06-27 三菱レイヨン株式会社 Polymer electrolyte fuel cell
JP2007176750A (en) * 2005-12-28 2007-07-12 Toray Ind Inc Porous carbon fiber sheet and method of manufacturing the same
JP2007269624A (en) * 2006-03-07 2007-10-18 Mitsubishi Rayon Co Ltd Porous carbon electrode substrate and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010192379A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5844760B2 (en) Porous electrode substrate
US6713034B2 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
US20080038589A1 (en) Porous Electrode Base Material and Production Method Thereof
JP5485212B2 (en) Porous carbon electrode substrate and method for producing the same
JP2006040886A (en) Porous electrode substrate and its manufacturing method
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP4266699B2 (en) Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP5398297B2 (en) Method for producing porous carbon electrode substrate
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP5250328B2 (en) Method for producing carbonaceous electrode substrate
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP5297701B2 (en) Method for producing electrode substrate for polymer electrolyte fuel cell
JP6172131B2 (en) Porous carbon electrode substrate
JP4801354B2 (en) Electrode base material for polymer electrolyte fuel cell and method for producing the same
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
JP2004134108A (en) Manufacturing method of precursor sheet-like material for porous carbon electrode base material
JP2009280437A (en) Method for producing porous carbon sheet
JP2006004858A5 (en)
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP5560977B2 (en) Method for producing porous carbon electrode substrate
JP2003151568A (en) Electrode material for solid high polymer fuel cell and its manufacturing method
JP2011040386A (en) Porous carbon electrode base material for fuel cell
JP5394426B2 (en) Porous carbon electrode substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R151 Written notification of patent or utility model registration

Ref document number: 5398297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees