JP5544960B2 - Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same - Google Patents

Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same Download PDF

Info

Publication number
JP5544960B2
JP5544960B2 JP2010063419A JP2010063419A JP5544960B2 JP 5544960 B2 JP5544960 B2 JP 5544960B2 JP 2010063419 A JP2010063419 A JP 2010063419A JP 2010063419 A JP2010063419 A JP 2010063419A JP 5544960 B2 JP5544960 B2 JP 5544960B2
Authority
JP
Japan
Prior art keywords
fuel cell
sheet
polymer electrolyte
porous carbon
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010063419A
Other languages
Japanese (ja)
Other versions
JP2011195374A (en
Inventor
崇史 千田
輝幸 服部
幹夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010063419A priority Critical patent/JP5544960B2/en
Publication of JP2011195374A publication Critical patent/JP2011195374A/en
Application granted granted Critical
Publication of JP5544960B2 publication Critical patent/JP5544960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子型燃料電池のガス拡散体の材料として好適に用いることができる固体高分子型燃料電池用多孔質炭素シートおよびその製造方法に関するものである。 The present invention relates to a porous carbon sheet for a polymer electrolyte fuel cell that can be suitably used as a material for a gas diffuser of a polymer electrolyte fuel cell, and a method for producing the same.

固体高分子型燃料電池は、水素と酸素を供給することにより発電する。燃料電池において発電反応が起こる膜−電極接合体を構成する固体高分子電解質膜は、乾燥するとプロトン伝導性が低下し、燃料電池の発電性能が低下するため、供給するガスを加湿するのが一般的である。   A polymer electrolyte fuel cell generates electricity by supplying hydrogen and oxygen. A solid polymer electrolyte membrane constituting a membrane-electrode assembly in which a power generation reaction occurs in a fuel cell is reduced in proton conductivity when dried, and the power generation performance of the fuel cell is reduced. Is.

燃料電池が広く普及するためには、燃料電池システムの大幅なコストダウンが必要であり、そのためには供給ガスの加湿ユニットを省略し、システムを簡素化することが有効である。加湿ユニットの省略を実現するためには、供給ガスの低湿度条件下において固体高分子電解質膜の乾燥を抑制し、燃料電池の発電性能を向上させることが重要となる。   In order for the fuel cells to be widely spread, it is necessary to greatly reduce the cost of the fuel cell system. For this purpose, it is effective to omit the humidification unit for the supply gas and simplify the system. In order to realize the omission of the humidification unit, it is important to improve the power generation performance of the fuel cell by suppressing the drying of the solid polymer electrolyte membrane under the low humidity condition of the supply gas.

燃料電池の発電性能を向上させるために、特許文献1では、実質的に二次元平面内においてランダムな方向に分散した炭素短繊維同士が不定形の樹脂炭化物で結着され、さらに前記炭素短繊維同士が網状の樹脂炭化物により架橋された多孔質電極基材が開示されている。   In order to improve the power generation performance of a fuel cell, in Patent Document 1, carbon short fibers dispersed in a random direction in a substantially two-dimensional plane are bound together with an amorphous resin carbide, and the carbon short fibers There is disclosed a porous electrode base material that is crosslinked with a net-like resin carbide.

特許文献1に開示されている多孔質電極基材は、網状の樹脂炭化物の架橋により補強されているため、低密度であっても比較的曲げ強度が高く、水や供給ガス等の物質移動性と機械的強度の両立が可能である。したがってかかる多孔質電極基材を用いた燃料電池は、燃料電池を高加湿条件(WET条件)で運転すると発電反応による生成水で水詰まりする現象、いわゆるフラッディングが生じ難く、供給ガスの高加湿条件下では高い発電性能を示す。しかしながら、かかる多孔質炭素基材は、結着炭化物比率が低く、さらにその一部が網状の疎な形状のため熱伝導率が低く、そのような多孔質電極基材を用いた燃料電池では、発電反応により発生した熱が蓄積し易く、固体高分子電解質膜近傍の温度が上昇して相対湿度が下がり易い。したがって、燃料電池を供給ガスの低加湿条件(DRY条件)下で運転すると固体高分子電解質膜の乾燥によるプロトン伝導性が低下する現象、いわゆるドライアップにより発電性能が低下するという問題があった。   Since the porous electrode substrate disclosed in Patent Document 1 is reinforced by cross-linking of a net-like resin carbide, it has a relatively high bending strength even at a low density, and is capable of mass mobility such as water and supply gas. And mechanical strength can be achieved. Therefore, a fuel cell using such a porous electrode substrate is less likely to be clogged with water generated by a power generation reaction when the fuel cell is operated under high humidification conditions (WET conditions), so-called flooding, and high humidification conditions for the supply gas. Below, it shows high power generation performance. However, such a porous carbon base material has a low binder carbide ratio, and a part thereof is a net-like sparse shape, so the thermal conductivity is low. In a fuel cell using such a porous electrode base material, The heat generated by the power generation reaction tends to accumulate, the temperature in the vicinity of the solid polymer electrolyte membrane increases, and the relative humidity tends to decrease. Therefore, when the fuel cell is operated under the low humidification condition (DRY condition) of the supply gas, there is a problem that the proton conductivity decreases due to drying of the solid polymer electrolyte membrane, that is, the power generation performance decreases due to so-called dry-up.

特開2006−40886号公報(第2頁)JP 2006-40886 (second page)

本発明は、従来の技術における上述した問題点に鑑みてなされたものであり、フラッディングおよびドライアップの両方に対する耐性が高く、加湿条件に依らず発電性能が非常に高い燃料電池とし得る固体高分子型燃料電池用多孔質炭素シートを提供することにある。 The present invention has been made in view of the above-described problems in the prior art, and is a solid polymer that has high resistance to both flooding and dry-up and can be used as a fuel cell with extremely high power generation performance regardless of humidification conditions. An object of the present invention is to provide a porous carbon sheet for a fuel cell .

前記課題を解決するため、本発明の固体高分子型燃料電池用多孔質炭素シートは、次の構成を有する。すなわち、分散している炭素短繊維を結着炭化物で結着した多孔質炭素シートであって、密度が0.25〜0.35g/cm、厚さ方向の熱伝導率が1.4〜4.0W/m/K、および、曲げ強度が25〜40MPa、シートの厚さ方向に14cm/cm/secの空気を透過させたときのシートの単位厚さあたりの差圧が10〜50mmAq/mmであることを特徴とする固体高分子型燃料電池用多孔質炭素シートである。 In order to solve the above problems, the porous carbon sheet for a polymer electrolyte fuel cell of the present invention has the following configuration. That is, a porous carbon sheet obtained by binding dispersed short carbon fibers with a binding carbide, having a density of 0.25 to 0.35 g / cm 3 and a thermal conductivity in the thickness direction of 1.4 to 4.0 W / m / K, and the bending strength is 25 to 40 MPa, and the differential pressure per unit thickness of the sheet when air of 14 cm 3 / cm 2 / sec is permeated in the sheet thickness direction is 10 to 10 A porous carbon sheet for a polymer electrolyte fuel cell, wherein the porous carbon sheet is 50 mmAq / mm.

また、前記課題を解決するため、本発明の多孔質炭素シートの製造方法は、次の構成を有する。すなわち、炭素短繊維、樹脂およびパルプを含み、炭素短繊維の目付が20〜35g/mで、樹脂の目付が20〜35g/mである前駆体繊維シートを加圧処理する圧縮工程と、加圧処理された前駆体繊維シートを加熱し、パルプおよび樹脂を結着炭化物に転換する炭化工程とを有する多孔質炭素シートの製造方法であって、前記パルプが木材パルプであり、前駆体繊維シートに含まれるパルプの含有量が、炭素短繊維100重量部に対して30〜60重量部の範囲内であるとともに、前記炭化工程における加熱処理の最高温度を2200〜2700℃の範囲内とすることを特徴とする固体高分子型燃料電池用多孔質炭素シートの製造方法である。 Moreover, in order to solve the said subject, the manufacturing method of the porous carbon sheet of this invention has the following structure. That is, a compression step of pressurizing a precursor fiber sheet containing short carbon fibers, resin and pulp, having a short carbon fiber weight of 20 to 35 g / m 2 and a resin weight of 20 to 35 g / m 2 A method for producing a porous carbon sheet comprising heating a pressure-treated precursor fiber sheet and converting the pulp and the resin into a binder carbide, wherein the pulp is wood pulp, and the precursor The pulp content contained in the fiber sheet is in the range of 30 to 60 parts by weight with respect to 100 parts by weight of the short carbon fibers, and the maximum temperature of the heat treatment in the carbonization step is in the range of 2200 to 2700 ° C. A method for producing a porous carbon sheet for a polymer electrolyte fuel cell .

本発明の固体高分子型燃料電池用多孔質炭素シートは、低密度、高強度および高熱伝導率の全てを同時に満足しているので、それをガス拡散体の材料として用いた燃料電池は、いわゆるフラッディングおよびドライアップの両方に対する耐性が高く、加湿条件に依らず発電性能が非常に高いという利点を有する。 Since the porous carbon sheet for a polymer electrolyte fuel cell of the present invention satisfies all of low density, high strength and high thermal conductivity at the same time, a fuel cell using it as a material for a gas diffuser is so-called. It has the advantage of high resistance to both flooding and dry-up, and very high power generation performance regardless of humidification conditions.

また、本発明の固体高分子型燃料電池用多孔質炭素シートの製造方法は、低密度、高強度および高熱伝導率の全てを同時に満足するような本発明の多孔質炭素シートを再現性良く安定して製造できるという利点を有する。 In addition, the method for producing a porous carbon sheet for a polymer electrolyte fuel cell according to the present invention provides a stable reproducible and stable porous carbon sheet according to the present invention that simultaneously satisfies all of the low density, high strength and high thermal conductivity. Have the advantage of being manufactured.

本発明の固体高分子型燃料電池用多孔質炭素シートを製造するための製造工程の一例を示す工程フロー図である。It is a process flowchart which shows an example of the manufacturing process for manufacturing the porous carbon sheet for polymer electrolyte fuel cells of this invention. 本発明の一形態に係る固体高分子型燃料電池用多孔質炭素シートの表面を撮像した電子顕微鏡写真(倍率100倍)である。It is an electron micrograph (magnification 100 times) which imaged the surface of the porous carbon sheet for polymer electrolyte fuel cells concerning one form of the present invention. 本発明の固体高分子型燃料電池用多孔質炭素シートの製造工程における圧縮工程の一例を示す概略図である。It is the schematic which shows an example of the compression process in the manufacturing process of the porous carbon sheet for polymer electrolyte fuel cells of this invention.

本発明の固体高分子型燃料電池用多孔質炭素シートは、分散している炭素短繊維を結着炭化物で結着してなる。ここで、分散した状態とは、炭素短繊維がシート面内において顕著な配向を持たず概ねランダムに、例えば、無作為な方向に存在している状態であることが多い。具体的には、後述する抄造法により短繊維が分散した状態である。結着炭化物とは、固体高分子型燃料電池用多孔質炭素シートにおいて炭素短繊維同士を結着している炭化物であり、後述する樹脂炭化物やパルプ炭化物を含む。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention is formed by binding dispersed carbon short fibers with a binding carbide. Here, the dispersed state is often a state in which the short carbon fibers do not have a remarkable orientation in the sheet surface and are present almost randomly, for example, in a random direction. Specifically, the short fibers are dispersed by a papermaking method to be described later. The binder carbide is a carbide that binds short carbon fibers to each other in a porous carbon sheet for a polymer electrolyte fuel cell, and includes resin carbide and pulp carbide described later.

そして、本発明の固体高分子型燃料電池用多孔質炭素シートは、密度が0.25〜0.35g/cmと低密度とし、熱線法による厚さ方向の熱伝導率が1.4〜4.0W/m/Kと高熱伝導率とし、3点曲げ試験における曲げ強度が25〜40MPaと高強度とし、シートの厚さ方向に14cm/cm/secの空気を透過させたときのシートの単位厚さあたりの差圧が10〜50mmAq/mmとすることにより、かかる固体高分子型燃料電池用多孔質炭素シートを用いた燃料電池は、フラッディングおよびドライアップの両方に対する耐性が高く、加湿条件に依らず発電性能が非常に高くなる。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention has a density as low as 0.25 to 0.35 g / cm 3, and a thermal conductivity in the thickness direction by the hot-wire method is 1.4 to When the thermal conductivity is 4.0 W / m / K, the bending strength in the three-point bending test is as high as 25 to 40 MPa, and air of 14 cm 3 / cm 2 / sec is permeated in the thickness direction of the sheet. By setting the differential pressure per unit thickness of the sheet to 10 to 50 mmAq / mm, the fuel cell using such a porous carbon sheet for a polymer electrolyte fuel cell has high resistance to both flooding and dry-up, Power generation performance is very high regardless of humidification conditions.

本発明の固体高分子型燃料電池用多孔質炭素シートを構成する炭素短繊維の平均繊維径は、5〜20μmであることが好ましく、4〜16μmであることがより好ましく、5〜13μmであることが更に好ましい。 The average fiber diameter of the short carbon fibers constituting the porous carbon sheet for a polymer electrolyte fuel cell of the present invention is preferably 5 to 20 μm, more preferably 4 to 16 μm, and more preferably 5 to 13 μm. More preferably.

炭素短繊維は、通常、平均繊維長が3〜20mmである炭素繊維である。平均繊維長が3mm未満の場合、固体高分子型燃料電池用多孔質炭素シートの曲げ強度が低下することがある。また、平均繊維長が20mmを超える場合、後述する抄造時における繊維の分散性が悪くなり、固体高分子型燃料電池用多孔質炭素シートにおける炭素短繊維2の目付のばらつきが大きくなったり、結束が発生したりすることがある。より好ましい平均繊維長の範囲は、4〜15mmであり、更に好ましい範囲は、5〜10mmである。 The short carbon fiber is usually a carbon fiber having an average fiber length of 3 to 20 mm. When the average fiber length is less than 3 mm, the bending strength of the porous carbon sheet for a polymer electrolyte fuel cell may be lowered. Further, when the average fiber length exceeds 20 mm, the dispersibility of the fibers during papermaking, which will be described later, becomes worse, and the variation in the basis weight of the short carbon fibers 2 in the porous carbon sheet for a polymer electrolyte fuel cell increases or the binding May occur. A more preferable range of the average fiber length is 4 to 15 mm, and a further preferable range is 5 to 10 mm.

炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系等の炭素繊維を用いることができる。なかでも、機械的強度に優れ、しかも、適度な柔軟性を有するハンドリング性に優れた多孔質炭素シートが得られることから、PAN系やピッチ系、特にPAN系の炭素繊維を用いるのが好ましい。   As the carbon fiber, carbon fiber such as polyacrylonitrile (PAN), pitch, or rayon can be used. Among them, it is preferable to use PAN-based or pitch-based, particularly PAN-based carbon fibers, because a porous carbon sheet having excellent mechanical strength and moderate flexibility and excellent handling properties can be obtained.

本発明の固体高分子型燃料電池用多孔質炭素シートは、炭素質粉末を含むことが好ましい。炭素質粉末を含むことにより、固体高分子型燃料電池用多孔質炭素シート自体の導電性が向上する。炭素質粉末の平均粒子径は0.01〜10μmであることが好ましく、1〜8μmがより好ましく、3〜6μmがさらに好ましい。また、炭素質粉末は、黒鉛またはカーボンブラックの粉末であることが好ましく、黒鉛粉末であることがさらに好ましい。炭素質粉末の平均粒子径は、動的光散乱測定を行い、求めた粒径分布の数平均から求めることができる。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention preferably contains a carbonaceous powder. By including the carbonaceous powder, the conductivity of the porous carbon sheet itself for a polymer electrolyte fuel cell is improved. The average particle size of the carbonaceous powder is preferably 0.01 to 10 μm, more preferably 1 to 8 μm, and further preferably 3 to 6 μm. The carbonaceous powder is preferably graphite or carbon black powder, more preferably graphite powder. The average particle size of the carbonaceous powder can be obtained from the number average of the obtained particle size distribution by performing dynamic light scattering measurement.

本発明の固体高分子型燃料電池用多孔質炭素シートは、密度が0.25〜0.35g/cmであり、0.26〜0.35g/cmであることが好ましく、0.27〜0.33g/cmであることがより好ましい。密度が0.25g/cm未満の場合、燃料電池スタックとして組み付けた際にセパレータから受ける力により固体高分子型燃料電池用多孔質炭素シートが破壊されることがある。密度が0.35g/cmを超える場合、固体高分子型燃料電池用多孔質炭素シートの空隙率の低下により、発電反応に必要な水素や酸素の移動性が低下したり、発電反応で生成した水の排出性が低下したりするため、燃料電池の発電性能が低下する。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention has a density of 0.25 to 0.35 g / cm 3 , preferably 0.26 to 0.35 g / cm 3 , 0.27 More preferably, it is ˜0.33 g / cm 3 . When the density is less than 0.25 g / cm 3 , the porous carbon sheet for polymer electrolyte fuel cells may be broken by the force received from the separator when assembled as a fuel cell stack. When the density exceeds 0.35 g / cm 3 , the mobility of hydrogen and oxygen necessary for the power generation reaction is reduced due to the decrease in the porosity of the porous carbon sheet for polymer electrolyte fuel cell, or it is generated by the power generation reaction. As a result, the power generation performance of the fuel cell deteriorates.

ここで、本発明における密度とは、見かけ密度のことを指し、固体高分子型燃料電池用多孔質炭素シートの厚さと目付(単位面積当たりの重さ)とから算出する。固体高分子型燃料電池用多孔質炭素シートの厚さは、測定子の断面が直径5mmの円形であるマイクロメーターを用いて、シートの厚さ方向に0.15MPaの面圧を付与して測定する。測定点は1.5cm間隔の格子状で測定点数は25点以上とし、その平均値を厚さとする。固体高分子型燃料電池用多孔質炭素シートの目付は、固体高分子型燃料電池用多孔質炭素シートから、10cm×10cm角の試験片10枚を切り出し、各々の試験片の重さを測定して、その平均値から算出する。 Here, the density in the present invention refers to the apparent density, and is calculated from the thickness and basis weight (weight per unit area) of the porous carbon sheet for a polymer electrolyte fuel cell . The thickness of the porous carbon sheet for a polymer electrolyte fuel cell is measured by applying a surface pressure of 0.15 MPa in the thickness direction of the sheet using a micrometer having a circular cross section having a diameter of 5 mm. To do. The measurement points are in a grid pattern with an interval of 1.5 cm, the number of measurement points is 25 or more, and the average value is the thickness. The basis weight of the porous carbon sheet for a polymer electrolyte fuel cell is that 10 test pieces of 10 cm × 10 cm square are cut out from the porous carbon sheet for a polymer electrolyte fuel cell , and the weight of each test piece is measured. And calculating from the average value.

本発明の固体高分子型燃料電池用多孔質炭素シートは、熱線法による厚さ方向の熱伝導率が1.4〜4.0W/m/Kであり、1.7W/m/K以上であることが好ましく、2.0W/m/Kであることがより好ましい。かかる熱伝導率が1.4W/m/K未満の場合、燃料電池における発電反応により発生した熱が蓄積し易く、固体高分子電解質膜近傍の温度が上昇して相対湿度が下がり易い。したがって、供給ガスの低加湿条件下では、いわゆるドライアップにより発電性能が低下することがある。熱伝導率は、大きいほどより好ましいが、本発明の固体高分子型燃料電池用多孔質炭素シートのように、密度が0.25〜0.40g/cmと小さい場合には、通常、4.0W/m/K程度が限界である。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention has a heat conductivity in the thickness direction of 1.4 to 4.0 W / m / K by a hot wire method, and is 1.7 W / m / K or more. It is preferable that it is 2.0 W / m / K. When the thermal conductivity is less than 1.4 W / m / K, the heat generated by the power generation reaction in the fuel cell tends to accumulate, the temperature in the vicinity of the solid polymer electrolyte membrane increases, and the relative humidity tends to decrease. Therefore, power generation performance may be reduced by so-called dry-up under low humidification conditions of the supply gas. The larger the thermal conductivity, the more preferable, but when the density is as small as 0.25 to 0.40 g / cm 3 as in the porous carbon sheet for a polymer electrolyte fuel cell of the present invention, it is usually 4 About 0.0 W / m / K is the limit.

固体高分子型燃料電池用多孔質炭素シートの厚さ方向の熱伝導率は、熱伝導率が既知の複数のリファレンスプレートを用い、リファレンスプレート上に固体高分子型燃料電池用多孔質炭素シートを置いた場合と、リファレンスプレートのみの場合とで熱線法により熱伝導率を測定し、それらの偏差を縦軸に取り、リファレンスプレートの熱伝導率を横軸に取ったグラフにおいて、偏差が0となる点から求めることができる。具体的には、次のようにして測定することができる。センサー・プローブ(たとえば、PD−13(京都電子工業(株)製))を装着した熱伝導率計(たとえば、迅速熱伝導率計 QTM−500(京都電子工業(株)製))を用い、レファレンスプレートとして、シリコンゴム、石英ガラス、ジルコニア、ムライト等を用いて、測定回数を各レファレンスプレートで2回ずつとする。なお、うす膜測定用ソフト(たとえば、SOFT−QTM5W(京都電子工業株式会社製))のようなソフトウエアを用いることで、上記偏差が0となる点を求め、厚さ方向の熱伝導率を算出する。 The thermal conductivity in the thickness direction of the porous carbon sheet for polymer electrolyte fuel cells is determined by using a plurality of reference plates with known thermal conductivities, and placing the porous carbon sheet for polymer electrolyte fuel cells on the reference plate In the graph in which the thermal conductivity is measured by the hot wire method in the case of placing and the reference plate only, the deviation is taken on the vertical axis, and the thermal conductivity of the reference plate is taken on the horizontal axis, the deviation is 0 It can be obtained from the following points. Specifically, it can be measured as follows. Using a thermal conductivity meter (for example, rapid thermal conductivity meter QTM-500 (manufactured by Kyoto Electronics Industry Co., Ltd.)) equipped with a sensor probe (for example, PD-13 (manufactured by Kyoto Electronics Industry Co., Ltd.)) As the reference plate, silicon rubber, quartz glass, zirconia, mullite, or the like is used, and the number of times of measurement is set twice for each reference plate. In addition, by using software such as thin film measurement software (for example, SOFT-QTM5W (manufactured by Kyoto Electronics Industry Co., Ltd.)), the point where the deviation becomes 0 is obtained, and the thermal conductivity in the thickness direction is determined. calculate.

本発明の固体高分子型燃料電池用多孔質炭素シートは、曲げ強度が25〜40MPaであり、27MPa以上であることが好ましく、30MPa以上であることがより好ましい。曲げ強度が25MPa未満の場合、燃料電池スタックとして組み付けた際にセパレータから受ける曲げの力により多孔質炭素シートが破壊されたり、また、固体高分子型燃料電池用多孔質炭素シートの製造や高次加工の際のハンドリング性が低下したりする。曲げ強度は、大きいほどより好ましいが、本発明の固体高分子型燃料電池用多孔質炭素シートのように、密度が0.25〜0.40g/cmと小さい場合には、通常、40MPa程度が限界である。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention has a bending strength of 25 to 40 MPa, preferably 27 MPa or more, and more preferably 30 MPa or more. When the bending strength is less than 25 MPa, the porous carbon sheet is destroyed by the bending force received from the separator when assembled as a fuel cell stack, and the production and higher order of the porous carbon sheet for a polymer electrolyte fuel cell are performed. The handling property during processing is reduced. The bending strength is preferably as large as possible. However, when the density is as small as 0.25 to 0.40 g / cm 3 as in the porous carbon sheet for a polymer electrolyte fuel cell of the present invention, it is usually about 40 MPa. Is the limit.

固体高分子型燃料電池用多孔質炭素シートの曲げ強度は3点曲げ試験により得られるものであり、JIS K 6911に規定される方法に準拠して行う。このとき、試験片の幅は12.7mm、長さは70mm、支点間距離は30mmとする。また、支点と圧子の曲率半径は3mm、荷重印加速度は1mm/分とする。なお、最大荷重や曲げ弾性率について電極基材が異方性を有している場合には、縦方向と横方向について各2回の試験を行い、それらの平均を固体高分子型燃料電池用多孔質炭素シートの曲げ強度とする。 The bending strength of the porous carbon sheet for a polymer electrolyte fuel cell is obtained by a three-point bending test, and is performed in accordance with a method defined in JIS K 6911. At this time, the width of the test piece is 12.7 mm, the length is 70 mm, and the distance between fulcrums is 30 mm. Further, the radius of curvature of the fulcrum and the indenter is 3 mm, and the load application speed is 1 mm / min. In addition, when the electrode base material has anisotropy with respect to the maximum load and the flexural modulus, the test is performed twice in each of the vertical direction and the horizontal direction, and the average of them is used for the polymer electrolyte fuel cell. The bending strength of the porous carbon sheet is used.

本発明の固体高分子型燃料電池用多孔質炭素シートは、シートの厚さ方向に14cm/cm/secの空気を透過させたときのシートの単位厚さあたりの差圧(以下、差圧と略記)が10〜50mmAq/mmであり、15〜50mmAq/mmであることがより好ましく、20〜40mmAq/mmであることがさらに好ましい。かかる差圧が、10mmAq/mm未満の場合、ドライアップが発生し、発電性能が低下することがあり、100mmAq/mmを超える場合、フラッディングが発生し、発電性能が低下することがある。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention has a differential pressure per unit thickness (hereinafter referred to as a difference) when air of 14 cm 3 / cm 2 / sec is permeated in the sheet thickness direction. (Abbreviated as pressure) is 10 to 50 mmAq / mm, more preferably 15 to 50 mmAq / mm, and still more preferably 20 to 40 mmAq / mm. When the differential pressure is less than 10 mmAq / mm, dry-up may occur and power generation performance may be reduced. When it exceeds 100 mmAq / mm, flooding may occur and power generation performance may be reduced.

このような差圧は、固体高分子型燃料電池用多孔質炭素シートの厚さ方向に14cm/cm/secの空気を透過させたときの差圧を測定し、シートの厚さで割ることにより算出する。 Such a differential pressure is obtained by measuring the differential pressure when air of 14 cm 3 / cm 2 / sec is permeated in the thickness direction of the porous carbon sheet for a polymer electrolyte fuel cell , and dividing by the thickness of the sheet. To calculate.

本発明の固体高分子型燃料電池用多孔質炭素シートは、結着炭化物比率が40〜60%であることが好ましく、42〜58%であることがより好ましく、45〜55%であることがさらに好ましい。結着炭化物比率が40%未満の場合、固体高分子型燃料電池用多孔質炭素シートの曲げ強度や熱伝導率が低下することがある。結着炭化物比率が60%を超える場合、炭素短繊維2を結着する樹脂炭化物4が炭素短繊維の間に水かき状に広がり過ぎて発電反応に必要な水素と酸素、発電反応で生成する水の物質移動を阻害し、特に高加湿条件での発電性能が低下することがある。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention preferably has a binder carbide ratio of 40 to 60%, more preferably 42 to 58%, and more preferably 45 to 55%. Further preferred. When the binder carbide ratio is less than 40%, the bending strength and thermal conductivity of the porous carbon sheet for a polymer electrolyte fuel cell may be lowered. When the binder carbide ratio exceeds 60%, the resin carbide 4 that binds the short carbon fibers 2 spreads too much between the carbon short fibers to form water and oxygen necessary for the power generation reaction, and water generated by the power generation reaction. Mass transfer may be hindered, and power generation performance may be deteriorated particularly under high humidification conditions.

固体高分子型燃料電池用多孔質炭素シートの結着炭化物比率とは、固体高分子型燃料電池用多孔質炭素シートにおいて炭素短繊維以外の炭素材料が占める重量比率であり、次の(I)式によって算出できる。
固体高分子型燃料電池用多孔質炭素シートの結着炭化物比率(%)=(A−B)÷A×100 (I)
ただし、A:固体高分子型燃料電池用多孔質炭素シートの目付(g/m
B:炭素短繊維の目付(g/m
The binder carbide ratio of the porous carbon sheet for a polymer electrolyte fuel cell, the weight percentage of carbon material other than the short carbon fibers in the porous carbon sheet for a polymer electrolyte fuel cell, the following (I) It can be calculated by the formula.
Bonded carbide ratio of porous carbon sheet for polymer electrolyte fuel cell (%) = (A−B) ÷ A × 100 (I)
However, A: The basis weight of the porous carbon sheet for a polymer electrolyte fuel cell (g / m 2 )
B: Weight of carbon short fiber (g / m 2 )

ここで、炭素短繊維の目付は、固体高分子型燃料電池用多孔質炭素シートの場合と同様にして測定できるが、後述の樹脂を含浸する前の炭素繊維紙を用いて測定する場合には、それを大気中にて400℃で8時間加熱し、炭素短繊維を残してそれ以外のバインダ等を熱分解させたものを用いる。 Here, the basis weight of the short carbon fibers can be measured in the same manner as in the case of the porous carbon sheet for a polymer electrolyte fuel cell, but when measuring using carbon fiber paper before impregnation with the resin described later, Then, it is heated in the atmosphere at 400 ° C. for 8 hours to leave the carbon short fibers and thermally decompose the other binders.

本発明の固体高分子型燃料電池用多孔質炭素シートは、厚さが100〜250μmであることが好ましく、120〜230μmであることがより好ましく、140〜210μmであることがさらに好ましい。厚さが100μm未満の場合、燃料電池スタックとして組み付けた際にセパレータから受ける力により固体高分子型燃料電池用多孔質炭素シートが破壊されたり、また、固体高分子型燃料電池用多孔質炭素シートの製造や高次加工の際のハンドリング性が低下したりすることがある。厚さが250μmを超える場合、固体高分子型燃料電池用多孔質炭素シートの柔軟性が大きく低下し、固体高分子型燃料電池用多孔質炭素シートをロール状に巻き取ることが難しくなることがある。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention preferably has a thickness of 100 to 250 μm, more preferably 120 to 230 μm, and still more preferably 140 to 210 μm. When the thickness is less than 100 μm , the porous carbon sheet for polymer electrolyte fuel cell is destroyed by the force received from the separator when assembled as a fuel cell stack, or the porous carbon sheet for polymer electrolyte fuel cell In some cases, the handleability during the production and high-order processing may be reduced. When the thickness exceeds 250 μm, the flexibility of the porous carbon sheet for a polymer electrolyte fuel cell is greatly reduced, and it may be difficult to wind the porous carbon sheet for a polymer electrolyte fuel cell into a roll. is there.

本発明の固体高分子型燃料電池用多孔質炭素シートは、炭素短繊維、樹脂およびパルプを含む前駆体繊維シートの、炭素短繊維および樹脂の目付を適切な範囲とし、高温で焼成することで、製造することができる。次に、本発明の固体高分子型燃料電池用多孔質炭素シートを製造するに好適な方法を、具体的に説明する。 The porous carbon sheet for a polymer electrolyte fuel cell of the present invention is a precursor fiber sheet containing carbon short fibers, resin and pulp, with the basis weight of the carbon short fibers and resin being within an appropriate range, and firing at a high temperature. Can be manufactured. Next, a method suitable for producing the porous carbon sheet for a polymer electrolyte fuel cell of the present invention will be specifically described.

本発明の固体高分子型燃料電池用多孔質炭素シートの製造方法は、炭素短繊維、樹脂およびパルプを含む前駆体繊維シートを、加圧処理する圧縮工程と、加圧処理された前駆体繊維シートを加熱し、パルプおよび樹脂を結着炭化物に転換する炭化工程とを有する多孔質炭素シートの製造方法であって、前記パルプが木材パルプであり、前駆体繊維シートに含まれるパルプの含有量が、炭素短繊維100重量部に対して30〜60重量部の範囲内であるとともに、前駆体繊維シートにおける炭素短繊維の目付を20〜35g/m、樹脂の目付を20〜35g/mとし、炭化工程における加熱処理の最高温度を、2200〜2700℃の範囲内とする。 The method for producing a porous carbon sheet for a polymer electrolyte fuel cell according to the present invention includes a compression step of pressure-treating a precursor fiber sheet containing short carbon fibers, resin and pulp, and pressure-treated precursor fibers. A porous carbon sheet manufacturing method having a carbonization step of heating a sheet and converting pulp and resin into a binder carbide, wherein the pulp is wood pulp and the content of pulp contained in the precursor fiber sheet Is within the range of 30 to 60 parts by weight with respect to 100 parts by weight of the short carbon fibers, the basis weight of the short carbon fibers in the precursor fiber sheet is 20 to 35 g / m 2 , and the basis weight of the resin is 20 to 35 g / m. 2 and the maximum temperature of the heat treatment in the carbonization step is in the range of 2200 to 2700 ° C.

前駆体繊維シートは、炭素短繊維およびパルプを用いて抄紙して炭素繊維紙とする抄紙工程および炭素繊維紙に熱硬化性樹脂を含浸する樹脂含浸工程を経て製造することができる。本発明における固体高分子型燃料電池用多孔質炭素シートを製造するための工程フローの一例を図1に示す。 The precursor fiber sheet can be produced through a paper making process using carbon short fibers and pulp to make carbon fiber paper, and a resin impregnation process in which the carbon fiber paper is impregnated with a thermosetting resin. An example of a process flow for producing a porous carbon sheet for a polymer electrolyte fuel cell according to the present invention is shown in FIG.

抄紙工程では、たとえば前述した平均繊維長を有する炭素短繊維およびパルプを水中に均一に分散させ、分散している炭素短繊維およびパルプを網上に抄造し、抄造したシートをポリビニルアルコールの水系分散液に浸漬し、浸漬したシートを引き上げて乾燥させる。ポリビニルアルコールは、炭素短繊維およびパルプを結着するバインダの役目を果たし、炭素短繊維およびパルプが分散した状態において、それらがバインダにより結着された状態の炭素短繊維のシート、いわゆる炭素繊維紙が製造される。   In the paper making process, for example, the carbon short fibers and pulp having the average fiber length described above are uniformly dispersed in water, the dispersed carbon short fibers and pulp are made on a net, and the paper made is dispersed in polyvinyl alcohol in water. It is immersed in a liquid, and the immersed sheet is pulled up and dried. Polyvinyl alcohol serves as a binder for binding carbon short fibers and pulp, and in a state where carbon short fibers and pulp are dispersed, a sheet of carbon short fibers in a state where they are bound by a binder, so-called carbon fiber paper Is manufactured.

前駆体繊維シートにおいて、炭素短繊維の目付は20〜35g/mであり、22〜34g/mであることが好ましく、25〜33g/mであることがより好ましい。炭素短繊維の目付が20g/m未満の場合、固体高分子型燃料電池用多孔質炭素シートの骨格となる炭素短繊維の量が少ないため固体高分子型燃料電池用多孔質炭素シートの曲げ強度が低下することがある。炭素短繊維の目付が35g/m2を超える場合、炭素短繊維に対する、パルプ炭化物や樹脂炭化物などの結着炭化物の比率が低下するため結着が不十分となり、熱伝導率が低下することがある。 In the precursor fiber sheet, the basis weight of the short carbon fibers is 20 to 35 g / m 2, is preferably 22~34g / m 2, and more preferably 25~33g / m 2. If the basis weight of the short carbon fibers is less than 20 g / m 2, a polymer electrolyte fuel cell porous bending porous carbon sheet for a polymer electrolyte fuel cell for a small amount of short carbon fibers as the backbone of the carbon sheet The strength may decrease. When the basis weight of the short carbon fiber exceeds 35 g / m 2, the ratio of the binding carbide such as pulp carbide and resin carbide to the short carbon fiber is decreased, so that the binding is insufficient and the thermal conductivity may be decreased. .

前駆体繊維シートに含まれるパルプの含有量は、炭素短繊維100重量部に対して5〜100重量部であることが好ましく、20〜80重量部がより好ましく、30〜60重量部が重要である。パルプの含有量が5重量部未満の場合、得られる固体高分子型燃料電池用多孔質炭素シートにおいて炭素短繊維を結着するパルプ炭化物が減少し、曲げ強度や熱伝導率が低下することがある。パルプの含有量が100重量部を超える場合、得られる固体高分子型燃料電池用多孔質炭素シートにおいてパルプ炭化物が網目状に発達しすぎて発電反応に必要な水素と酸素、発電反応で生成する水の物質移動を阻害し、特に高加湿条件での発電性能が低下することがある。 The content of the pulp contained in the precursor fiber sheet is preferably 5 to 100 parts by weight per 100 parts by weight of short carbon fibers, and more preferably 20 to 80 parts by weight, 30 to 60 parts by weight important There is . When the pulp content is less than 5 parts by weight, the amount of pulp carbide binding carbon short fibers in the obtained porous carbon sheet for a polymer electrolyte fuel cell is decreased, and the bending strength and thermal conductivity may be decreased. is there. When the pulp content exceeds 100 parts by weight, the resulting carbon carbide in the resulting porous carbon sheet for polymer electrolyte fuel cells develops too much in the form of a network and is generated by hydrogen and oxygen necessary for the power generation reaction, and the power generation reaction. It may impede water mass transfer and may reduce power generation performance, especially under high humidification conditions.

パルプとしては、木材パルプ、バガスパルプ、ワラパルプなどの天然パルプ、フィブリル化されたポリエチレン繊維、アクリル繊維、アラミド繊維などの合成パルプを用いることができる。燃料電池内部での物質移動を阻害しないためには、フィブリル化が進んでいない木材パルプであり、中でもLBKP(広葉樹晒クラフトパルプ)がより好ましい。   As the pulp, natural pulp such as wood pulp, bagasse pulp and straw pulp, and synthetic pulp such as fibrillated polyethylene fiber, acrylic fiber and aramid fiber can be used. In order not to inhibit the mass transfer inside the fuel cell, it is a wood pulp that has not progressed to fibrillation, and among them, LBKP (hardwood bleached kraft pulp) is more preferable.

樹脂含浸工程では、樹脂の溶液中に、炭素繊維紙を浸漬し、浸漬された炭素繊維紙を引き上げて、乾燥させることにより前駆体繊維シートが製造される。   In the resin impregnation step, the precursor fiber sheet is manufactured by immersing the carbon fiber paper in the resin solution, pulling up the immersed carbon fiber paper and drying it.

前駆体繊維シートに含まれる樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂等の熱硬化性樹脂や、アクリル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等の熱可塑性樹脂を用いることができる。通常は、熱硬化性樹脂が用いられ、炭化工程での樹脂の炭化収率が高い熱硬化性樹脂を用いるのがより好ましく、中でもフェノール樹脂を用いるのが更に好ましい。   Examples of the resin contained in the precursor fiber sheet include epoxy resins, unsaturated polyester resins, phenol resins, polyimide resins, melamine resins, and other thermosetting resins, acrylic resins, polyvinylidene chloride resins, and polytetrafluoroethylene resins. A thermoplastic resin can be used. Usually, a thermosetting resin is used, and it is more preferable to use a thermosetting resin having a high carbonization yield of the resin in the carbonization step, and it is more preferable to use a phenol resin.

前駆体繊維シートにおいて、樹脂の目付は20〜35g/mであり、22〜34g/mであることが好ましく、25〜33g/mであることがより好ましい。樹脂の目付が20g/m未満の場合、炭素短繊維に対する樹脂炭化物の比率が低下するため結着が不十分となり、熱伝導率が低下することがあり、樹脂の目付が35g/mを超える場合、炭素短繊維を結着する樹脂炭化物が炭素短繊維間に水かき状に広がり過ぎて発電反応に必要な水素と酸素、発電反応で生成する水の物質移動を阻害し、特に高加湿条件での発電性能が低下することがある。 In the precursor fiber sheet, the basis weight of the resin was 20 to 35 g / m 2, is preferably 22~34g / m 2, and more preferably 25~33g / m 2. When the basis weight of the resin is less than 20 g / m 2 , the ratio of the resin carbide to the short carbon fibers is reduced, so that the binding is insufficient, and the thermal conductivity may be reduced, and the basis weight of the resin is 35 g / m 2 . If exceeded, the resin carbide that binds the short carbon fibers will spread too much between the carbon short fibers to inhibit the mass transfer of hydrogen and oxygen necessary for the power generation reaction, and the water generated by the power generation reaction, especially in high humidification conditions The power generation performance at the time may be reduced.

樹脂含浸工程では、熱硬化性樹脂の溶液中に炭素質粉末を添加するのが好ましい。炭素質粉末は、樹脂100重量部に対して5〜100重量部が好ましく、10〜80重量部がより好ましく、20〜50重量部がさらに好ましい。炭素質粉末が5重量部より少ない場合、後述する連続式の炭化工程において樹脂の急激な炭化収縮による樹脂炭化物のひび割れが発生しやすく、炭素質粉末が100重量部を越えると、炭素質粉末を結着するために必要な樹脂が増加し、炭素短繊維を結着するために必要な樹脂の量が不足する。   In the resin impregnation step, it is preferable to add carbonaceous powder to the thermosetting resin solution. The carbonaceous powder is preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight, and still more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the resin. When the carbonaceous powder is less than 5 parts by weight, cracks of the resin carbide are likely to occur due to rapid carbonization shrinkage of the resin in the continuous carbonization process described later, and when the carbonaceous powder exceeds 100 parts by weight, The resin required for binding increases, and the amount of resin required for binding the short carbon fibers is insufficient.

圧縮工程では、前駆体繊維シートを、通常は加熱しつつ、加圧処理する。圧縮工程には、互いに平行に位置する一対の熱板を備えた間欠プレス装置、一対のエンドレスベルトを備えた連続式加熱プレス装置、あるいは、連続式ロールプレス装置を用いることができる。   In the compression step, the precursor fiber sheet is usually pressurized while being heated. For the compression step, an intermittent press device including a pair of hot plates positioned in parallel to each other, a continuous heating press device including a pair of endless belts, or a continuous roll press device can be used.

図3は、かかる圧縮工程の一例を示す概略図である。ホットプレス6に上熱板7と下熱板8が互いに平行となるようセットし、下熱板8上にクリアランスを調節するためにスペーサー9を配置して、所望の熱板温度、面圧で、プレス機の開閉を繰り返しながら上下から離型紙で挟み込んだ前駆体繊維シートを間欠的に搬送しつつ、同じ箇所が所望の時間加熱加圧されるよう圧縮処理する。   FIG. 3 is a schematic view showing an example of such a compression process. The hot plate 6 and the lower plate 8 are set parallel to each other in the hot press 6, and a spacer 9 is arranged on the lower plate 8 to adjust the clearance, and at a desired hot plate temperature and surface pressure. While the opening and closing of the press machine is repeated, the precursor fiber sheet sandwiched between the release papers from above and below is intermittently conveyed, and compression processing is performed so that the same portion is heated and pressurized for a desired time.

次に、圧縮工程を経た前駆体繊維シートを炭化工程に供し、窒素などの不活性ガス雰囲気で炭化して、前駆体繊維シートに含まれる、パルプをパルプ炭化物に、樹脂を樹脂炭化物に転換することにより固体高分子型燃料電池用多孔質炭素シートを得る。炭化工程においては、バッチ式の加熱炉を用いることもできるが、生産性の観点から、前駆体繊維シートを不活性雰囲気に保った加熱炉内を連続的に走行せしめながら焼成してパルプや樹脂を炭素化した後、ロール状に巻き取る連続式であることが好ましい。炭化工程で、パルプや樹脂が炭化され、パルプ炭化物および樹脂炭化物となって、それら結着炭化物により炭素短繊維は結着された状態となる。 Next, the precursor fiber sheet that has undergone the compression process is subjected to a carbonization process, and carbonized in an inert gas atmosphere such as nitrogen to convert pulp contained in the precursor fiber sheet into pulp carbide and resin into resin carbide. As a result , a porous carbon sheet for a polymer electrolyte fuel cell is obtained. In the carbonization process, a batch-type heating furnace can be used, but from the viewpoint of productivity, pulp and resin are baked while continuously running in a heating furnace in which the precursor fiber sheet is maintained in an inert atmosphere. After carbonizing, it is preferable to be a continuous type which is wound into a roll. In the carbonization step, pulp and resin are carbonized to become pulp carbide and resin carbide, and the short carbon fibers are bound by the bound carbide.

パルプ炭化物の形状は、元のパルプの形状に依存し、例えば、フィブリル化が進んでいない木材パルプを用いた場合にはカールした線状となり、フィブリル化が進んだ合成パルプを用いた場合には元のフィブリル由来の網目状となることが多い。   The shape of the pulp carbide depends on the shape of the original pulp.For example, when wood pulp that has not progressed in fibrillation is used, it becomes a curled linear shape, and when synthetic pulp that has progressed in fibrillation is used. It is often a net-like shape derived from the original fibrils.

本発明の固体高分子型燃料電池用多孔質炭素シートの製造方法において、炭化工程における加熱温度の最高温度を、2200〜2700℃の範囲内とすることが重要であり、かかる最高温度は2300〜2600℃が好ましく、2400〜2500℃がより好ましい。最高温度が2200℃未満の場合、得られる固体高分子型燃料電池用多孔質炭素シートの熱伝導率が低下することがあり、最高温度が2700℃を超える場合、炭化工程で用いる加熱炉の消耗が促進され耐久性が低下したり、消費エネルギーが大きくなったりすることがある。 In the method for producing a porous carbon sheet for a polymer electrolyte fuel cell of the present invention, it is important that the maximum temperature of the heating temperature in the carbonization step is within a range of 2200 to 2700 ° C., and the maximum temperature is 2300 to 2300. 2600 degreeC is preferable and 2400-2500 degreeC is more preferable. When the maximum temperature is less than 2200 ° C., the thermal conductivity of the resulting porous carbon sheet for polymer electrolyte fuel cells may decrease, and when the maximum temperature exceeds 2700 ° C., the consumption of the heating furnace used in the carbonization process May be promoted, resulting in a decrease in durability and an increase in energy consumption.

このような製造方法で得られた本発明の一実施形態に係る固体高分子型燃料電池用多孔質炭素シートの表面を撮像した電子顕微鏡写真を図2として示す。 The electron micrograph which imaged the surface of the porous carbon sheet for polymer electrolyte fuel cells which concerns on one Embodiment of this invention obtained with such a manufacturing method is shown as FIG.

図2において、固体高分子型燃料電池用多孔質炭素シート1は、直線状に見える炭素短繊維2が分散しており、炭素短繊維2が、カールした線状に見えるパルプ炭化物3および水かき状に広がる樹脂炭化物4という2種の結着炭化物で結着されている。 In FIG. 2, the porous carbon sheet 1 for a polymer electrolyte fuel cell has carbon short fibers 2 that look linear, dispersed therein, and the carbon short fibers 2 appear to be curled linear pulp carbide 3 and webbed. It is bound by two kinds of bound carbides, resin carbides 4 that spread out.

以下、実施例を用いて、本発明について、さらに具体的に説明する。なお、本実施例において、固体高分子型燃料電池用多孔質炭素シートの特性である、固体高分子型燃料電池用多孔質炭素シートの厚さ方向の熱伝導率、および固体高分子型燃料電池用多孔質炭素シートを用いた燃料電池の発電性能は次のようにして測定した。 Hereinafter, the present invention will be described more specifically with reference to examples. In the present embodiment, the characteristics of the porous carbon sheet for a polymer electrolyte fuel cell, the thickness direction of the thermal conductivity of the porous carbon sheet for a polymer electrolyte fuel cell, and solid polymer electrolyte fuel cell power generation performance of the fuel cell using the use porous carbon sheet was measured as follows.

固体高分子型燃料電池用多孔質炭素シートの厚さ方向の熱伝導率]
測定すべき固体高分子型燃料電池用多孔質炭素シートについて、センサー・プローブとしてPD−13を装着した迅速熱伝導率計 QTM−500(京都電子工業(株)製)を用い、レファレンスプレートとして、シリコンゴム、石英ガラス、ジルコニア、ムライトを用いて、測定回数を各レファレンスプレートで2回ずつとして測定する。なお、うす膜測定用ソフト(SOFT−QTM5W(京都電子工業(株)製))を用いて、うす膜材料の厚さ方向の熱伝導率を求めた。
[Thermal conductivity in the thickness direction of porous carbon sheet for polymer electrolyte fuel cells ]
About the porous carbon sheet for a polymer electrolyte fuel cell to be measured, using a rapid thermal conductivity meter QTM-500 (manufactured by Kyoto Electronics Industry Co., Ltd.) equipped with PD-13 as a sensor / probe, as a reference plate, Using silicon rubber, quartz glass, zirconia, and mullite, the number of measurements is measured twice with each reference plate. In addition, the thermal conductivity of the thin film material in the thickness direction was determined using thin film measurement software (SOFT-QTM5W (manufactured by Kyoto Electronics Industry Co., Ltd.)).

固体高分子型燃料電池用多孔質炭素シートを用いた燃料電池の発電性能]
測定すべき固体高分子型燃料電池用多孔質炭素シートを、PTFE含浸後の固体高分子型燃料電池用多孔質炭素シートに占めるPTFEの含有量が5重量%となるように、精製水で希釈したPTFEディスパージョン(ダイキン工業社製 ポリフロン(商標)PTFEディスパージョンD−1E)に浸漬し、100℃のオーブンで5分間乾燥させ、PTFEを含浸した固体高分子型燃料電池用多孔質炭素シートを得る。
[Power generation performance of fuel cell using porous carbon sheet for polymer electrolyte fuel cell ]
Dilute the porous carbon sheet for the polymer electrolyte fuel cell to be measured with purified water so that the PTFE content in the porous carbon sheet for the polymer electrolyte fuel cell after impregnation with PTFE is 5% by weight. A porous carbon sheet for a polymer electrolyte fuel cell impregnated with PTFE was immersed in a PTFE dispersion (Polyflon (trademark) PTFE dispersion D-1E manufactured by Daikin Industries, Ltd.) and dried in an oven at 100 ° C. for 5 minutes. obtain.

PTFEを含浸した固体高分子型燃料電池用多孔質炭素シートの片側表面に、ウェット厚さ125μmのカーボン塗液を塗布し、100℃のオーブンで5分間乾燥させた後、380℃のオーブンで10分間熱処理して、表面にカーボン層を設けた固体高分子型燃料電池用多孔質炭素シートを得る。 A carbon coating solution having a wet thickness of 125 μm is applied to one surface of a porous carbon sheet for a polymer electrolyte fuel cell impregnated with PTFE, dried in an oven at 100 ° C. for 5 minutes, and then subjected to 10 in an oven at 380 ° C. A porous carbon sheet for a polymer electrolyte fuel cell having a carbon layer on the surface is obtained by heat treatment for a minute.

塗布したカーボン塗液は、アセチレンブラック(電気化学工業社製 デンカブラック(登録商標))、PTFEディスパージョン(ダイキン工業社製 ポリフロン(商標)PTFEディスパージョンD−1E)、界面活性剤(ナカライテスク社製 TRITON(登録商標) X−100)を混合し、更に精製水を加えて、固形分である、アセチレンブラック、PTFEディスパージョン中のPTFE、界面活性剤の重量比が3:1:0.7、固形分が全体の12.1wt%となるように調整したものである。   The applied carbon coating solution was acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.), PTFE dispersion (Polyflon (trademark) PTFE Dispersion D-1E manufactured by Daikin Industries, Ltd.), surfactant (Nacalai Tesque, Inc.) Manufactured by TRITON (registered trademark) X-100), purified water is added, and the weight ratio of acetylene black, PTFE in the PTFE dispersion, and the surfactant, which is a solid content, is 3: 1: 0.7. The solid content was adjusted so as to be 12.1 wt% of the whole.

一方、固体高分子電解質膜(DuPont社製 Nafion(登録商標) NR−211)の両表面に、転写法で、白金量が0.3mg/cm2である触媒層を設けることにより、触媒付き固体高分子電解質膜を得る。転写法では、触媒液として、白金担持炭素(田中貴金属製 白金担持量50重量%)、精製水、Nafion溶液(Aldrich社製 Nafion(登録商標) 5.0重量%)、イソプロピルアルコール(ナカライテスク社製)を、重量比が1:1:8:18となるように調整したものを用い、ベースフィルムとして、PTFEシート(ニチアス社製 ナフロン(登録商標)テープ TOMBO9001)を用いて、ベースフィルムに触媒液をスプレーし、ホットプレスで固体高分子電解質膜に触媒層を転写する。転写の条件は130℃、5MPa、5分間のバッチプレスとする。   On the other hand, by providing a catalyst layer with a platinum amount of 0.3 mg / cm 2 on both surfaces of a solid polymer electrolyte membrane (Nafion (registered trademark) NR-211 manufactured by DuPont) by a transfer method, A molecular electrolyte membrane is obtained. In the transfer method, platinum supported carbon (platinum supported by Tanaka Kikinzoku 50% by weight), purified water, Nafion solution (Nafion (registered trademark) 5.0% by weight manufactured by Aldrich), isopropyl alcohol (Nacalai Tesque, Inc.) are used as catalyst solutions. Manufactured by adjusting the weight ratio to 1: 1: 8: 18, and using a PTFE sheet (Naflon (trademark) tape TOMBO9001 manufactured by NICHIAS) as the base film, the catalyst is used as the base film. The liquid is sprayed, and the catalyst layer is transferred to the solid polymer electrolyte membrane by hot pressing. The transfer conditions are a batch press of 130 ° C., 5 MPa, and 5 minutes.

表面にカーボン層を設けた固体高分子型燃料電池用多孔質炭素シート2枚を切り出し、その2枚の固体高分子型燃料電池用多孔質炭素シートで上記触媒付き固体高分子電解質膜を挟み、130℃、3MPaで5分間バッチプレスすることにより、膜−電極接合体を得る。なお、固体高分子型燃料電池用多孔質炭素シートは、カーボン層を設けた面を触媒層側と接するように配置する。 Cut out two porous carbon sheets for a polymer electrolyte fuel cell having a carbon layer on the surface, sandwich the solid polymer electrolyte membrane with catalyst between the two porous carbon sheets for a polymer electrolyte fuel cell , The membrane-electrode assembly is obtained by batch pressing at 130 ° C. and 3 MPa for 5 minutes. The porous carbon sheet for a polymer electrolyte fuel cell is arranged so that the surface on which the carbon layer is provided is in contact with the catalyst layer side.

得られた膜−電極接合体を燃料電池評価用単セルに組み込み、発電性能の評価を行なう。膜−電極接合体の電極面積は50cmの正方形で、単セルのセパレータは、アノード、カソードとも、溝幅1.5mm、溝深さ1.0mm、リブ幅1.1mmの一本流路のサーペンタイン型のものを使用する。アノードには、水素、カソードには空気を供給し、水素および空気中の酸素の利用率はそれぞれ80%および67%とする。アノード、カソードへの供給ガスは、60℃に設定した加湿ポットにより加湿を行なう。セル温度を60℃(供給ガスの相対湿度100%、WET条件)および90℃(供給ガスの相対湿度28%、DRY条件)に設定し、電流密度を2.0A/cmとした際の電圧値を測定する。WET条件での電圧値が耐フラッディング性の指標となり、DRY条件での電圧値が耐ドライアップ性の指標となる。 The obtained membrane-electrode assembly is incorporated into a single cell for fuel cell evaluation, and power generation performance is evaluated. The electrode area of the membrane-electrode assembly is a square of 50 cm 2 , and the single cell separator has a single-channel serpentine for both the anode and the cathode, with a groove width of 1.5 mm, a groove depth of 1.0 mm, and a rib width of 1.1 mm. Use the type. Hydrogen is supplied to the anode and air is supplied to the cathode, and the utilization rates of hydrogen and oxygen in the air are 80% and 67%, respectively. The gas supplied to the anode and cathode is humidified by a humidification pot set at 60 ° C. Voltage when the cell temperature is set to 60 ° C. (relative humidity of supply gas 100%, WET condition) and 90 ° C. (relative humidity of supply gas 28%, DRY condition) and the current density is 2.0 A / cm 2. Measure the value. The voltage value under the WET condition is an indicator of flooding resistance, and the voltage value under the DRY condition is an indicator of dry-up resistance.

(実施例1)
東レ(株)製ポリアクリロニトリル系炭素繊維“トレカ (登録商標) ”T300−6K(平均単繊維径:7μm、単繊維数:6,000本)を6mmの長さにカットし、アラバマリバー社製広葉樹晒クラフトパルプ(LBKP)クラフトマーケットパルプ(ハードウッド)と共に、水を抄造媒体として連続的に抄造し、さらにポリビニルアルコールの10重量%水溶液に浸漬し、乾燥する抄紙工程を経て、ロール状に巻き取って、炭素短繊維の目付が30g/mの長尺の炭素繊維紙を得た。炭素繊維紙100重量部に対して、添加したパルプの量は40重量部、ポリビニルアルコールの付着量は20重量部に相当する。
Example 1
Polyacrylonitrile-based carbon fiber “Torayca (registered trademark)” T300-6K (average single fiber diameter: 7 μm, number of single fibers: 6,000 fibers) manufactured by Toray Industries, Inc. was cut to a length of 6 mm, and manufactured by Alabama River Co. Along with hardwood bleached kraft pulp (LBKP) kraft market pulp (hardwood), water is continuously made as a paper making medium, and further immersed in a 10% by weight aqueous solution of polyvinyl alcohol and dried, and then rolled into a roll. Thus, a long carbon fiber paper having a basis weight of carbon short fibers of 30 g / m 2 was obtained. The amount of added pulp is 40 parts by weight and the amount of polyvinyl alcohol attached is 20 parts by weight with respect to 100 parts by weight of carbon fiber paper.

(株)中越黒鉛工業所製鱗片状黒鉛BF−5A(平均粒径5μm)、フェノール樹脂およびメタノールを2:3:25の重量比で混合した分散液を用意した。上記炭素繊維紙に、炭素短繊維100重量部に対してフェノール樹脂が96重量部である樹脂含浸量になるように、上記分散液を連続的に含浸し、90℃の温度で3分間乾燥する樹脂含浸工程を経た後、ロール状に巻き取って樹脂含浸炭素繊維紙を得た。フェノール樹脂には、荒川化学工業(株)製レゾール型フェノール樹脂KP−743Kと、荒川化学工業(株)製ノボラック型フェノール樹脂タマノル(登録商標)759とを1:1の重量比で混合した樹脂を用いた。   A dispersion obtained by mixing scale-like graphite BF-5A (average particle size 5 μm), phenol resin, and methanol by a weight ratio of 2: 3: 25 manufactured by Chuetsu Graphite Industries Co., Ltd. was prepared. The carbon fiber paper is continuously impregnated with the dispersion so that the resin impregnation amount is 96 parts by weight of phenol resin with respect to 100 parts by weight of short carbon fibers, and dried at a temperature of 90 ° C. for 3 minutes. After passing through the resin impregnation step, it was wound into a roll to obtain a resin-impregnated carbon fiber paper. The phenol resin is a resin in which Arakawa Chemical Industries, Ltd. resol type phenol resin KP-743K and Arakawa Chemical Industries, Ltd. novolac type phenol resin Tamanol (registered trademark) 759 are mixed at a weight ratio of 1: 1. Was used.

(株)カワジリ製100tプレスに熱板7、8が互いに平行となるようセットし、下熱板8上にスペーサー9、9を配置して、熱板温度170℃、面圧0.8MPaで、プレスの開閉を繰り返しながら上下から離型紙で挟み込んだ樹脂含浸炭素繊維紙を間欠的に搬送しつつ、同じ箇所がのべ6分間加熱加圧されるよう圧縮処理した。また、熱板の有効加圧長LPは1200mmで、間欠的に搬送する際の前駆体繊維シートの送り量LFを100mmとし、LF/LP=0.08とした。すなわち、30秒の加熱加圧、型開き、炭素繊維紙の送り(100mm)、を繰り返すことによって圧縮処理を行い、ロール状に巻き取った。   The hot plates 7 and 8 are set so as to be parallel to each other in a Kawatiri 100t press, and spacers 9 and 9 are arranged on the lower hot plate 8 so that the hot plate temperature is 170 ° C. and the surface pressure is 0.8 MPa. While repeatedly opening and closing the press, the resin-impregnated carbon fiber paper sandwiched between release papers from above and below was intermittently conveyed, and compression treatment was performed so that the same portion was heated and pressurized for a total of 6 minutes. The effective pressurization length LP of the hot plate was 1200 mm, and the feed amount LF of the precursor fiber sheet when intermittently transported was 100 mm, and LF / LP = 0.08. That is, compression treatment was performed by repeating heating and pressurization for 30 seconds, mold opening, and feeding of carbon fiber paper (100 mm), and the product was wound into a roll.

圧縮処理をした炭素繊維紙を前駆体繊維シートとして、窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に導入し、加熱炉内を連続的に走行させながら、約500℃/分(650℃までは400℃/分、650℃を超える温度では550℃/分)の昇温速度で焼成する炭化工程を経た後、ロール状に巻き取って固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。 The compressed carbon fiber paper is used as a precursor fiber sheet, introduced into a heating furnace having a maximum temperature of 2400 ° C. maintained in a nitrogen gas atmosphere, and continuously running in the heating furnace at about 500 ° C./min. (After 650 ° C, 400 ° C / min, for temperatures exceeding 650 ° C, 550 ° C / min) After the carbonization step of firing at a rate of temperature rise, the carbon is wound into a roll and porous carbon for a polymer electrolyte fuel cell A sheet was obtained. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(実施例2)
炭化工程における最高温度を2600℃に変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Example 2)
A porous carbon sheet for a polymer electrolyte fuel cell was obtained in the same manner as in Example 1 except that the maximum temperature in the carbonization step was changed to 2600 ° C. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(実施例3)
樹脂含浸工程における樹脂含浸量を、炭素短繊維100重量部に対してフェノール樹脂が113重量部であるように変更し、炭化工程における最高温度を2700℃に変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Example 3)
The resin impregnation amount in the resin impregnation step was changed so that the phenol resin was 113 parts by weight with respect to 100 parts by weight of the short carbon fiber, and the same as in Example 1 except that the maximum temperature in the carbonization step was changed to 2700 ° C. Thus, a porous carbon sheet for a polymer electrolyte fuel cell was obtained. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(実施例4)
樹脂含浸工程における樹脂含浸量を、炭素短繊維100重量部に対してフェノール樹脂が78重量部であるように変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シート1の特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
Example 4
Porous carbon for a polymer electrolyte fuel cell in the same manner as in Example 1 except that the resin impregnation amount in the resin impregnation step was changed so that the phenol resin was 78 parts by weight with respect to 100 parts by weight of the short carbon fibers. A sheet was obtained. The properties of the obtained porous carbon sheet 1 for a polymer electrolyte fuel cell are shown in Table 1 together with the properties of the precursor sheet used and the carbonization conditions.

(比較例7)
抄紙工程において、使用するパルプを東洋紡績(株)製アクリルパルプBiPUL100TWFに変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シート1の特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Comparative Example 7)
In the paper making process, a porous carbon sheet for a polymer electrolyte fuel cell was obtained in the same manner as in Example 1 except that the pulp used was changed to Toyobo Co., Ltd. acrylic pulp BiPUL100TWF. The properties of the obtained porous carbon sheet 1 for a polymer electrolyte fuel cell are shown in Table 1 together with the properties of the precursor sheet used and the carbonization conditions.

(比較例1)
炭化工程における最高温度を2000℃に変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Comparative Example 1)
A porous carbon sheet for a polymer electrolyte fuel cell was obtained in the same manner as in Example 1 except that the maximum temperature in the carbonization step was changed to 2000 ° C. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(比較例2)
抄紙工程において、得られる炭素繊維紙が、炭素短繊維の目付が42g/m、炭素繊維紙100重量部に対してパルプの量が40重量部となるように条件変更し、樹脂含浸工程における樹脂含浸量を、炭素短繊維100重量部に対してフェノール樹脂が40重量部になるように変更し、炭化工程における最高温度を2700℃に変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Comparative Example 2)
In the paper making process, the carbon fiber paper obtained was modified so that the basis weight of the short carbon fibers was 42 g / m 2 and the amount of pulp was 40 parts by weight with respect to 100 parts by weight of the carbon fiber paper. the amount of impregnated resin, phenolic resin is changed to be 40 parts by weight per 100 parts by weight of short carbon fibers, except for changing the maximum temperature in the carbonization step 2700 ° C., in the same manner as in example 1 solid high A porous carbon sheet for molecular fuel cells was obtained. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(比較例3)
抄紙工程において、得られる炭素繊維紙が、炭素短繊維の目付が18g/m、炭素繊維紙100重量部に対してパルプの量が40重量部となるように条件変更し、樹脂含浸工程における樹脂含浸量を、炭素短繊維100重量部に対してフェノール樹脂が200重量部になるように変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Comparative Example 3)
In the paper making process, the obtained carbon fiber paper was modified so that the basis weight of the short carbon fiber was 18 g / m 2 and the amount of pulp was 40 parts by weight with respect to 100 parts by weight of the carbon fiber paper. A porous carbon sheet for a polymer electrolyte fuel cell was obtained in the same manner as in Example 1 except that the resin impregnation amount was changed so that the phenol resin was 200 parts by weight with respect to 100 parts by weight of the short carbon fibers. . The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(比較例4)
抄紙工程において、得られる炭素繊維紙が、炭素短繊維の目付が42g/m、炭素繊維紙100重量部に対してパルプの量が40重量部となるように条件変更し、樹脂含浸工程における樹脂含浸量を、炭素短繊維100重量部に対してフェノール樹脂が78重量部になるように変更し、炭化工程における最高温度を2000℃に変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Comparative Example 4)
In the paper making process, the carbon fiber paper obtained was modified so that the basis weight of the short carbon fibers was 42 g / m 2 and the amount of pulp was 40 parts by weight with respect to 100 parts by weight of the carbon fiber paper. The amount of resin impregnation was changed so that the phenol resin was 78 parts by weight with respect to 100 parts by weight of the short carbon fibers, and the solid temperature was increased in the same manner as in Example 1 except that the maximum temperature in the carbonization step was changed to 2000 ° C. A porous carbon sheet for molecular fuel cells was obtained. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(比較例5)
抄紙工程において、使用するパルプを三井化学(株)製ポリエチレン(PE)パルプSWP EST−8に変更し、得られる炭素繊維紙が、炭素短繊維の目付が約44g/m、炭素繊維紙100重量部に対してパルプの量が40重量部となるように条件変更し、樹脂含浸工程における樹脂含有量を、炭素短繊維100重量部に対してフェノール樹脂が41重量部になるように変更し、炭化工程における最高温度を2000℃に変更した以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Comparative Example 5)
In the paper making process, the pulp to be used is changed to polyethylene (PE) pulp SWP EST-8 manufactured by Mitsui Chemicals, and the resulting carbon fiber paper has a carbon fiber basis weight of about 44 g / m 2 and carbon fiber paper 100. The conditions were changed so that the amount of pulp was 40 parts by weight with respect to parts by weight, and the resin content in the resin impregnation step was changed so that the phenol resin was 41 parts by weight with respect to 100 parts by weight of carbon short fibers. A porous carbon sheet for a polymer electrolyte fuel cell was obtained in the same manner as in Example 1 except that the maximum temperature in the carbonization step was changed to 2000 ° C. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

(比較例6)
抄紙工程において、パルプを混抄しなかった以外は、実施例1と同様にして固体高分子型燃料電池用多孔質炭素シートを得た。得られた固体高分子型燃料電池用多孔質炭素シートの特性を、用いた前駆体シートの特性および炭化処理条件とともに表1に示す。
(Comparative Example 6)
A porous carbon sheet for a polymer electrolyte fuel cell was obtained in the same manner as in Example 1 except that pulp was not mixed in the paper making process. The characteristics of the obtained porous carbon sheet for a polymer electrolyte fuel cell are shown in Table 1 together with the characteristics of the precursor sheet used and the carbonization conditions.

Figure 0005544960
Figure 0005544960

実施例1〜4の固体高分子型燃料電池用多孔質炭素シートは、前駆体繊維シートの炭素短繊維の目付が20〜35g/m、熱硬化性樹脂の目付が20〜35g/mであり、炭化工程における加熱温度の最高温度が2200〜2700℃で製造されているので、低密度、高強度および高熱伝導率の全てを同時に満足している。よって、DRY条件、WET条件の両方で高い電圧値を示している。 The porous carbon sheets for polymer electrolyte fuel cells of Examples 1 to 4 have a basis weight of carbon short fibers of the precursor fiber sheet of 20 to 35 g / m 2 and a basis weight of thermosetting resin of 20 to 35 g / m 2. Since the maximum temperature of the heating temperature in the carbonization step is 2200 to 2700 ° C., all of the low density, high strength, and high thermal conductivity are satisfied at the same time. Therefore, a high voltage value is shown in both the DRY condition and the WET condition.

一方、比較例1、比較例4および比較例5は、炭化工程の最高温度が低いため、得られる固体高分子型燃料電池用多孔質炭素シートは熱伝導率が低い。よって、DRY条件での電圧値が低い。 On the other hand, Comparative Example 1, Comparative Example 4 and Comparative Example 5 have a low maximum temperature in the carbonization step, and thus the obtained porous carbon sheet for a polymer electrolyte fuel cell has a low thermal conductivity. Therefore, the voltage value under the DRY condition is low.

比較例2は、前駆体繊維シートの炭素短繊維の目付が大きく、熱硬化性樹脂の目付が小さいため、炭素短繊維が樹脂炭化物でしっかり結着されず、炭化工程の最高温度を2700℃としても、得られる固体高分子型燃料電池用多孔質炭素シートは熱伝導率が低い。よって、DRY条件での電圧値が低い。 In Comparative Example 2, since the basis weight of the short carbon fiber of the precursor fiber sheet is large and the basis weight of the thermosetting resin is small, the short carbon fiber is not firmly bound with the resin carbide, and the maximum temperature of the carbonization process is set to 2700 ° C. However, the obtained porous carbon sheet for a polymer electrolyte fuel cell has low thermal conductivity. Therefore, the voltage value under the DRY condition is low.

比較例3は、前駆体繊維シートの炭素短繊維の目付が小さいため、得られる固体高分子型燃料電池用多孔質炭素シートは曲げ強度が低い。発電性能の評価においても、DRY条件、WET条件の両方で電圧値が低い。発電性能評価後の膜−電極接合体を観察したところ、セパレータの溝の跡が多孔質炭素シートにはっきりと残っており、セパレータから受けた力により固体高分子型燃料電池用多孔質炭素シートが破壊されたため、発電性能が低かったものと考えられる。 In Comparative Example 3, since the basis weight of the short carbon fibers of the precursor fiber sheet is small, the obtained porous carbon sheet for a polymer electrolyte fuel cell has low bending strength. Also in the evaluation of the power generation performance, the voltage value is low under both the DRY condition and the WET condition. When the membrane-electrode assembly after the power generation performance evaluation was observed, traces of the groove of the separator remained clearly on the porous carbon sheet, and the porous carbon sheet for a polymer electrolyte fuel cell was formed by the force received from the separator. It is thought that the power generation performance was low because of the destruction.

比較例6は、抄紙工程においてパルプを混抄しておらず、炭素短繊維を結着するパルプ炭化物が存在していないため、得られる固体高分子型燃料電池用多孔質炭素シートは熱伝導率も曲げ強度も低く、比較例3と同様に発電性能評価後の固体高分子型燃料電池用多孔質炭素シートの破壊を確認した。よって、DRY条件、WET条件の両方で電圧値が低い。 In Comparative Example 6, pulp was not mixed in the paper making process, and there was no pulp carbide that binds the short carbon fibers, so that the obtained porous carbon sheet for a polymer electrolyte fuel cell also had thermal conductivity. The bending strength was also low, and as in Comparative Example 3, it was confirmed that the porous carbon sheet for polymer electrolyte fuel cells was evaluated after the power generation performance was evaluated. Therefore, the voltage value is low in both the DRY condition and the WET condition.

なお、前駆体繊維シートに含まれるパルプとして、フィブリル化されたアクリル繊維を用いた比較例7およびポリエチレン繊維を用いた比較例5は、LBKP等のフィブリル化が進んでいない木材パルプを用いた場合に比べ、厚さ方向に空気を透過させたときの差圧が大きくなる傾向にあり、燃料電池内部での物質移動を阻害しないためには、木材パルプがより有効であることが分かる。   In addition, the comparative example 7 using the fibrillated acrylic fiber and the comparative example 5 using the polyethylene fiber as the pulp contained in the precursor fiber sheet are cases where wood pulp that has not progressed to fibrillation such as LBKP is used. In contrast, the pressure difference when air is permeated in the thickness direction tends to increase, and it can be seen that wood pulp is more effective in preventing mass transfer inside the fuel cell.

以上のように、本発明の固体高分子型燃料電池用多孔質炭素シートの製造方法によれば、従来困難であった低密度、高強度および高熱伝導率の全てを同時に満足する固体高分子型燃料電池用多孔質炭素シートを提供することができ、本発明の固体高分子型燃料電池用多孔質炭素シートをガス拡散体の材料として用いた燃料電池は、いわゆるフラッディングおよびドライアップの両方に対する耐性が高く、加湿条件に依らず発電性能が非常に高い。 As described above, according to the solid polymer electrolyte fuel cell porous carbon sheet production method of the present invention, which was difficult low density conventional, high strength and solid polymer satisfying all simultaneously a high thermal conductivity A porous carbon sheet for a fuel cell can be provided, and a fuel cell using the porous carbon sheet for a polymer electrolyte fuel cell of the present invention as a material for a gas diffuser is resistant to both so-called flooding and dry-up. The power generation performance is very high regardless of humidification conditions.

本発明に係る固体高分子型燃料電池用多孔質炭素シートは、固体高分子型燃料電池のガス拡散体に限らず、ダイレクトメタノール型燃料電池など各種電池の電極基材や脱水機用電極基材など、種々の電極基材に応用することができ、その応用範囲は広い。 The porous carbon sheet for a polymer electrolyte fuel cell according to the present invention is not limited to a gas diffuser of a polymer electrolyte fuel cell, but is an electrode substrate for various batteries such as a direct methanol fuel cell and an electrode substrate for a dehydrator It can be applied to various electrode substrates, and its application range is wide.

固体高分子型燃料電池用多孔質炭素シート
2 炭素短繊維
3 パルプ炭化物
4 樹脂炭化物
5 前駆体繊維シート
6 ホットプレス
7 上熱板
8 下熱板
9 スペーサー
1 Porous carbon sheet for polymer electrolyte fuel cell 2 Carbon short fiber 3 Pulp carbide 4 Resin carbide 5 Precursor fiber sheet 6 Hot press 7 Upper hot plate 8 Lower hot plate 9 Spacer

Claims (4)

分散している炭素短繊維を結着炭化物で結着した多孔質炭素シートであって、密度が0.25〜0.35g/cm、厚さ方向の熱伝導率が1.4〜4.0W/m/K、および、曲げ強度が25〜40MPa、シートの厚さ方向に14cm/cm/secの空気を透過させたときのシートの単位厚さあたりの差圧が10〜50mmAq/mmであることを特徴とする固体高分子型燃料電池用多孔質炭素シート。 A porous carbon sheet obtained by binding short carbon fibers dispersed with a binding carbide, having a density of 0.25 to 0.35 g / cm 3 and a thermal conductivity in the thickness direction of 1.4 to 4. 0 W / m / K, the bending strength is 25 to 40 MPa, and the differential pressure per unit thickness of the sheet when air of 14 cm 3 / cm 2 / sec is permeated in the thickness direction of the sheet is 10 to 50 mmAq / A porous carbon sheet for a polymer electrolyte fuel cell , characterized by being mm. 以下の式で定義される結着炭化物比率が40〜60%である請求項1に記載の固体高分子型燃料電池用多孔質炭素シート。
固体高分子型燃料電池用多孔質炭素シートの結着炭化物比率(%)=(A−B)÷A×100
ただし、A:固体高分子型燃料電池用多孔質炭素シートの目付(g/m
B:炭素短繊維の目付(g/m
2. The porous carbon sheet for a polymer electrolyte fuel cell according to claim 1, wherein the binder carbide ratio defined by the following formula is 40 to 60%.
Binder carbide ratio of porous carbon sheet for polymer electrolyte fuel cell (%) = (A−B) ÷ A × 100
However, A: The basis weight of the porous carbon sheet for a polymer electrolyte fuel cell (g / m 2 )
B: Weight of carbon short fiber (g / m 2 )
シートの厚さが100〜250μmである請求項1または2に記載の固体高分子型燃料電池用多孔質炭素シート。 The porous carbon sheet for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the sheet has a thickness of 100 to 250 µm. 炭素短繊維、樹脂およびパルプを含み、炭素短繊維の目付が20〜35g/mで、樹脂の目付が20〜35g/mである前駆体繊維シートを加圧処理する圧縮工程と、加圧処理された前駆体繊維シートを加熱し、パルプおよび樹脂を結着炭化物に転換する炭化工程とを有する多孔質炭素シートの製造方法であって、前記パルプが木材パルプであり、前駆体繊維シートに含まれるパルプの含有量が、炭素短繊維100重量部に対して30〜60重量部の範囲内であるとともに、前記炭化工程における加熱処理の最高温度を2200〜2700℃の範囲内とすることを特徴とする固体高分子型燃料電池用多孔質炭素シートの製造方法。 A compression step of pressurizing a precursor fiber sheet containing carbon short fibers, resin and pulp, having a basis weight of carbon short fibers of 20 to 35 g / m 2 and a basis weight of resin of 20 to 35 g / m 2 ; A method for producing a porous carbon sheet comprising heating a pressure-treated precursor fiber sheet and converting the pulp and the resin into a binder carbide, wherein the pulp is wood pulp, and the precursor fiber sheet The content of the pulp contained in the carbon is within the range of 30 to 60 parts by weight with respect to 100 parts by weight of the short carbon fibers, and the maximum temperature of the heat treatment in the carbonization step is within the range of 2200 to 2700 ° C. A method for producing a porous carbon sheet for a polymer electrolyte fuel cell .
JP2010063419A 2010-03-19 2010-03-19 Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same Active JP5544960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063419A JP5544960B2 (en) 2010-03-19 2010-03-19 Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063419A JP5544960B2 (en) 2010-03-19 2010-03-19 Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011195374A JP2011195374A (en) 2011-10-06
JP5544960B2 true JP5544960B2 (en) 2014-07-09

Family

ID=44874048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063419A Active JP5544960B2 (en) 2010-03-19 2010-03-19 Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5544960B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5941257B2 (en) 2011-09-07 2016-06-29 矢崎総業株式会社 Speed display device and speed display method
KR101400507B1 (en) * 2011-12-21 2014-05-30 오씨아이 주식회사 Dispersion Method of Carbonous Fibers Using In-line Dispersion Method and Manufacturing Method of Carbon Composites thereof
EP3252855A4 (en) * 2015-01-28 2018-08-08 Toray Industries, Inc. Porous carbon sheet and precursor fiber sheet thereof
JP7290112B2 (en) 2018-09-28 2023-06-13 東レ株式会社 GAS DIFFUSION ELECTRODE SUBSTRATE AND MANUFACTURING METHOD THEREOF, POLYMER FUEL CELL
WO2020213324A1 (en) 2019-04-19 2020-10-22 東レ株式会社 Gas diffusion electrode substrate, method for producing same, gas diffusion electrode, membrane-electrode assembly, and solid polymer fuel cell
CN112421059B (en) * 2020-12-15 2022-03-22 深圳市通用氢能科技有限公司 Gas diffusion layer and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685365B2 (en) * 1991-03-13 1997-12-03 昭和電工株式会社 Manufacturing method of porous carbon plate
JP4051714B2 (en) * 1995-12-06 2008-02-27 東レ株式会社 Electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP3574831B2 (en) * 1996-08-28 2004-10-06 東海カーボン株式会社 Porous carbon material for phosphoric acid type fuel cell and method for producing the same
JP2002343379A (en) * 2001-05-21 2002-11-29 Aisin Seiki Co Ltd Fuel cell, electrode for fuel cell and treating method of the same
JP2006040886A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method

Also Published As

Publication number Publication date
JP2011195374A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
CA2424948C (en) Carbon fiber electrode substrate for electrochemical cells
JP5988009B1 (en) Porous carbon sheet and precursor fiber sheet thereof
EP3276718B1 (en) Porous carbon electrode base material, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP5544960B2 (en) Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same
JP5987484B2 (en) Gas diffusion electrode substrate and method for producing the same
CN113228358A (en) Graphitized carbon substrate and gas diffusion layer adopting same
US20170244108A1 (en) Carbon sheet, gas diffusion electrode substrate and fuel cell
JP6743805B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5055682B2 (en) Porous carbon plate and method for producing the same
JP2004288489A (en) Porous carbon base material for electrode and manufacturing method of the same
EP4131519A1 (en) Method for producing gas diffusion electrode substrate
JP4345538B2 (en) Method for producing carbon fiber sheet
WO2020213324A1 (en) Gas diffusion electrode substrate, method for producing same, gas diffusion electrode, membrane-electrode assembly, and solid polymer fuel cell
JP2007176750A (en) Porous carbon fiber sheet and method of manufacturing the same
JP4559767B2 (en) Carbon electrode substrate manufacturing method
CA2997688C (en) Carbon sheet, gas diffusion electrode substrate, wound body, and fuel cell
JP5464136B2 (en) Method for producing gas diffusion electrode substrate
JP2009234851A (en) Porous carbon sheet and its manufacturing process
JP5790186B2 (en) Method for producing gas diffusion electrode substrate
JP2016157653A (en) Gas diffusion electrode base material and gas diffusion layer including the same
JP2009076347A (en) Gas diffusion electrode substrate and its manufacturing method
JP2017182900A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
WO2023190160A1 (en) Carbon sheet as well as gas diffusion electrode substrate, membrane electrode assembly, and fuel cell using same
JP2008226579A (en) Porous carbon sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5544960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151