JP4559767B2 - Carbon electrode substrate manufacturing method - Google Patents

Carbon electrode substrate manufacturing method Download PDF

Info

Publication number
JP4559767B2
JP4559767B2 JP2004117818A JP2004117818A JP4559767B2 JP 4559767 B2 JP4559767 B2 JP 4559767B2 JP 2004117818 A JP2004117818 A JP 2004117818A JP 2004117818 A JP2004117818 A JP 2004117818A JP 4559767 B2 JP4559767 B2 JP 4559767B2
Authority
JP
Japan
Prior art keywords
carbon
resin
electrode substrate
carbon electrode
fiber paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004117818A
Other languages
Japanese (ja)
Other versions
JP2005302558A5 (en
JP2005302558A (en
Inventor
信之 菊屋
誠 中村
茂 田上
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2004117818A priority Critical patent/JP4559767B2/en
Publication of JP2005302558A publication Critical patent/JP2005302558A/en
Publication of JP2005302558A5 publication Critical patent/JP2005302558A5/ja
Application granted granted Critical
Publication of JP4559767B2 publication Critical patent/JP4559767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池、特に固体高分子型燃料電池のガス拡散層などに使用される、強度・柔軟性の高い炭素電極基材およびその製造方法に関するものである。   The present invention relates to a carbon electrode base material having high strength and flexibility and used for a fuel cell, particularly a gas diffusion layer of a polymer electrolyte fuel cell, and a method for producing the same.

炭素電極基材は、導電性・ガス透過性のみならず、耐腐食性・機械的強度・柔軟性にも優れているため、固体高分子型燃料電池用のガス拡散層など、ガス・電気の伝達能力を必要とするものに広く使用されている。しかしながら、例えば固体高分子型燃料電池用のガス拡散層として使用した場合、次第に反応ガスの拡散が阻害され、場合によってはガス拡散層の気孔が閉塞してしまう問題(フラッディング)が発生していた。この理由として、電気化学反応によって生成する水が効率よく排出されず、炭素電極基材に水が滞留すること等が考えられる。このようなフラッディングが発生すると、特に高電流密度領域において急激な出力低下が見られる。従って、特に固体高分子型燃料電池に使用する炭素電極基材としては、水が滞留しにくい水管理機能を有することが求められている。   The carbon electrode base material is not only conductive and gas permeable, but also excellent in corrosion resistance, mechanical strength and flexibility, so it can be used for gas and electrical applications such as gas diffusion layers for polymer electrolyte fuel cells. Widely used for those requiring transmission ability. However, for example, when used as a gas diffusion layer for a polymer electrolyte fuel cell, there is a problem that the diffusion of the reaction gas is gradually inhibited and the pores of the gas diffusion layer are blocked (flooding) in some cases. . This may be because the water generated by the electrochemical reaction is not efficiently discharged and the water stays on the carbon electrode substrate. When such flooding occurs, a rapid decrease in output is observed particularly in a high current density region. Accordingly, a carbon electrode substrate used for a polymer electrolyte fuel cell is particularly required to have a water management function in which water does not easily stay.

また、特許文献1では、気孔の面積が一端から他端に向かって大きくなる炭素電極基材を製作している。しかし、この炭素電極基材の製作はバッチ製作で行っており、連続的にロール状に巻き取られた炭素電極基材と比較して、燃料電池として組み立てる際の加工の自由度が低下する。この炭素電極基材を、連続的にロール状に巻き取られた形態とすることも原理的には可能と考えられるが、工程が複雑になりコスト増につながる。   Moreover, in patent document 1, the carbon electrode base material from which the area of a pore becomes large toward an other end is manufactured. However, the production of the carbon electrode base material is performed by batch production, and the degree of freedom of processing when assembling as a fuel cell is reduced as compared with the carbon electrode base material continuously wound in a roll shape. Although it is possible in principle to make the carbon electrode substrate continuously wound into a roll shape, the process becomes complicated and leads to an increase in cost.

さらに、特許文献2では、炭素繊維が密な部分(例えばカーボンクロスにおいて炭素繊維が重なり合った部分)を電子伝導経路、疎な部分(例えばカーボンクロスにおいて炭素繊維が重なり合っていない部分)をガス透過経路、炭素繊維が存在しない部分(例えばカーボンクロスにおいて炭素繊維が存在しない部分)を生成水排出経路となるように炭素電極基材を製作している。しかし、この場合、炭素繊維の重なり合いにより炭素電極基材の厚さに斑が生じるため、燃料電池として組み立てた際、隣り合う電解質膜およびセパレーターとの接触抵抗が増大する恐れがある。
特開2002−319411号公報 特開2003−142110号公報
Further, in Patent Document 2, an electron conduction path is a portion where carbon fibers are dense (for example, a portion where carbon fibers overlap in a carbon cloth), and a gas permeation route is a portion where carbon fibers are not overlapped (for example, a portion where carbon fibers are not overlapping in carbon cloth) The carbon electrode base material is manufactured so that a portion where no carbon fiber exists (for example, a portion where carbon fiber does not exist in the carbon cloth) serves as a generated water discharge path. However, in this case, the thickness of the carbon electrode substrate is uneven due to the overlap of the carbon fibers, so that when assembled as a fuel cell, the contact resistance between the adjacent electrolyte membrane and the separator may increase.
JP 2002-319411 A JP 2003-142110 A

本発明は、炭素電極基材が有する優れた導電性、ガス透過性、機械的強度及び柔軟性を損なうことなく、連続的にロール状に巻き取ることが可能で、かつ水管理機能の優れた炭素電極基材およびその製造方法を提供することにある。   The present invention can continuously roll up the carbon electrode substrate without damaging the excellent conductivity, gas permeability, mechanical strength and flexibility of the carbon electrode substrate, and has an excellent water management function. The object is to provide a carbon electrode substrate and a method for producing the same.

本発明の要旨は、(a)抄造に用いる網板の下側に、平板に孔部を形成した多孔板を設置した状態で、炭素短繊維を抄造して、炭素繊維紙とする工程と、
(b)該炭素繊維紙に熱硬化性樹脂を含浸して、樹脂含浸炭素繊維紙とする工程と、
(c)該樹脂含浸炭素繊維紙を加熱プレスして、樹脂硬化炭素繊維紙とする工程と、
(d)該樹脂硬化炭素繊維紙を、窒素雰囲気下1200℃以上の温度で焼成して、炭素電極基材とする工程と
を有することを特徴とする炭素電極基材の製造方法。
The gist of the present invention is (a) a process of making carbon short fibers into carbon fiber paper in a state where a perforated plate in which holes are formed in a flat plate is installed on the lower side of a mesh plate used for paper making;
(B) impregnating the carbon fiber paper with a thermosetting resin to obtain a resin-impregnated carbon fiber paper;
(C) heat-pressing the resin-impregnated carbon fiber paper to obtain a resin-cured carbon fiber paper;
(D) A method for producing a carbon electrode substrate, comprising: baking the resin-cured carbon fiber paper at a temperature of 1200 ° C. or higher in a nitrogen atmosphere to form a carbon electrode substrate.

前記多孔板の孔径が4〜10mm、かつ、該多孔板のピッチ間距離が6〜12mmであること、The pore diameter of the porous plate is 4 to 10 mm, and the pitch distance of the porous plate is 6 to 12 mm;
前記工程(a)において、前記炭素短繊維に対して5質量%までの結着剤を使用すること、In the step (a), using a binder up to 5% by mass with respect to the short carbon fibers,
前記工程(b)〜(d)の各工程を、それぞれ連続的に行うこと、Carrying out each of the steps (b) to (d) continuously,
前記工程(c)において、前記樹脂含浸炭素繊維紙を予備加熱可能な加熱ゾーンと、前記樹脂含浸炭素繊維紙をプレスしつつ前記熱硬化性樹脂を硬化可能な硬化ゾーンとを具備する連続ベルト装置を用いること、さらに、前記加熱ゾーンの温度が120〜300℃、前記加熱ゾーンの通過時間が1〜6分、前記硬化ゾーンの温度が250〜400℃(但し前記加熱ゾーンの温度より高い温度)、前記硬化ゾーンでのプレス圧が1〜20MPaであること、A continuous belt device comprising a heating zone capable of preheating the resin-impregnated carbon fiber paper and a curing zone capable of curing the thermosetting resin while pressing the resin-impregnated carbon fiber paper in the step (c). Furthermore, the temperature of the heating zone is 120 to 300 ° C., the passage time of the heating zone is 1 to 6 minutes, and the temperature of the curing zone is 250 to 400 ° C. (however, a temperature higher than the temperature of the heating zone) The pressing pressure in the curing zone is 1 to 20 MPa,
前記連続ベルト装置におけるベルトの速度を0.1〜6.0m/minとすることがそれぞれ好ましい。It is preferable that the belt speed in the continuous belt device is 0.1 to 6.0 m / min.

本発明によれば、炭素電極基材が有する優れた導電性、ガス透過性、機械的強度及び柔軟性を損なうことなく、また連続的にロール状に巻き取ることが可能で、かつ水管理機能の優れた炭素電極基材およびその製造方法を提供可能となる。   According to the present invention, the carbon electrode base material has excellent conductivity, gas permeability, mechanical strength and flexibility, and can be continuously wound into a roll, and has a water management function. It is possible to provide an excellent carbon electrode substrate and a method for producing the same.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

炭素電極基材は、一次電池、二次電池、燃料電池等、電気二重層キャパシター、コンデンサーなどの電池部材の電極に使用することが可能で、酸に腐食されず、電気を通したり蓄えたりすることができるものである。本発明における炭素電極基材は、炭素短繊維と炭化樹脂とからなる炭素電極基材であって、面方向における任意の一方向において、炭素短繊維の含有率が高い部分と、炭素短繊維を含有しない又は炭素短繊維の含有率が低い部分とが、繰り返し現れることを特徴とするものである。面方向における任意の一方向において、炭素短繊維の含有率が高い部分と、炭素短繊維を含有しない又は炭素短繊維の含有率が低い部分とが、規則的に繰り返し現れることが好ましい。本発明の炭素電極基材は、特に固体高分子型燃料電池の炭素電極基材として好適である。   The carbon electrode base material can be used for electrodes of battery members such as primary batteries, secondary batteries, fuel cells, electric double layer capacitors, capacitors, etc., and is not corroded by acid, and conducts and stores electricity. It is something that can be done. The carbon electrode base material in the present invention is a carbon electrode base material composed of carbon short fibers and a carbonized resin, and in any one direction in the plane direction, a portion having a high carbon short fiber content, and carbon short fibers The part which does not contain or the content rate of a short carbon fiber is low appears repeatedly. In any one direction in the plane direction, it is preferable that a portion having a high carbon short fiber content and a portion not containing the carbon short fiber or a portion having a low carbon short fiber content appear regularly and repeatedly. The carbon electrode substrate of the present invention is particularly suitable as a carbon electrode substrate for a polymer electrolyte fuel cell.

本発明の炭素電極基材においては、炭素短繊維が比較的少ない部分をガスが通過しやすく、炭素短繊維が比較的多い部分は水が通過しやすなる。すなわち、例えば固体高分子型燃料電池に使用した際には、炭素短繊維が比較的少ない部分を通って燃料ガスが供給され、炭素短繊維が比較的多い部分を通って生成水が排出される。したがって、炭素電極基材中に水が滞留しにくくなり、例えば固体高分子型燃料電池用のガス拡散層として使用した場合、特に高電流密度領域における急激な出力低下が起こりにくくなる。このような機能の発現には、炭素短繊維の含有率によって表面張力、毛細管現象の起こりやすさ等が異なることが影響していると考えられる。   In the carbon electrode substrate of the present invention, gas easily passes through a portion where carbon short fibers are relatively small, and water easily passes through a portion where carbon short fibers are relatively large. That is, for example, when used in a polymer electrolyte fuel cell, fuel gas is supplied through a portion with relatively short carbon fibers, and generated water is discharged through a portion with relatively short carbon fibers. . Therefore, water does not easily stay in the carbon electrode base material, and when used as, for example, a gas diffusion layer for a polymer electrolyte fuel cell, a rapid output drop is less likely to occur particularly in a high current density region. The expression of such a function is considered to be affected by the difference in surface tension, the likelihood of capillary action, etc., depending on the content of short carbon fibers.

炭素短繊維とは、炭素繊維糸または炭素繊維のトウを短くカットして得られるものである。ここでは、長さ100mm以下の炭素繊維を炭素短繊維とする。炭素繊維の種類には、ポリアクリロニトリル系、ピッチ系、フェノール系、グラファイト系などがあるが、曲げ強度、引張強度がより高い炭素電極基材になることから、ポリアクリロニトリル系の炭素繊維をカットした炭素短繊維を使用することが好ましい。また、用いる炭素短繊維の70質量%以上がポリアクリロニリル系炭素短繊維であることがより好ましい。   The carbon short fiber is obtained by cutting a carbon fiber yarn or a carbon fiber tow short. Here, a carbon fiber having a length of 100 mm or less is a short carbon fiber. The types of carbon fibers include polyacrylonitrile, pitch, phenol, and graphite. However, since the carbon electrode base material has higher bending strength and tensile strength, polyacrylonitrile-based carbon fibers have been cut. It is preferable to use short carbon fibers. Further, it is more preferable that 70% by mass or more of the short carbon fibers to be used are polyacrylonyl carbon short fibers.

ポリアクリロニトリル系の炭素繊維は、その前駆体(プレカーサー)であるポリアクリロニトリル系繊維を製造する紡糸工程、200〜400℃の空気雰囲気中で該繊維を加熱焼成して酸化繊維に転換する耐炎化工程、窒素、アルゴン、ヘリウム等の不活性雰囲気中で、さらに300〜2500℃に加熱して炭素化する炭素化工程を経て得られる繊維で、複合材料強化繊維として一般的に使用されているものを使用できる。   A polyacrylonitrile-based carbon fiber is a spinning process for producing a polyacrylonitrile-based fiber that is a precursor (precursor), and a flameproofing process in which the fiber is heated and fired in an air atmosphere at 200 to 400 ° C. to convert it into an oxidized fiber. , A fiber obtained through a carbonization step of carbonization by heating to 300 to 2500 ° C. in an inert atmosphere such as nitrogen, argon, helium, etc., which is generally used as a composite material reinforcing fiber Can be used.

本発明で使用する炭素短繊維は、繊維径の最小値が5μm以下であり、かつ繊維長15mm以下であることが好ましい。繊維径が5μm以下の炭素短繊維が含まれることによって、炭素電極基材の柔軟性が向上する。炭素短繊維の平均繊維径が5μm以下であることがより好ましく、炭素短繊維の繊維径の最大値が5μm以下であることが特に好ましい。繊維径の下限は特に制限はないが、繊維径の最小値が3μm以上であることが好ましい。なお、炭素短繊維の繊維径は、JIS R−7601記載のヘリウム−ネオンレーザー(Anritsu社製、商品名:SLB DIA MEASURING SYSTEM)により測定を行った。また、平均繊維径は、100本の炭素繊維について前記測定を行い、その平均値をもって炭素繊維の平均繊維径とした。また、繊維長を15mm以下とすることで、抄紙時の紙料液中での分散性が良好となり、より均質な紙が製作できるため好ましい。9mm以下であることがより好ましい。繊維長の下限は特に制限はないが、3mm以上とすることが好ましい。   The short carbon fibers used in the present invention preferably have a minimum fiber diameter of 5 μm or less and a fiber length of 15 mm or less. By including short carbon fibers having a fiber diameter of 5 μm or less, the flexibility of the carbon electrode substrate is improved. The average fiber diameter of the short carbon fibers is more preferably 5 μm or less, and the maximum value of the short fiber diameter is particularly preferably 5 μm or less. The lower limit of the fiber diameter is not particularly limited, but the minimum fiber diameter is preferably 3 μm or more. In addition, the fiber diameter of the short carbon fiber was measured by a helium-neon laser (manufactured by Anritsu, trade name: SLB DIA MEASURING SYSTEM) described in JIS R-7601. The average fiber diameter was measured for 100 carbon fibers, and the average value was defined as the average fiber diameter of the carbon fibers. Further, it is preferable to set the fiber length to 15 mm or less because dispersibility in the stock liquid during paper making becomes good and more uniform paper can be produced. More preferably, it is 9 mm or less. The lower limit of the fiber length is not particularly limited, but is preferably 3 mm or more.

本発明の炭素電極基材の構成成分である炭化樹脂とは、樹脂を炭化処理して得られるものである。炭化する樹脂としては、熱可塑性樹脂でも熱硬化性樹脂でも良い。高温にする際に液化しないことから、熱硬化性樹脂が好ましい。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂等を用いることができる。炭化効率が高いことから、フェノール樹脂が好ましい。炭化処理は、例えば後述する焼成工程によって行うことができる。   The carbonized resin that is a constituent component of the carbon electrode substrate of the present invention is obtained by carbonizing a resin. The resin to be carbonized may be a thermoplastic resin or a thermosetting resin. A thermosetting resin is preferred because it does not liquefy when the temperature is raised. As a thermosetting resin, a phenol resin, an epoxy resin, a melamine resin, a urea resin etc. can be used, for example. Phenol resin is preferred because of high carbonization efficiency. The carbonization treatment can be performed, for example, by a firing process described later.

本発明の炭素電極基材において、上記の炭化樹脂は、炭素短繊維に対して20〜70質量%含まれていることが好ましい。炭化樹脂比率が20質量%以上とすることで炭素電極基材の強度がより高くなる。また70質量%以下とすることで炭素電極基材の空孔率がより高くなり、ガス透過性能がより向上する。より好ましくは、30〜50質量%である。   In the carbon electrode substrate of the present invention, the carbonized resin is preferably contained in an amount of 20 to 70% by mass with respect to the short carbon fibers. The intensity | strength of a carbon electrode base material becomes higher because a carbonized resin ratio shall be 20 mass% or more. Moreover, the porosity of a carbon electrode base material becomes higher by setting it as 70 mass% or less, and gas-permeation performance improves more. More preferably, it is 30-50 mass%.

本発明の炭素電極基材としては、柔軟性が高く、取り扱いが容易な点を考慮して、その厚さが0.3mm以下であることが好ましい。より好ましくは、0.25mm以下である。また、強度の観点から0.05mm以上であることが好ましく、0.1mm以上であることがより好ましい。また、本発明の炭素電極基材としては、燃料電池部材として組み込まれたときの電池性能の観点から、厚さ方向の貫通抵抗は10mΩ・cm2以下であることが好ましい。より好ましくは、8mΩ・cm2以下である。また、下限については特に制限はないが、通常は3mΩ・cm2以上でなる。 The carbon electrode substrate of the present invention preferably has a thickness of 0.3 mm or less in view of high flexibility and easy handling. More preferably, it is 0.25 mm or less. Moreover, it is preferable that it is 0.05 mm or more from a viewpoint of intensity | strength, and it is more preferable that it is 0.1 mm or more. Moreover, as a carbon electrode base material of this invention, it is preferable that the penetration resistance of thickness direction is 10 m (ohm) * cm < 2 > or less from a viewpoint of the cell performance when it integrates as a fuel cell member. More preferably, it is 8 mΩ · cm 2 or less. The lower limit is not particularly limited, but is usually 3 mΩ · cm 2 or more.

本発明の炭素電極基材としては、全長が20m以上であるものが好ましい。また、ロール状に巻き取られた状態で提供されることが好ましい。これは、大きさや形状を自由に加工が可能であること等、連続体起因による生産性の向上が見られるためである。長さの上限については特に制限はないが、ロール状に巻き取られた状態での作業性の観点から、500m以下であることが好ましい。   As a carbon electrode base material of this invention, what has a full length of 20 m or more is preferable. Moreover, it is preferable to provide in the state wound up by roll shape. This is because productivity can be improved due to the continuum such as the size and shape can be processed freely. Although there is no restriction | limiting in particular about the upper limit of length, From a viewpoint of workability | operativity in the state wound up by roll shape, it is preferable that it is 500 m or less.

上記のような炭素電極基材は、
(a)抄造に用いる網板の下側に多孔板を設置した状態で、炭素短繊維を抄造して、炭素繊維紙とする工程と、
(b)該炭素繊維紙に熱硬化性樹脂を含浸して、樹脂含浸炭素繊維紙とする工程と、
(c)該樹脂含浸炭素繊維紙を加熱プレスして、樹脂硬化炭素繊維紙とする工程と、
(d)該樹脂硬化炭素繊維紙を、窒素雰囲気下、1200℃以上の温度で焼成して、炭素電極基材とする工程と
を有する方法により好適に製造できる。以下、その方法を説明する。
The carbon electrode substrate as described above is
(A) In a state where a perforated plate is installed on the lower side of the net used for paper making, paper short fibers are made into carbon fiber paper;
(B) impregnating the carbon fiber paper with a thermosetting resin to obtain a resin-impregnated carbon fiber paper;
(C) heat-pressing the resin-impregnated carbon fiber paper to obtain a resin-cured carbon fiber paper;
(D) The resin-cured carbon fiber paper can be suitably produced by a method comprising baking the resin-cured carbon fiber paper at a temperature of 1200 ° C. or higher to form a carbon electrode substrate. The method will be described below.

まず、炭素短繊維を抄造して炭素繊維紙を作製する。このとき、抄造に用いる網板の下側に多孔板を設置した状態で、炭素短繊維を抄造する。こうすることで、多孔板の孔となる部分は炭素短繊維が比較的多くなり、一方多孔板の孔が無い部分は炭素短繊維が比較的少なくなり、炭素短繊維の含有率が多孔板の配置にならって変化した炭素繊維紙となる。すなわち、面方向における任意の一方向において、炭素短繊維密度が高い部分と、炭素短繊維を含有しない又は炭素短繊維密度が低い部分とが、繰り返し現れる炭素繊維紙となる。この炭素短繊維紙における炭素短繊維の分布状態は、その後に行う工程において維持されるため、最終的に得られる炭素電極基材は、面方向における任意の一方向において、炭素短繊維の含有率が高い部分と、炭素短繊維を含有しない又は炭素短繊維の含有率が低い部分とが、繰り返し現れるようになる。   First, carbon short paper is made to produce carbon fiber paper. At this time, carbon short fibers are made with a perforated plate installed below the mesh plate used for paper making. In this way, the portion of the perforated plate that has pores has a relatively large amount of short carbon fibers, while the portion of the perforated plate that has no holes has a relatively small amount of short carbon fibers, so The carbon fiber paper changes according to the arrangement. That is, in any one direction in the plane direction, a carbon fiber paper in which a portion having a high carbon short fiber density and a portion not containing carbon short fibers or a portion having a low carbon short fiber density appear repeatedly. Since the distribution state of the short carbon fiber in the short carbon fiber paper is maintained in the subsequent process, the carbon electrode base material finally obtained has a carbon short fiber content in any one direction in the plane direction. And a portion that does not contain carbon short fibers or has a low content of carbon short fibers repeatedly appear.

より具体的に説明すると、炭素短繊維を含んだ液体は、網板上にて炭素短繊維と水分とに分離され、炭素短繊維のみが網板上に残る(図4(a)参照)。この際、網板の下部に多孔板を配置することにより、積極的に水分が通過する部分(多孔板の孔の部分)とそうでない部分(多孔板の孔のない部分)ができる。その結果、積極的に水分が通過する部分は炭素短繊維が比較的多く集まり、そうでない部分には炭素短繊維は比較的少なくなる(図4(b)参照)。   More specifically, the liquid containing short carbon fibers is separated into short carbon fibers and moisture on the mesh plate, and only the short carbon fibers remain on the mesh plate (see FIG. 4A). At this time, by disposing the perforated plate below the mesh plate, a portion through which moisture actively passes (portion of the hole in the perforated plate) and a portion other than that (portion of the perforated plate without the hole) are formed. As a result, a relatively large amount of short carbon fibers gathers in a portion where moisture actively passes, and a relatively small amount of short carbon fibers in a portion where moisture does not pass (see FIG. 4B).

上記の多孔板としては、孔径4〜10mm、ピッチ間距離6〜12mmの多孔板が好ましい。ここでいうピッチ間距離とは、孔と孔のそれぞれの中心点を結んだ距離である。また、孔の部分が一部閉塞した網板を使用することにより、網板と多孔板を併用する際と同じ状況を作り出すことも可能である。孔は規則的に配置されていることが好ましい。   As the porous plate, a porous plate having a hole diameter of 4 to 10 mm and a pitch distance of 6 to 12 mm is preferable. The distance between pitches here is a distance connecting the center points of the holes. Further, by using a mesh plate in which the hole part is partially blocked, it is possible to create the same situation as when the mesh plate and the porous plate are used in combination. The holes are preferably arranged regularly.

炭素短繊維を抄造する際、炭素短繊維同士を決着させる目的で、バインダー(結着剤)を使用することが好ましい。多すぎると焼成して得られる電極基材の電気抵抗が高くなるため、炭素短繊維に対して5質量%までの量のバインダーを使用することがより好ましい。これにより、得られる炭素繊維紙の強度を保持し、生産の途中で炭素繊維紙からの炭素短繊維の剥離・脱落、炭素短繊維の配向の変化を防ぐことが可能となる。バインダーとしては高分子化合物が好ましく、例えば、ポリビニルアルコール、あるいはアクリルニトリル系ポリマーのパルプ状物もしくは短繊維等を使用できる。また、バインダーの状態としては特に制限は無く、繊維状、ペレット状、粉末状等、いずれでも構わない。   When making short carbon fibers, it is preferable to use a binder (binder) for the purpose of fixing the short carbon fibers together. If the amount is too large, the electrical resistance of the electrode substrate obtained by firing becomes high, and therefore it is more preferable to use a binder in an amount of up to 5% by mass based on the short carbon fibers. Thereby, it is possible to maintain the strength of the obtained carbon fiber paper, and to prevent the short carbon fibers from peeling and dropping from the carbon fiber paper during the production and the change in the orientation of the short carbon fibers. As the binder, a high molecular compound is preferable. For example, polyvinyl alcohol, or an acrylonitrile-based polymer pulp or short fiber can be used. Moreover, there is no restriction | limiting in particular as a state of a binder, Any, fibrous form, pellet form, powder form, etc. may be sufficient.

炭素短繊維の抄造は、バッチ式でも連続式でも実施可能であるが、生産性の観点から、連続式が好ましい。連続式の場合、多孔板は網板と同一速度で移動させつつ行うことが好ましい。連続的に炭素短繊維の抄造する方法としては、パルプなどの繊維から紙を連続抄造する円網式・長網式・短網式等の公知の方法と同様の手法を適用すればよい。円網式はバインダーを相当量必要とするため、製造コストの観点から長網式・短網式の方が好ましい。   Papermaking of short carbon fibers can be carried out either batchwise or continuously, but the continuous method is preferred from the viewpoint of productivity. In the case of the continuous type, it is preferable that the perforated plate is moved while moving at the same speed as the mesh plate. As a method for continuously making short carbon fibers, a technique similar to a known method such as a circular net type, a long net type, or a short net type for continuously making paper from fibers such as pulp may be applied. Since the circular net type requires a considerable amount of binder, the long net type and the short net type are preferable from the viewpoint of manufacturing cost.

抄造して得られる炭素繊維紙の単位面積当たりの平均質量は15g/m2〜40g/m2であることが好ましい。 The average mass per unit area of the carbon fiber paper obtained by the papermaking is preferably 15g / m 2 ~40g / m 2 .

次に、抄造して得られた炭素繊維紙に熱硬化性樹脂を含浸して、樹脂含浸炭素繊維紙とする工程を行う。この工程は、バッチ式でも連続式でも実施可能であるが、生産性の観点から、連続式が好ましい。炭素繊維紙に熱硬化性樹脂を含浸する方法としては、絞り装置を用いるdip−nip法、コーターを用いて炭素繊維紙表面に樹脂を均一にコートする方法、樹脂フィルムを炭素繊維紙に転写する方法などの一般的な連続製法で行うことができる。dip−nip法は、熱硬化性樹脂とメタノール、エタノール等のアルコール類等の溶媒との混合溶液中に炭素繊維紙を浸し、絞り装置で混合溶液が炭素繊維紙全体に均一に塗布されるようにし、その塗布量は絞り装置のロール間隔の変更により調節する方法である。熱硬化性樹脂を含む混合溶液の粘度が比較的低い場合は、コーターでコートする方法や樹脂フィルムを転写する方法を用いると、より均一に熱硬化性樹脂を含浸させることができる。粘度が高い場合は、炭素繊維紙の内部までは熱硬化性樹脂が浸透しにくいため、dip−nip法が好ましい。このように、熱硬化性樹脂の粘度により適当な含浸方法を採用する必要がある。   Next, a carbon fiber paper obtained by paper making is impregnated with a thermosetting resin to obtain a resin-impregnated carbon fiber paper. This step can be carried out either batchwise or continuously, but is preferably continuous from the viewpoint of productivity. As a method for impregnating carbon fiber paper with a thermosetting resin, a dip-nip method using a squeezing device, a method of uniformly coating a resin on the surface of carbon fiber paper using a coater, and transferring a resin film to carbon fiber paper It can be performed by a general continuous production method such as a method. In the dip-nip method, carbon fiber paper is immersed in a mixed solution of a thermosetting resin and a solvent such as alcohol such as methanol or ethanol, and the mixed solution is uniformly applied to the entire carbon fiber paper by a squeezing device. The coating amount is adjusted by changing the roll interval of the squeezing device. When the viscosity of the mixed solution containing the thermosetting resin is relatively low, it is possible to more uniformly impregnate the thermosetting resin by using a method of coating with a coater or a method of transferring a resin film. When the viscosity is high, the dip-nip method is preferable because the thermosetting resin does not easily penetrate into the carbon fiber paper. Thus, it is necessary to employ an appropriate impregnation method depending on the viscosity of the thermosetting resin.

そして、得られた樹脂含浸炭素繊維紙を加熱プレスして、樹脂硬化炭素繊維紙とする工程を行う。この加熱プレス工程は、最終的に得られる炭素電極基材の強度および厚さ精度の向上のために不可欠な工程であり、樹脂含浸炭素繊維紙に熱および圧力を加えることができれば、いかなる技術も適用できる。例えば、上下両面から金属板にてプレスする方法、金型にはめ込んで成型する方法、連続ベルト装置を用いる方法があげられる。この工程は、バッチ式でも連続式でも実施可能であるが、生産性の観点から、連続式が好ましい。連続ベルト装置により加熱プレスする方法が、20m以上の連続した炭素電極基材を製造可能であるという点および高生産性であるという点でより好ましい。   Then, the obtained resin-impregnated carbon fiber paper is heated and pressed to obtain a resin-cured carbon fiber paper. This hot pressing process is an indispensable process for improving the strength and thickness accuracy of the finally obtained carbon electrode substrate, and any technique can be used as long as heat and pressure can be applied to the resin-impregnated carbon fiber paper. Applicable. For example, a method of pressing with a metal plate from both the upper and lower surfaces, a method of molding by inserting into a mold, and a method of using a continuous belt device are mentioned. This step can be carried out either batchwise or continuously, but is preferably continuous from the viewpoint of productivity. The method of hot pressing with a continuous belt device is more preferable in that it can produce a continuous carbon electrode substrate of 20 m or more and has high productivity.

連続ベルト装置の一例の概略図を図3に示す。連続ベルト装置には、上下に1対の金属状のベルト3が配置されており、そのベルト3を稼動させながらその間に樹脂含浸炭素繊維紙1を通す構造となっている。   A schematic diagram of an example of a continuous belt device is shown in FIG. In the continuous belt device, a pair of metal belts 3 are arranged at the top and bottom, and the resin-impregnated carbon fiber paper 1 is passed between the belts 3 while operating.

連続ベルト装置には、加熱装置とプレス装置の両方が必要となる。特に、図3に示すように、樹脂含浸炭素繊維紙を予備加熱可能な加熱ゾーン4と、樹脂含浸炭素繊維紙をプレスしつつ熱硬化性樹脂を硬化可能な硬化ゾーン5を具備するものが好ましい。加熱ゾーン4は、熱硬化性樹脂がやわらかくなる温度に設定され、硬化ゾーン5において効果的にプレスすることができるようにするためのゾーンである。加熱ゾーン4がない場合でも原理的にはプレスは可能ではあるが、炭素電極基材にシワやワレが発生しやすくなり、生産安定性が低下する場合があることから、加熱ゾーン4を具備することが好ましい。   A continuous belt device requires both a heating device and a press device. In particular, as shown in FIG. 3, it is preferable to have a heating zone 4 capable of preheating the resin-impregnated carbon fiber paper and a curing zone 5 capable of curing the thermosetting resin while pressing the resin-impregnated carbon fiber paper. . The heating zone 4 is a zone that is set to a temperature at which the thermosetting resin becomes soft and can be effectively pressed in the curing zone 5. Even in the absence of the heating zone 4, in principle, pressing is possible, but since the carbon electrode base material is likely to be wrinkled and cracked and production stability may be lowered, the heating zone 4 is provided. It is preferable.

上記のような連続ベルト装置においては、1〜20MPaの圧力でプレスすることが好ましい。また、加熱ゾーンの温度を120〜300℃、加熱処理時間を1〜6分、硬化ゾーンの温度を250〜400℃(但し前記加熱ゾーンの温度より高い温度)、プレス圧を1〜20MPaの条件で行うと、炭素電極基材の強度が向上するため、さらに好ましい。加熱ゾーンの温度が低すぎる場合または加熱処理時間が短すぎる場合は、炭素電極基材にシワが発生しやすくなる。また加熱ゾーンの温度が高すぎる場合は、プレスする前に熱硬化性樹脂が硬化してしまうことがある。一方、プレス圧が低すぎる場合は、炭素短繊維同士の接触不足から炭素電極基材の導電性が低下する場合があり、また、厚さが厚くなるため炭素電極基材の柔軟性が低下する傾向がある。プレス圧が高すぎる場合は、炭素電極基材の特性上に問題はないが、過大なプレス設備が必要となり、費用対効果の点であまり好ましくない。   In the continuous belt device as described above, it is preferable to press at a pressure of 1 to 20 MPa. The heating zone temperature is 120 to 300 ° C., the heat treatment time is 1 to 6 minutes, the curing zone temperature is 250 to 400 ° C. (but higher than the heating zone temperature), and the press pressure is 1 to 20 MPa. Is more preferable because the strength of the carbon electrode substrate is improved. If the temperature of the heating zone is too low or the heat treatment time is too short, wrinkles are likely to occur on the carbon electrode substrate. If the temperature of the heating zone is too high, the thermosetting resin may be cured before pressing. On the other hand, when the press pressure is too low, the conductivity of the carbon electrode substrate may be reduced due to insufficient contact between the short carbon fibers, and the flexibility of the carbon electrode substrate is reduced because the thickness is increased. Tend. When the press pressure is too high, there is no problem in the characteristics of the carbon electrode substrate, but an excessive press facility is required, which is not preferable in terms of cost effectiveness.

また、製造効率と炭素電極基材の品質の観点から、ベルト3の速度は0.1〜6.0m/minであることが好ましい。   Moreover, it is preferable that the speed of the belt 3 is 0.1-6.0 m / min from a viewpoint of manufacturing efficiency and the quality of a carbon electrode base material.

なお、樹脂含浸炭素繊維紙1をそのままベルト3の間に通すと、にじみ出た樹脂によってベルト3と樹脂含浸炭素繊維紙1とが接着することがある。そこで、連続プレス装置のベルト3と接する樹脂含浸炭素繊維紙1表面に、離型剤をコーティングすることが好ましい。離型剤としては、例えば、フッ素系樹脂、シリコン系樹脂が、離型性の観点から好ましい。或いは、図3に示すように、連続プレス装置のベルト3と樹脂含浸炭素繊維紙1との間に、離型剤がコーティングされた離型剤コーティング基材2を挟み込むことが好ましい。離型剤コーティング基材2としては、例えば、フッ素系樹脂やシリコン系樹脂が塗布された熱安定性および機械強度の優れた紙を使用でき、その表面粗さが1μm以下の平滑なものが離型性の観点から好ましい。   If the resin-impregnated carbon fiber paper 1 is passed between the belts 3 as it is, the belt 3 and the resin-impregnated carbon fiber paper 1 may adhere to each other due to the oozed resin. Therefore, it is preferable to coat a release agent on the surface of the resin-impregnated carbon fiber paper 1 in contact with the belt 3 of the continuous press apparatus. As the release agent, for example, a fluorine-based resin and a silicon-based resin are preferable from the viewpoint of releasability. Alternatively, as shown in FIG. 3, it is preferable to sandwich a release agent-coated substrate 2 coated with a release agent between a belt 3 and a resin-impregnated carbon fiber paper 1 of a continuous press apparatus. As the release agent coating substrate 2, for example, paper having excellent thermal stability and mechanical strength coated with fluorine resin or silicon resin can be used, and a smooth one having a surface roughness of 1 μm or less is released. It is preferable from the viewpoint of moldability.

上記の加熱プレスの後、得られた樹脂硬化炭素繊維紙を、窒素雰囲気下、1200℃以上の温度で焼成する工程により、炭素電極基材が得られる。窒素雰囲気とは、実質的に窒素のみの雰囲気を意味し、若干の酸素や他の気体分子が混在しても良い。焼成温度としては1400〜2200℃が、炭素電極基材の機械的強度および導電性の観点から好ましい。焼成を行う炉は、窒素雰囲気下かつ1200℃以上で焼成可能な炉であれば、特に制限なく使用できるが、生産性の観点から、連続焼成炉を用いて連続的に焼成することが好ましい。   A carbon electrode base material is obtained by the process of baking the obtained resin-cured carbon fiber paper at a temperature of 1200 ° C. or higher in a nitrogen atmosphere after the heating press. Nitrogen atmosphere means an atmosphere of only nitrogen, and some oxygen and other gas molecules may be mixed. As a calcination temperature, 1400-2200 degreeC is preferable from a mechanical strength and electroconductivity viewpoint of a carbon electrode base material. The furnace for firing can be used without particular limitation as long as it is a furnace that can be fired at 1200 ° C. or higher in a nitrogen atmosphere, but from the viewpoint of productivity, it is preferable to continuously fire using a continuous firing furnace.

以下に本発明を実施例によりさらに具体的に説明するが、本発明は、本発明の実施例に限定されるものではない。なお、実施例中の各物性値等は、以下の方法で測定した。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the examples of the present invention. In addition, each physical-property value in an Example was measured with the following method.

1)炭素電極基材の曲げ強度
曲げ強度試験装置(A and D社製、商品名:Tensilon UTM−I−2500)を用いて測定した。具体的には、8cm×1cmに切断した炭素電極基材を試験片として用いて、支点間距離2cm、歪み速度10mm/minで荷重をかけていき、試験片が破断したときの加圧くさびの荷重を測定し、曲げ強度は次式より求めた。
1) Bending strength of carbon electrode base material It measured using the bending strength test apparatus (A and D company make, brand name: Tensilon UTM-I-2500). Specifically, using a carbon electrode substrate cut to 8 cm × 1 cm as a test piece, applying a load at a fulcrum distance of 2 cm and a strain rate of 10 mm / min, the pressure wedge when the test piece breaks The load was measured and the bending strength was obtained from the following formula.

Figure 0004559767
Figure 0004559767

2)炭素電極基材のたわみ
曲げ強度試験装置(A and D社製、商品名:Tensilon UTM−I−2500)を用いて測定した。具体的には、8cm×1cmに切断した炭素電極基材を試験片として用いて、支点間距離2cm、歪み速度30mm/minで荷重をかけていき、荷重がかかり始めた点から試験片が破断したときまでの加圧くさびの移動距離をたわみとした。
2) Deflection of carbon electrode base material It measured using the bending strength test apparatus (A and D company make, brand name: Tensilon UTM-I-2500). Specifically, using a carbon electrode substrate cut to 8 cm × 1 cm as a test piece, a load was applied at a distance between fulcrums of 2 cm and a strain rate of 30 mm / min, and the test piece was broken from the point where the load began to be applied. The movement distance of the pressure wedge up to the time of the bending was defined as the deflection.

3)炭素電極基材の気体透気度
JIS−P8117に準拠し、ガーレー式デンソメーター(熊谷理機社製)を使用し、200mm3の気体(空気)が通過する時間を測定し算出した。
3) Gas permeability of carbon electrode base material Based on JIS-P8117, a Gurley densometer (manufactured by Kumagai Riki Co., Ltd.) was used, and the time required for 200 mm 3 gas (air) to pass through was measured and calculated.

4)炭素電極基材の貫通抵抗
炭素電極基材の試料を銅板にはさみ、銅板の上下より1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
4) Penetration resistance of carbon electrode base material A sample of the carbon electrode base material was sandwiched between copper plates, pressed at 1 MPa from the top and bottom of the copper plate, and measured for resistance when a current was passed at a current density of 10 mA / cm 2. Obtained from the equation.

貫通抵抗(Ω・cm2)=測定抵抗値(Ω)×試料面積(cm2) ・・・(2)
5)単セルスタックの発電特性
単セルスタックを、FUEL CELL TEST SYSTEM(SCRIBNERASSOCIATE.INC製、商品名:SERIES 890B)と接続し、発電特性試験を行った。
Penetration resistance (Ω · cm 2 ) = Measured resistance value (Ω) × Sample area (cm 2 ) (2)
5) Power generation characteristics of single cell stack The single cell stack was connected to FUEL CELL TEST SYSTEM (product name: SERIES 890B, manufactured by SCRIBNERASSOCIATE. INC), and a power generation characteristic test was performed.

〔実施例1〕
平均繊維径が4μmのPAN系炭素繊維の繊維束を切断し、平均繊維長が3mmの短繊維を得た。これらを湿式連続抄紙装置のスラリータンクで水中に解繊させ、十分に分散したところにバインダーであるポリビニルアルコール(PVA)の短繊維を均一に分散させ、加圧装置にて送り出した。
[Example 1]
A fiber bundle of PAN-based carbon fibers having an average fiber diameter of 4 μm was cut to obtain short fibers having an average fiber length of 3 mm. These were defibrated in water using a slurry tank of a wet continuous paper making machine, and when sufficiently dispersed, short fibers of polyvinyl alcohol (PVA) as a binder were uniformly dispersed and fed out by a pressure device.

上記の分散液を、直径6mm、ピッチ間距離8mmの孔を有する多孔板(ステンレス製、厚さ1mm)の上部に配置された網板の上に送り込んで紙状にした後、ドライヤーで乾燥することで、長さ200mの炭素繊維紙を得た。なお、得られた炭素繊維紙の単位面積当たりの平均質量は30g/m2であった。 The dispersion is fed onto a mesh plate placed on the top of a perforated plate (stainless steel, 1 mm thick) having holes with a diameter of 6 mm and a pitch distance of 8 mm, and then dried with a dryer. Thus, a carbon fiber paper having a length of 200 m was obtained. In addition, the average mass per unit area of the obtained carbon fiber paper was 30 g / m 2 .

次にこの炭素繊維紙を、dip−nip法により熱硬化性樹脂を含浸させた。すなわち、この炭素繊維紙を、フェノール樹脂(フェノライトJ−325(商品名):大日本インキ化学(株)製)の20質量%エタノール溶液が入ったトレイに連続的に送り込み、絞り装置にて余分なフェノール樹脂を絞り、連続的に熱風を吹き掛け乾燥させ、樹脂含浸炭素繊維紙を得た。   Next, this carbon fiber paper was impregnated with a thermosetting resin by a dip-nip method. That is, this carbon fiber paper was continuously fed into a tray containing a 20% by mass ethanol solution of phenol resin (Phenolite J-325 (trade name) manufactured by Dainippon Ink Chemical Co., Ltd.), and with a squeezing device. Excess phenol resin was squeezed and dried by blowing hot air continuously to obtain a resin-impregnated carbon fiber paper.

次にこの樹脂含浸炭素繊維紙を、連続ベルト装置(三菱レイヨン・エンジニアリング社製)にて連続的に加熱プレスし、樹脂硬化炭素繊維紙を得た。なお、このときの加熱ゾーンの加熱処理温度は160℃、加熱処理時間は5分とし、また、硬化ゾーンの温度は250℃、プレス圧力は3MPa、プレス時間は2秒、ベルトの速度は0.5m/minとした。   Next, this resin-impregnated carbon fiber paper was continuously heated and pressed with a continuous belt device (manufactured by Mitsubishi Rayon Engineering Co., Ltd.) to obtain a resin-cured carbon fiber paper. At this time, the heat treatment temperature of the heating zone is 160 ° C., the heat treatment time is 5 minutes, the temperature of the curing zone is 250 ° C., the press pressure is 3 MPa, the press time is 2 seconds, and the belt speed is 0.00. It was 5 m / min.

続いて上記樹脂硬化炭素繊維紙を、連続焼成炉を用いて、2000℃の窒素ガス雰囲気中で10分間加熱して炭素化することで、長さ190mの炭素電極基材を得た。   Subsequently, the resin-cured carbon fiber paper was carbonized by heating in a nitrogen gas atmosphere at 2000 ° C. for 10 minutes using a continuous firing furnace, to obtain a carbon electrode base material having a length of 190 m.

得られた炭素電極基材について、曲げ強度・たわみ・気体透気度・貫通抵抗を測定した。測定結果は表1に示した。   The obtained carbon electrode substrate was measured for bending strength, deflection, gas permeability, and penetration resistance. The measurement results are shown in Table 1.

〔比較例1〕
多孔板を使用しないこと以外は、実施例1と同様の方法で炭素電極基材を得た。得られた炭素電極基材には、炭素短繊維が均一に分布していた。また、得られた炭素電極基材について、曲げ強度・たわみ・気体透気度・貫通抵抗を測定した。測定結果は表1に示した。
[Comparative Example 1]
A carbon electrode substrate was obtained in the same manner as in Example 1 except that the porous plate was not used. Carbon short fibers were uniformly distributed in the obtained carbon electrode base material. In addition, bending strength, deflection, gas permeability, and penetration resistance were measured for the obtained carbon electrode substrate. The measurement results are shown in Table 1.

Figure 0004559767
Figure 0004559767

次に、上記実施例1及び比較例1で得られた炭素電極基材を5cm四方にカットし、撥水処理[市販のPTFE水溶液(三井・デュポンフロロケミカル社製)を水で15〜20質量%まで希釈したものに浸漬し、乾燥後360℃で焼結させた]を行った後、その上に触媒層(カーボンブラックと白金触媒を混合したもの)を1.0mg/cm2となるよう塗布した炭素電極基材で電解質膜(デュポン社製、商品名:ナフィオン115)をはさみこみ、膜電極接合体を作製した。次に、その膜電極接合体をカーボンセパレーターでさらにはさみこみ、締付けトルク4N・mで締付け、単セルスタックを製作した。得られた単セルスタックのうち、実施例1の方法で製作した炭素電極基材を使用したものをセルスタックAとし、実施例2の方法で製作した炭素電極基材を使用したものをセルスタックBとする。 Next, the carbon electrode base material obtained in Example 1 and Comparative Example 1 was cut into a 5 cm square, and water repellent treatment [commercially available PTFE aqueous solution (Mitsui / Dupont Fluoro Chemical Co., Ltd.) was used in water of 15 to 20 mass. So that the catalyst layer (mixed of carbon black and platinum catalyst) is 1.0 mg / cm 2 on the substrate. An electrolyte membrane (manufactured by DuPont, trade name: Nafion 115) was sandwiched between the coated carbon electrode base materials to prepare a membrane electrode assembly. Next, the membrane electrode assembly was further sandwiched with a carbon separator and tightened with a tightening torque of 4 N · m to produce a single cell stack. Among the obtained single cell stacks, the one using the carbon electrode substrate produced by the method of Example 1 was designated as cell stack A, and the one using the carbon electrode substrate produced by the method of Example 2 was used as the cell stack. B.

アノードに水素を、カソードに酸素を用いて80℃にて発電した場合の、上記のセルスタックの発電特性を図1に、アノードに水素、カソードに空気を用いて80℃にて発電した場合の、上記のセルスタックの発電特性を図2に示す。なお、図1および図2において、記号(□)はセルスタックAの発電特性を、また記号(△)はセルスタックBの発電特性を示す。図1および図2から明らかなように、セルスタックAはセルスタックBと比較して、特に高電流密度領域において高い出力電圧が得られることが分かった。   Fig. 1 shows the power generation characteristics of the above cell stack when power is generated at 80 ° C using hydrogen for the anode and oxygen for the cathode. Fig. 1 shows the power generation characteristics when power is generated at 80 ° C using hydrogen for the anode and air for the cathode. FIG. 2 shows the power generation characteristics of the cell stack. 1 and 2, the symbol (□) indicates the power generation characteristics of the cell stack A, and the symbol (Δ) indicates the power generation characteristics of the cell stack B. As apparent from FIGS. 1 and 2, it was found that the cell stack A can obtain a higher output voltage than the cell stack B, particularly in the high current density region.

これは、比較例1の炭素電極基材では、電気化学反応によって発生する水の滞留によりガスの拡散性が妨げられ、高電流密度領域において急激な出力低下が見られるのに対して、本発明による実施例1の炭素電極基材では、燃料ガスが炭素短繊維の比較的少ない構造の部分から供給されるとともに、発生する水は炭素短繊維の比較的多い部分から効率的に排出されるため、特に高電流密度領域において良好な発電特性を示したと考えられる。   This is because, in the carbon electrode base material of Comparative Example 1, the diffusibility of the gas is hindered by the retention of water generated by the electrochemical reaction, and a rapid output decrease is observed in the high current density region. In the carbon electrode base material of Example 1 according to the present invention, the fuel gas is supplied from a portion having a relatively small structure of carbon short fibers, and the generated water is efficiently discharged from a relatively large portion of carbon short fibers. In particular, it is considered that good power generation characteristics were exhibited in a high current density region.

アノードに水素を、カソードに酸素を用いて80℃にて発電した場合の、セルスタックの発電特性を示す図である。It is a figure which shows the electric power generation characteristic of a cell stack at the time of generating electric power at 80 degreeC using hydrogen for an anode and oxygen for a cathode. アノードに水素を、カソードに空気を用いて80℃にて発電した場合の、セルスタックの発電特性を示す図である。It is a figure which shows the electric power generation characteristic of a cell stack at the time of generating electric power at 80 degreeC using hydrogen for an anode and air for a cathode. 本発明で使用可能な連続ベルト装置の一例の概略図である。It is the schematic of an example of the continuous belt apparatus which can be used by this invention. 炭素短繊維を抄造する際の網板と多孔板との配置状況を示す図であり、(a)は鳥瞰図、(b)は平面図である。It is a figure which shows the arrangement | positioning condition of the net board and perforated board at the time of making a carbon short fiber, (a) is a bird's-eye view, (b) is a top view.

符号の説明Explanation of symbols

1…樹脂含浸炭素繊維紙
2…離型剤コーティング基材
3…ベルト
4…加熱ゾーン
5…硬化ゾーン
DESCRIPTION OF SYMBOLS 1 ... Resin impregnated carbon fiber paper 2 ... Release agent coating base material 3 ... Belt 4 ... Heating zone 5 ... Curing zone

Claims (7)

(a)抄造に用いる網板の下側に、平板に孔部を形成した多孔板を設置した状態で、炭素短繊維を抄造して、炭素繊維紙とする工程と、
(b)該炭素繊維紙に熱硬化性樹脂を含浸して、樹脂含浸炭素繊維紙とする工程と、
(c)該樹脂含浸炭素繊維紙を加熱プレスして、樹脂硬化炭素繊維紙とする工程と、
(d)該樹脂硬化炭素繊維紙を、窒素雰囲気下1200℃以上の温度で焼成して、炭素電極基材とする工程と
を有することを特徴とする炭素電極基材の製造方法。
(A) on the underside of the mesh plate used for papermaking, with a perforated plate in which holes are formed in a flat plate , making carbon short fibers to make carbon fiber paper;
(B) impregnating the carbon fiber paper with a thermosetting resin to obtain a resin-impregnated carbon fiber paper;
(C) heat-pressing the resin-impregnated carbon fiber paper to obtain a resin-cured carbon fiber paper;
(D) A method for producing a carbon electrode substrate, comprising: baking the resin-cured carbon fiber paper at a temperature of 1200 ° C. or higher in a nitrogen atmosphere to form a carbon electrode substrate.
前記多孔板の孔径が4〜10mm、かつ、該多孔板のピッチ間距離が6〜12mmである請求項1記載の炭素電極基材の製造方法。The method for producing a carbon electrode substrate according to claim 1, wherein the pore diameter of the porous plate is 4 to 10 mm, and the distance between pitches of the porous plate is 6 to 12 mm. 前記工程(a)において、前記炭素短繊維に対して5質量%までの結着剤を使用する請求項1または2記載の炭素電極基材の製造方法。The method for producing a carbon electrode substrate according to claim 1 or 2, wherein in the step (a), a binder of up to 5% by mass is used with respect to the short carbon fibers. 前記工程(b)〜(d)の各工程を、それぞれ連続的に行う請求項1〜3のいずれか1項記載の炭素電極基材の製造方法。The method for producing a carbon electrode substrate according to any one of claims 1 to 3, wherein each of the steps (b) to (d) is continuously performed. 前記工程(c)において、前記樹脂含浸炭素繊維紙を予備加熱可能な加熱ゾーンと、前記樹脂含浸炭素繊維紙をプレスしつつ前記熱硬化性樹脂を硬化可能な硬化ゾーンとを具備する連続ベルト装置を用いる請求項4記載の炭素電極基材の製造方法。A continuous belt device comprising a heating zone capable of preheating the resin-impregnated carbon fiber paper and a curing zone capable of curing the thermosetting resin while pressing the resin-impregnated carbon fiber paper in the step (c). The method for producing a carbon electrode substrate according to claim 4, wherein: 前記加熱ゾーンの温度が120〜300℃、前記加熱ゾーンの通過時間が1〜6分、前記硬化ゾーンの温度が250〜400℃(但し前記加熱ゾーンの温度より高い温度)、前記硬化ゾーンでのプレス圧が1〜20MPaである請求項5記載の炭素電極基材の製造方法。The temperature of the heating zone is 120 to 300 ° C., the passage time of the heating zone is 1 to 6 minutes, the temperature of the curing zone is 250 to 400 ° C. (but higher than the temperature of the heating zone), The method for producing a carbon electrode substrate according to claim 5, wherein the press pressure is 1 to 20 MPa. 前記連続ベルト装置におけるベルトの速度を0.1〜6.0m/minとする請求項5または6記載の炭素電極基材の製造方法。The method for producing a carbon electrode substrate according to claim 5 or 6, wherein a belt speed in the continuous belt device is 0.1 to 6.0 m / min.
JP2004117818A 2004-04-13 2004-04-13 Carbon electrode substrate manufacturing method Expired - Fee Related JP4559767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117818A JP4559767B2 (en) 2004-04-13 2004-04-13 Carbon electrode substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117818A JP4559767B2 (en) 2004-04-13 2004-04-13 Carbon electrode substrate manufacturing method

Publications (3)

Publication Number Publication Date
JP2005302558A JP2005302558A (en) 2005-10-27
JP2005302558A5 JP2005302558A5 (en) 2007-05-31
JP4559767B2 true JP4559767B2 (en) 2010-10-13

Family

ID=35333789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117818A Expired - Fee Related JP4559767B2 (en) 2004-04-13 2004-04-13 Carbon electrode substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4559767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814290A (en) * 2012-07-24 2012-12-12 惠州Tcl金能电池有限公司 Screening method for battery electrical core and battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250328B2 (en) * 2008-07-29 2013-07-31 三菱レイヨン株式会社 Method for producing carbonaceous electrode substrate
JP5398297B2 (en) * 2009-02-20 2014-01-29 三菱レイヨン株式会社 Method for producing porous carbon electrode substrate
KR101294825B1 (en) * 2010-05-20 2013-08-08 주식회사 제이앤티지 Method for preparing carbon substrate for gas diffusion layer of polymer electrolyte membrane fuel cell, carbon substrate prepared thereby, and system for manufacturing the same
JP6008164B2 (en) * 2012-02-27 2016-10-19 三菱レイヨン株式会社 Method for producing porous electrode substrate
DE102013217882A1 (en) 2013-09-06 2015-03-12 Sgl Carbon Se Electrode substrate made of carbon fibers
CN111171518B (en) * 2020-01-21 2022-08-05 西安理工大学 Preparation method of carbon fiber composite electrode plate with thickness of 1mm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080600A (en) * 1998-06-26 2000-03-21 Kao Corp Production of bulky paper
WO2002006032A1 (en) * 2000-07-14 2002-01-24 Mitsubishi Rayon Co., Ltd. Apparatus and process for producing resin-impregnated cured sheet and apparatus and process for producing carbonaceous material sheet
JP2003142110A (en) * 2001-10-31 2003-05-16 Matsushita Electric Ind Co Ltd Electrode for fuel cell and fuel cell
JP2004103403A (en) * 2002-09-10 2004-04-02 Noritake Co Ltd Porous carbon sheet material and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219692A (en) * 1987-03-10 1988-09-13 株式会社 興人 Production of paper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080600A (en) * 1998-06-26 2000-03-21 Kao Corp Production of bulky paper
WO2002006032A1 (en) * 2000-07-14 2002-01-24 Mitsubishi Rayon Co., Ltd. Apparatus and process for producing resin-impregnated cured sheet and apparatus and process for producing carbonaceous material sheet
JP2003142110A (en) * 2001-10-31 2003-05-16 Matsushita Electric Ind Co Ltd Electrode for fuel cell and fuel cell
JP2004103403A (en) * 2002-09-10 2004-04-02 Noritake Co Ltd Porous carbon sheet material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814290A (en) * 2012-07-24 2012-12-12 惠州Tcl金能电池有限公司 Screening method for battery electrical core and battery
CN102814290B (en) * 2012-07-24 2015-01-07 惠州Tcl金能电池有限公司 Screening method for battery electrical core and battery

Also Published As

Publication number Publication date
JP2005302558A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US10305117B2 (en) Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, and nonwoven fabric of carbon fiber precursor fibers
JP4859334B2 (en) Carbon fiber electrode substrate for electrochemical cells
KR101701529B1 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and solid polymer-type fuel cell
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
JP2005038738A (en) Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
US11837732B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5544960B2 (en) Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP4559767B2 (en) Carbon electrode substrate manufacturing method
US20230128336A1 (en) Method for producing gas diffusion electrode substrate
JP2005317240A (en) Carbon fiber unwoven fabric, gas diffusion body, membrane-electrode junction, and fuel cell
JP5336804B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
KR20230163372A (en) Electrode substrate and method of manufacturing the same
KR20190103175A (en) Gas Diffusion Electrodes and Fuel Cells
JP6183065B2 (en) Porous carbon electrode and manufacturing method thereof
JP5322212B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5260948B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010095419A (en) Porous electrode substrate, method for manufacturing the same, membrane-electrode assembly, and solid polymer fuel cell
JP5433146B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2023085031A (en) Gas diffusion layer base material for anode electrode
JP6115756B2 (en) Porous electrode substrate precursor sheet, method for producing the same, porous electrode substrate, membrane-electrode assembly, and solid polymer fuel cell
JP5426830B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same
JP2017139219A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
JP2017182900A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R151 Written notification of patent or utility model registration

Ref document number: 4559767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees