JP2009076347A - Gas diffusion electrode substrate and its manufacturing method - Google Patents

Gas diffusion electrode substrate and its manufacturing method Download PDF

Info

Publication number
JP2009076347A
JP2009076347A JP2007244860A JP2007244860A JP2009076347A JP 2009076347 A JP2009076347 A JP 2009076347A JP 2007244860 A JP2007244860 A JP 2007244860A JP 2007244860 A JP2007244860 A JP 2007244860A JP 2009076347 A JP2009076347 A JP 2009076347A
Authority
JP
Japan
Prior art keywords
resin
gas diffusion
diffusion electrode
carbon fiber
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007244860A
Other languages
Japanese (ja)
Inventor
Teruyuki Hattori
輝幸 服部
Mikio Inoue
幹夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007244860A priority Critical patent/JP2009076347A/en
Publication of JP2009076347A publication Critical patent/JP2009076347A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas diffusion electrode substrate which has different gas permeability in surface direction in one sheet of gas diffusion electrode by a commercially viable method, and its manufacturing method. <P>SOLUTION: In order to provide an electrode substrate having different characteristics of a high gas permeability portion and a low gas permeability portion in one sheet of sheet material, application amount in width direction is changed by controlling the resin amount distribution to be given to a carbon fiber paper. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子型燃料電池のガス拡散層の材料として好ましく用いられる多孔質炭素基材とその製造方法に関する。   The present invention relates to a porous carbon substrate preferably used as a material for a gas diffusion layer of a polymer electrolyte fuel cell and a method for producing the same.

固体高分子型燃料電池は、固体高分子膜を中心として一方の面がアノードとして、もう一方の面がカソードとして機能する。アノード側では水素等の燃料ガスがガス拡散層の気孔を通じて触媒層に供給され、一方、カソード側では空気などの酸化剤ガスがガス拡散層を通じて触媒層に供給され、各電極で下記の電気化学反応が発生し、発電することが可能になる。   In the solid polymer fuel cell, one surface functions as an anode and the other surface functions as a cathode with the solid polymer membrane as a center. On the anode side, a fuel gas such as hydrogen is supplied to the catalyst layer through the pores of the gas diffusion layer, while on the cathode side, an oxidant gas such as air is supplied to the catalyst layer through the gas diffusion layer. A reaction occurs and power can be generated.

→ 2H+ 2e (アノード側)
2H+1/2O+2e→ HO (カソード側)
カソード側では上記電気化学反応によって水が発生するため、カソードに供給された酸化剤ガスはセパレータ内の経路を流れるに従い水蒸気分圧が高くなり、ガス排出側で水の凝縮が発生しやすくなる。この凝縮した水によってガス拡散層の気孔が閉塞されるため(以下、フラッディング現象と略記する。)、触媒層への酸化剤ガス供給が不十分になり、発電特性が低下する。
H 2 → 2H + + 2e (Anode side)
2H + + 1 / 2O 2 + 2e → H 2 O (cathode side)
Since water is generated by the above-described electrochemical reaction on the cathode side, the oxidant gas supplied to the cathode has a higher water vapor partial pressure as it flows through the path in the separator, and water condensation tends to occur on the gas discharge side. Since the pores of the gas diffusion layer are blocked by the condensed water (hereinafter abbreviated as “flooding phenomenon”), the supply of the oxidant gas to the catalyst layer becomes insufficient and the power generation characteristics deteriorate.

燃料電池セルの加熱やガス拡散電極基材の気孔率増加によって、フラッディング現象を抑制することができるが、その場合にはガス供給側において固体高分子膜の乾燥が促進される。固体高分子膜の乾燥が進行すると、固体高分子膜の機能であるプロトン輸送性が悪化し、発電特性が低下する。   Although the flooding phenomenon can be suppressed by heating the fuel cell or increasing the porosity of the gas diffusion electrode substrate, in that case, drying of the solid polymer membrane is promoted on the gas supply side. As drying of the solid polymer membrane proceeds, proton transportability, which is a function of the solid polymer membrane, deteriorates and power generation characteristics deteriorate.

上記のガス排出側でのフラッディング現象の発生とガス供給側での固体高分子膜の乾燥を解決するため、ガス供給側のガス拡散層を低気体透過性にし、ガス排出側のガス拡散層を高気体透過性にした提案がなされている(特許文献1参照)。しかし、この方法では、カーボン固着量が少ない(高気体透過性である)ガス拡散層と、カーボン固着量が多い(低気体透過性である)ガス拡散層の2枚を電解質に貼り合わせるため、工程上容易に目的を達成することができない。   In order to solve the above-mentioned flooding phenomenon on the gas discharge side and the drying of the solid polymer membrane on the gas supply side, the gas diffusion layer on the gas supply side is made to have low gas permeability, and the gas diffusion layer on the gas discharge side is A proposal for high gas permeability has been made (see Patent Document 1). However, in this method, two gas diffusion layers having a low carbon adhering amount (high gas permeability) and a gas diffusion layer having a high carbon adhering amount (low gas permeability) are bonded to the electrolyte. The purpose cannot be easily achieved in the process.

一方、所定の条件を施した抄紙工程で繊維堆積量が多い領域と少ない領域をつくり、繊維堆積量が多い領域をガス排出側に配置し、繊維堆積量が少ない領域をガス供給側に配置する提案がなされている(特許文献2参照)。しかし、この方法では、発明を達成するためにはガス拡散電極基材と同じ幅で抄紙工程を設計する必要があり、従来より狭幅で抄紙するため、商業的に成立することが困難である。
特開2001−6698号公報 特開2004−273392号公報
On the other hand, in the papermaking process under given conditions, areas with a large amount of fiber accumulation and areas with a small amount of fiber accumulation are created, an area with a large amount of fiber accumulation is arranged on the gas discharge side, and an area with a small amount of fiber accumulation is arranged on the gas supply side. A proposal has been made (see Patent Document 2). However, in this method, it is necessary to design a paper making process with the same width as the gas diffusion electrode base material in order to achieve the invention, and paper making with a narrower width than before, it is difficult to establish commercially. .
Japanese Patent Laid-Open No. 2001-6698 JP 2004-273392 A

本発明は、従来の技術における上述した問題点に鑑み、商業的に成立する方法で1枚のガス拡散電極基材の中で面内方向の気体透過性の異なる多孔質炭素基材とその製造方法を提供することにある。   In view of the above-mentioned problems in the prior art, the present invention provides a porous carbon base material having different gas permeability in the in-plane direction among a single gas diffusion electrode base material and its production by a commercially established method. It is to provide a method.

本発明では、樹脂含浸工程で付与される樹脂量の分布をコントロールすることで、燃料電池セルの使用環境に合わせた気体透過性を有するガス拡散電極基材を提供することができ、燃料電池特性の安定性向上および商業性の両立を可能にする。   In the present invention, by controlling the distribution of the amount of resin applied in the resin impregnation step, it is possible to provide a gas diffusion electrode substrate having gas permeability that matches the use environment of the fuel cell, and the fuel cell characteristics It is possible to improve both stability and commerciality.

すなわち、炭素繊維抄紙体および樹脂の炭化物を有してなるガス拡散電極基材であって、前記炭素繊維抄紙体は実質的に均一な目付を有しており、かつ、前記樹脂の炭化物は、幅方向に目付の分布を有するガス拡散電極基材である。   That is, a gas diffusion electrode base material comprising a carbon fiber paper body and a resin carbide, wherein the carbon fiber paper body has a substantially uniform basis weight, and the resin carbide is It is a gas diffusion electrode base material having a weight distribution in the width direction.

さらに、本発明は、
(1)炭素繊維抄紙体に樹脂を吹き付けた後に、樹脂硬化、焼成する工程を含むガス拡散電極基材の製造方法であって、前記樹脂の量を、前記炭素繊維抄紙体の幅方向に分布を設けて吹き付けること、
(2)炭素繊維抄紙体に樹脂を吹き付けた後に、樹脂硬化、焼成する工程を含むガス拡散電極基材の製造方法であって、前記炭素繊維抄紙体を、水平面に対して角度を設けて配置した後に樹脂を吹き付けること、ならびに、
(3)炭素繊維抄紙体に樹脂を含浸した後に、樹脂硬化、焼成する工程を含むガス拡散電極基材の製造方法であって、樹脂硬化、焼成する前に、幅方向で隙間の異なる1対のロール間を通過する工程を有すること、
を特徴とする。
Furthermore, the present invention provides
(1) A method for producing a gas diffusion electrode substrate including a step of resin curing and firing after spraying a resin on a carbon fiber paper body, wherein the amount of the resin is distributed in the width direction of the carbon fiber paper body Providing and spraying,
(2) A method for producing a gas diffusion electrode substrate including a step of resin curing and firing after resin is sprayed on a carbon fiber paper body, wherein the carbon fiber paper body is disposed at an angle with respect to a horizontal plane. And then spraying the resin,
(3) A method for producing a gas diffusion electrode substrate comprising a step of impregnating a carbon fiber papermaking body with a resin, followed by resin curing and firing, and before the resin curing and firing, a pair of gaps differing in the width direction Having a step of passing between the rolls of
It is characterized by.

本発明によれば、ガス拡散電極基材の面内方向の目付分布をもたせることで、1枚の中で気体透過性に分布があるガス拡散電極基材を提供することが可能になる。カソードのガス排出側にはガス拡散電極基材の気体透過性の高い部分をレイアウトすることで水分排出性を促進しおよびカソードのガス供給側にはガス拡散電極基材の気体透過性の低い部分をレイアウトすることで水分保持性を促進することで、セル内の水分分布が均一化され発電の安定性が高い燃料電池を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the gas diffusion electrode base material with distribution in gas permeability in one sheet | seat by giving the fabric distribution of the in-plane direction of a gas diffusion electrode base material. Moisture discharge is promoted by laying out a gas permeable electrode base with high gas permeability on the cathode gas discharge side, and a gas diffusion electrode base with low gas permeability on the cathode gas supply side By promoting the moisture retention by laying out the fuel cell, it becomes possible to provide a fuel cell with uniform moisture distribution in the cell and high power generation stability.

本発明のガス拡散電極基材は、基本構造である炭素繊維構造体を形成するための抄紙、炭素繊維を結着するための樹脂含浸および樹脂硬化、樹脂を炭化させるための焼成からなる方法により得られ、その構成要素である樹脂炭化物量を意図的に分布させることで、目付分布を有することを特徴とするものである。   The gas diffusion electrode substrate of the present invention is made by a method comprising paper making for forming a carbon fiber structure as a basic structure, resin impregnation and resin curing for binding carbon fibers, and firing for carbonizing the resin. It is obtained and has a basis weight distribution by intentionally distributing the amount of resin carbide that is a constituent element thereof.

実質的に均一な目付とは、1枚の電極基材内で最大目付と最小目付の目付比が1.05以内であり、目付分布を有することは1枚の電極基材内で最大目付と最小目付の目付比が1.05以上のことを意味する。   The substantially uniform basis weight means that the ratio between the maximum basis weight and the minimum basis weight within one electrode substrate is within 1.05, and that having a basis weight distribution means that the maximum basis weight is within one electrode substrate. It means that the basis weight ratio of the minimum basis weight is 1.05 or more.

目付比=M1÷M2
M1:最大目付g/m
M2:最小目付g/m
Weight ratio = M1 ÷ M2
M1: Maximum basis weight g / m 2
M2: minimum basis weight g / m 2 .

なお、最小目付、最大目付は、1枚の電極基材内の中の幅方向位置の異なる任意の箇所から4個以上のサンプル(10cm×10cm)を採取し、サンプル質量をサンプルの面積で除した値のうち、最も大きい値となったものを最大目付M1、最も小さい値となったものを最小目付M2とした。4個のサンプルで幅方向占有率が75%未満である場合、占有率が75%以上になるまでサンプル数を増やす。ここで、幅方向とは、ガス拡散電極基材の製造工程におけるロール巻き方向(実質的には抄紙巻き取り方向)に対して垂直をなす方向のことである。   In addition, the minimum basis weight and the maximum basis weight are obtained by taking four or more samples (10 cm × 10 cm) from arbitrary positions in the width direction in one electrode substrate, and dividing the sample mass by the area of the sample. Of these values, the largest basis weight M1 was the largest value and the smallest basis weight M2 was the smallest value. When the width direction occupation ratio is less than 75% with four samples, the number of samples is increased until the occupation ratio becomes 75% or more. Here, the width direction is a direction perpendicular to the roll winding direction (substantially the paper making winding direction) in the manufacturing process of the gas diffusion electrode substrate.

傾斜的な目付分布とは、理想的には、最大目付位置と最小目付位置の間の任意の2点の目付を比べた時に、いかなる2点の目付を比較しても、最大目付位置側の目付が最小目付位置側の目付よりも大きくなっていることを意味するが、本発明において傾斜的な目付分布とは、最大目付位置と最小目付位置の中間位置の目付がM2+(M1−M2)×0.25〜M2+(M1−M2)×0.75の範囲にある場合の分布を意味することとする。   The sloped basis weight distribution ideally means that when comparing any two basis weights between the maximum basis weight position and the minimum basis weight position, any two point basis weights can be compared. This means that the basis weight is larger than the basis weight on the minimum basis weight position side. In the present invention, the inclined basis weight distribution means that the basis weight between the maximum basis weight position and the minimum basis weight position is M2 + (M1-M2). A distribution in the range of × 0.25 to M2 + (M1−M2) × 0.75 is meant.

目付は、上記のとおり、ガス拡散電極基材の10cm×10cmの正方形サンプル質量をサンプル面積で除して算出する。幅方向の寸法が40cm未満で4個のサンプルを採取できない場合は、サンプル4個の幅方向占有率が75%以上かつサンプル1個の面積が0.01m以上の条件を満たすようサンプル寸法を変更する。ガス拡散電極基材寸法の制約上、サンプル1個の面積が0.01m未満になる場合は複数のガス拡散電極基材から同位置のサンプルを切り出し、総サンプル面積が0.01m以上になるようサンプル数を増やす。 The basis weight is calculated by dividing the 10 cm × 10 cm square sample mass of the gas diffusion electrode substrate by the sample area as described above. If the width dimension is less than 40 cm and four samples cannot be collected, the sample dimensions should be set so that the four sample width direction occupancy is 75% or more and the area of one sample is 0.01 m 2 or more. change. When the area of one sample is less than 0.01 m 2 due to restrictions on the size of the gas diffusion electrode base material, the sample at the same position is cut out from the plurality of gas diffusion electrode base materials so that the total sample area is 0.01 m 2 or more. Increase the number of samples so that

目付=W÷A
W:サンプル質量g
A:サンプル面積m
Weight per unit = W ÷ A
W: Sample mass g
A: Sample area m 2 .

本発明において、炭素繊維抄紙体は骨格となる炭素繊維および繊維間を結合する抄紙バインダーからなり、ロール状に巻かれたものである。原料となる炭素繊維はポリアクリロニトリル(以下、PANと略記する)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維およびフェノール系炭素繊維のいずれでもよいが、得られた炭素繊維シートの曲げ強度や、引張強度の高くなるPAN系炭素繊維またはピッチ系炭素繊維を用いることが好ましく、PAN系炭素繊維を用いることがさらに好ましい。抄紙バインダーは公知のものであれば何ら制限されることはなく、例えばアクリル樹脂、ウレタン樹脂、ポリビニルアルコール、水溶性セルロース、澱粉、等の公知の有機系バインダーを挙げることができる。   In the present invention, the carbon fiber papermaking body is composed of carbon fibers serving as a skeleton and a papermaking binder that bonds the fibers, and is wound in a roll shape. The carbon fiber used as a raw material may be any of polyacrylonitrile (hereinafter abbreviated as PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber, and phenolic carbon fiber. It is preferable to use a PAN-based carbon fiber or a pitch-based carbon fiber with high tensile strength, and it is more preferable to use a PAN-based carbon fiber. The papermaking binder is not particularly limited as long as it is a known one, and examples thereof include known organic binders such as acrylic resin, urethane resin, polyvinyl alcohol, water-soluble cellulose, and starch.

炭素繊維を結着するための樹脂は、炭素繊維抄紙体を液状の樹脂が入った槽を通したり、液状の樹脂を吹きつけている工程を通したりする樹脂含浸によって付与させる。上記樹脂は、フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂を用いることができ、樹脂量は炭素繊維抄紙体に対して0.5〜4の質量比であることが好ましい。炭素繊維抄紙体に対する樹脂量質量比が0.5未満であると使用環境に耐え得る機械的強度物性が得られない。炭素繊維抄紙体に対する樹脂量質量比が4以上であると、炭素繊維抄紙体の気孔率が低下し、使用環境に必要なガス拡散性が得られない。また、ガス拡散電極基材の電気伝導性を向上させるために黒鉛粉等の導電性フィラーを樹脂に混合させて含浸させてもよい。   The resin for binding the carbon fibers is applied by resin impregnation in which the carbon fiber papermaking body is passed through a tank containing a liquid resin or through a step of spraying the liquid resin. As the resin, a thermosetting resin such as a phenol resin or an epoxy resin can be used, and the amount of the resin is preferably a mass ratio of 0.5 to 4 with respect to the carbon fiber papermaking body. If the resin mass ratio relative to the carbon fiber papermaking body is less than 0.5, mechanical strength properties that can withstand the use environment cannot be obtained. When the resin mass ratio with respect to the carbon fiber papermaking body is 4 or more, the porosity of the carbon fiber papermaking body is lowered, and the gas diffusivity necessary for the use environment cannot be obtained. Moreover, in order to improve the electrical conductivity of the gas diffusion electrode substrate, a conductive filler such as graphite powder may be mixed with the resin and impregnated.

本発明では、ロール状に巻かれた炭素繊維抄紙体を連続的に含浸する際、幅方向で樹脂量分布をコントロールすることにより、ガス拡散電極基材の気体透過性を変化させることに特徴がある。樹脂量をコントロールする製造方法として以下の3つの方法がある。   The present invention is characterized by changing the gas permeability of the gas diffusion electrode base material by controlling the resin amount distribution in the width direction when continuously impregnating the carbon fiber paper body wound in a roll shape. is there. There are the following three methods as production methods for controlling the amount of resin.

第1の製造方法は、炭素繊維抄紙体の幅方向で吹き付け樹脂量を変える方法である。吹き付け量を変える方法としては、吹き付け口の孔径および/またはピッチを幅方向で変える方法がある。また、吹き付ける樹脂の濃度および/または流量を幅方向で変える方法もあるが、公知のものであれば何ら制限されることはない。   A 1st manufacturing method is a method of changing spraying resin amount in the width direction of a carbon fiber papermaking body. As a method of changing the spraying amount, there is a method of changing the hole diameter and / or pitch of the spraying port in the width direction. There is also a method of changing the concentration and / or flow rate of the resin to be sprayed in the width direction, but there is no limitation as long as it is a known one.

そして、第1の製造方法にあっては、炭素繊維抄紙体の幅方向で、前記吹き付け樹脂量に傾斜的な分布を設けていることが好ましい。傾斜的な吹き付け樹脂量とは、理想的には、最大吹き付け樹脂量の位置と、最小吹き付け樹脂量の位置の間の任意の2点の吹き付け樹脂量を比べた時に、いかなる2点の吹き付け樹脂量を比較しても、最大吹き付け樹脂量の位置側の吹き付け樹脂量が最小吹き付け樹脂量の位置側の吹き付け樹脂量よりも大きくなっていることを意味するが、本発明において傾斜的な吹き付け樹脂量の分布とは、最大吹き付け樹脂量Q1[g/分]の位置と、最小吹き付け量Q2[g/分]の位置中間位置の吹き付け樹脂量が、Q2+(Q1−Q2)×0.25〜Q2+(Q1−Q2)×0.75の範囲にある場合の分布を意味することとする。   And in the 1st manufacturing method, it is preferable to provide the gradient distribution in the said amount of spraying resin in the width direction of a carbon fiber papermaking body. The slanting spray resin amount is ideally any two spray resins when comparing the two spray resin amounts between the maximum spray resin amount position and the minimum spray resin amount position. Even if the amount is compared, it means that the amount of spray resin on the position side of the maximum spray resin amount is larger than the amount of spray resin on the position side of the minimum spray resin amount. The distribution of the amount means that the amount of spray resin between the position of the maximum spraying resin amount Q1 [g / min] and the middle position of the minimum spraying amount Q2 [g / min] is Q2 + (Q1-Q2) × 0.25. The distribution in the range of Q2 + (Q1-Q2) × 0.75 is meant.

第2の製造方法は、送り出される炭素繊維抄紙体を、水平面に対して角度を設けて設置し、樹脂を吹き付ける方法である。ここで、水平面とは地面に対して水平なる面で、言い換えれば、水を静置したときにできる水面である。角度と設けるとは炭素繊維抄紙体面が上記水平面に対して0°以外の角度をもつことであり、効果的に樹脂量を分布させるためには45°以上の角度を設けることが好ましく、90°であることがさらに好ましい。   The second manufacturing method is a method in which the carbon fiber papermaking body to be delivered is installed at an angle with respect to a horizontal plane and the resin is sprayed. Here, the horizontal plane is a plane that is horizontal with respect to the ground, in other words, a water surface that is formed when water is allowed to stand still. The provision of an angle means that the surface of the carbon fiber paper body has an angle other than 0 ° with respect to the horizontal plane, and in order to effectively distribute the resin amount, an angle of 45 ° or more is preferably provided, and 90 ° More preferably.

第3の製造方法は、樹脂含浸させた炭素繊維抄紙体を幅方向で隙間の異なる1対のロール間を通す方法である。上記1対のロールが形成する角度をテーパー角と言い、本発明においてテーパー角度は何ら制限されないが、テーパー角度が広角すぎると炭素繊維抄紙体に局部的な張力が負荷されシワや破れの問題が発生するため、テーパー角度は0.2°以下にすることが好ましい。また、1対のロールによって絞り出された樹脂を隙間が狭いロール部から隙間が広いロール部の方向へ流れるように、1対のロールを炭素繊維抄紙体の幅方向に対して角度を設けてもよい。   The third production method is a method in which a carbon fiber paper body impregnated with resin is passed between a pair of rolls having different gaps in the width direction. The angle formed by the pair of rolls is referred to as a taper angle. In the present invention, the taper angle is not limited at all. However, if the taper angle is too wide, local tension is applied to the carbon fiber papermaking body, causing problems of wrinkles and tearing. In order to generate | occur | produce, it is preferable that a taper angle shall be 0.2 degrees or less. In addition, the pair of rolls is provided with an angle with respect to the width direction of the carbon fiber paper body so that the resin squeezed by the pair of rolls flows from the roll part with a narrow gap toward the roll part with a wide gap. Also good.

上記の製造方法で、炭素繊維抄紙体の幅方向で分布させた樹脂を固定するために樹脂を熱処理によって硬化する。硬化方法は公知のものであれば何ら制限されることはなく、乾燥炉の中で無圧下での熱処理や熱板プレスでの熱処理などがある。   In the above manufacturing method, the resin is cured by heat treatment in order to fix the resin distributed in the width direction of the carbon fiber papermaking body. The curing method is not particularly limited as long as it is a known method, and includes a heat treatment under no pressure in a drying furnace and a heat treatment in a hot plate press.

焼成処理では、窒素ガスやアルゴンガスなどの不活性ガスが導入された不活性雰囲気で行われる。本発明において処理温度は何ら制限されないが、最終的な焼成温度は電気伝導性と機械的強度のバランスから1500〜3000℃であることが好ましい。   The firing process is performed in an inert atmosphere into which an inert gas such as nitrogen gas or argon gas is introduced. In the present invention, the treatment temperature is not limited at all, but the final firing temperature is preferably 1500 to 3000 ° C. from the balance of electrical conductivity and mechanical strength.

以下、本発明の実施例および比較例について説明する。   Examples of the present invention and comparative examples will be described below.

(実施例1)
東レ株式会社製ポリアクリロニトリル系炭素繊維“トレカ(登録商標)”T300−6K(平均単繊維径:7μm、単繊維数:6,000本)を12mmの長さにカットし、水を抄造媒体として連続的に抄造し、さらにポリビニルアルコールの10質量%水溶液に浸漬し、乾燥して、炭素繊維の目付が約20g/mの長尺の炭素繊維紙を得てロール状に巻き取った。ポリビニルアルコールの付着量は、炭素繊維紙の20質量%に相当する。
Example 1
Polyacrylonitrile-based carbon fiber “Torayca (registered trademark)” T300-6K (average single fiber diameter: 7 μm, number of single fibers: 6,000 fibers) manufactured by Toray Industries, Inc. is cut to a length of 12 mm, and water is used as a papermaking medium. The paper was continuously made, further immersed in a 10% by weight aqueous solution of polyvinyl alcohol and dried to obtain a long carbon fiber paper having a carbon fiber basis weight of about 20 g / m 2 and wound into a roll. The amount of polyvinyl alcohol attached corresponds to 20% by mass of the carbon fiber paper.

中越黒鉛工業所社製鱗片状黒鉛BF−5A(平均粒径5μm)、フェノール樹脂、メタノールを1:4:40の質量比で混合した分散液を用意した。図1の工程概念図の炭素繊維抄紙体において、101の部分には樹脂吹き付け口を1cmのピッチで設け、102の部分には樹脂吹き付け口を1.5cmの間隔で設け、103の部分には樹脂吹き付け口を2cmの間隔で設けて、上記分散液を樹脂吹き付け口から吹き付け、90℃で3分間乾燥し、ロール状に巻き取った。フェノール樹脂は100質量部に対してフェノール樹脂が125質量部になるよう調整し、レゾール型フェノール樹脂とノボラック型フェノール樹脂とを1:1の質量比で混合した樹脂を用いた。   A dispersion obtained by mixing scale-like graphite BF-5A (average particle size 5 μm), phenol resin, and methanol at a mass ratio of 1: 4: 40 manufactured by Chuetsu Graphite Industries Co., Ltd. was prepared. In the carbon fiber paper body of the process conceptual diagram of FIG. 1, resin spray ports are provided at a pitch of 1 cm at a portion 101, resin spray ports are provided at a distance of 1.5 cm at a portion 102, Resin spray ports were provided at intervals of 2 cm, and the dispersion was sprayed from the resin spray port, dried at 90 ° C. for 3 minutes, and wound into a roll. The phenol resin was adjusted so that the phenol resin was 125 parts by mass with respect to 100 parts by mass, and a resin in which a resol type phenol resin and a novolac type phenol resin were mixed at a mass ratio of 1: 1 was used.

乾燥させた樹脂含浸炭素抄紙体2枚を重ねて成形材料とし、以下の(1)〜(3)の工程を繰り返し、間欠成形を行い、フェノール樹脂を硬化させた。
(1)プレス機の加圧面を開く(成形面温度170℃)。
(2)成形材料をプレス機に送り、成形品を引き取る(間欠送り長さ100mm、所要時間約5秒)。
(3)プレス機加圧面を閉じ、加熱加圧を行う(圧力0.75MPa,所要時間約25秒)。
Two dried resin-impregnated carbon paper bodies were stacked to form a molding material, and the following steps (1) to (3) were repeated to perform intermittent molding to cure the phenol resin.
(1) Open the pressing surface of the press (molding surface temperature 170 ° C.).
(2) The molding material is sent to a press machine and the molded product is taken (intermittent feed length 100 mm, required time about 5 seconds).
(3) The press machine pressurization surface is closed and heating and pressurization are performed (pressure 0.75 MPa, required time about 25 seconds).

樹脂の加熱処理をした上記炭素繊維抄紙体を、窒素ガス雰囲気に保たれた、最高温度が2,000℃の加熱炉に導入し、加熱炉内を連続的に走行させながら、約500℃/分(650℃までは400℃/分、650℃を超える温度では550℃/分)の昇温速度で焼成し、ガス拡散電極基材を得た。   The carbon fiber papermaking body subjected to the heat treatment of the resin was introduced into a heating furnace having a maximum temperature of 2,000 ° C. maintained in a nitrogen gas atmosphere, and while continuously running in the heating furnace, about 500 ° C. / The gas diffusion electrode substrate was obtained by firing at a heating rate of 400 min / min (up to 650 ° C., 550 ° C./min for temperatures exceeding 650 ° C.).

(実施例2)
中越黒鉛工業所社製鱗片状黒鉛BF−5A(平均粒径5μm)、フェノール樹脂、メタノールを1:4:40の質量比で混合した分散液を用意した。前記炭素繊維抄紙体を、水平面に対して90°の角度を設けて配置して、図2の工程概念図の炭素繊維抄紙体において、101、102および103の部分には樹脂吹き付け口を1.5cmのピッチで設けて、上記分散液を樹脂吹き付け口から吹き付け、90℃で3分間乾燥してロール状に巻き取った。フェノール樹脂は100質量部に対してフェノール樹脂が125質量部になるよう調整し、レゾール型フェノール樹脂とノボラック型フェノール樹脂とを1:1の質量比で混合した樹脂を用いた。
(Example 2)
A dispersion obtained by mixing scale-like graphite BF-5A (average particle size 5 μm), phenol resin, and methanol at a mass ratio of 1: 4: 40 manufactured by Chuetsu Graphite Industries Co., Ltd. was prepared. The carbon fiber papermaking body is disposed at an angle of 90 ° with respect to a horizontal plane, and in the carbon fiber papermaking body of the process conceptual diagram of FIG. Provided at a pitch of 5 cm, the dispersion was sprayed from the resin spraying port, dried at 90 ° C. for 3 minutes, and wound up into a roll. The phenol resin was adjusted so that the phenol resin was 125 parts by mass with respect to 100 parts by mass, and a resin in which a resol type phenol resin and a novolac type phenol resin were mixed at a mass ratio of 1: 1 was used.

乾燥させた樹脂含浸炭素抄紙体2枚を重ねて成形材料とし、以降の樹脂硬化、焼成は実施例1と同様にして、ガス拡散電極基材を得た。   Two dried resin-impregnated carbon paper bodies were laminated to form a molding material, and the subsequent resin curing and firing were carried out in the same manner as in Example 1 to obtain a gas diffusion electrode substrate.

(実施例3)
中越黒鉛工業所社製鱗片状黒鉛BF−5A(平均粒径5μm)、フェノール樹脂、メタノールを1:4:40の質量比で混合した分散液を用意した。ロール通過後に炭素繊維紙100質量部に対してフェノール樹脂が125質量部になるように、上記分散液が入れたディッピング槽通したのち、図2の工程概念図でテーパー角度が0.13°に設定されているロール間を通過させ、90℃で3分間乾燥してロール状に巻き取った。フェノール樹脂としては、レゾール型フェノール樹脂とノボラック型フェノール樹脂とを1:1の質量比で混合した樹脂を用いた。
(Example 3)
A dispersion obtained by mixing scale-like graphite BF-5A (average particle size 5 μm), phenol resin, and methanol at a mass ratio of 1: 4: 40 manufactured by Chuetsu Graphite Industries Co., Ltd. was prepared. After passing through the roll, after passing through the dipping tank containing the dispersion liquid so that the phenol resin becomes 125 parts by mass with respect to 100 parts by mass of the carbon fiber paper, the taper angle is 0.13 ° in the process conceptual diagram of FIG. It was passed between set rolls, dried at 90 ° C. for 3 minutes, and wound up into a roll. As the phenol resin, a resin obtained by mixing a resol type phenol resin and a novolac type phenol resin at a mass ratio of 1: 1 was used.

乾燥させた樹脂含浸炭素抄紙体2枚を重ねて成形材料とし、以降の樹脂硬化、焼成は実施例1と同様にして、ガス拡散電極基材を得た。   Two dried resin-impregnated carbon paper bodies were laminated to form a molding material, and the subsequent resin curing and firing were carried out in the same manner as in Example 1 to obtain a gas diffusion electrode substrate.

(比較例1)
101および103の部分の樹脂吹き付け口を1.5cmのピッチに変更した以外は、実施例1と同様にしてガス拡散電極基材を得た。
(Comparative Example 1)
A gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the resin spray ports 101 and 103 were changed to a pitch of 1.5 cm.

(比較例2)
テーパー角度を0°に変更した以外は、実施例3と同様にしてガス拡散電極基材を得た。このようにして得た実施例および比較例のガス拡散電極基材に、厚さ方向に14cm/cm/secの空気を透過させた時に発生する差圧を気体透過性の指標として測定した。
(Comparative Example 2)
A gas diffusion electrode substrate was obtained in the same manner as in Example 3 except that the taper angle was changed to 0 °. The differential pressure generated when air of 14 cm 3 / cm 2 / sec in the thickness direction was permeated through the gas diffusion electrode substrates of Examples and Comparative Examples thus obtained was measured as a gas permeability index. .

以上の実施例および比較例について、目付、目付比、気体透過性を表1にまとめる。   Table 1 summarizes the basis weight, basis weight ratio, and gas permeability of the above examples and comparative examples.

Figure 2009076347
Figure 2009076347

上記実施例1〜4のガス拡散電極基材の目付比が1.05以上であり、最大目付と最小目付の差が大きくなっている。それに対応して最大目付部では差圧が高く、最小目付部では差圧が低くなっている。以上のように、本発明によれば、樹脂含浸工程で樹脂量分布コントロールすることで1枚のガス拡散電極基材の中で気体透過性を変化させたガス拡散電極基材を提供することができる。   The basis weight ratio of the gas diffusion electrode base materials of Examples 1 to 4 is 1.05 or more, and the difference between the maximum basis weight and the minimum basis weight is large. Correspondingly, the differential pressure is high at the maximum basis weight, and the differential pressure is low at the minimum basis weight. As described above, according to the present invention, it is possible to provide a gas diffusion electrode substrate in which the gas permeability is changed in one gas diffusion electrode substrate by controlling the resin amount distribution in the resin impregnation step. it can.

本発明に係る多孔質炭素基材は、固体高分子型燃料電池のガス拡散体の材料として好ましく用いることができるが、その応用範囲が、これらに限られるものではない。   The porous carbon substrate according to the present invention can be preferably used as a material for a gas diffuser of a polymer electrolyte fuel cell, but its application range is not limited thereto.

実施例1の工程概念図である。2 is a process conceptual diagram of Example 1. FIG. 実施例2の工程概念図である。FIG. 5 is a process conceptual diagram of Example 2. 実施例3の工程概念図である。6 is a process conceptual diagram of Example 3. FIG.

符号の説明Explanation of symbols

100:炭素繊維抄紙体
101:含浸後樹脂低目付部
102:含浸後樹脂中目付部
103:含浸後樹脂高目付部
111:樹脂吹き付け口
131:ディッピング槽
132:ロール
133:テーパー角度
DESCRIPTION OF SYMBOLS 100: Carbon fiber papermaking body 101: Resin low weight part after impregnation 102: Resin middle weight part after impregnation 103: Resin high weight part after impregnation 111: Resin spraying port 131: Dipping tank 132: Roll 133: Taper angle

Claims (6)

炭素繊維抄紙体および樹脂の炭化物を有してなるガス拡散電極基材であって、前記炭素繊維抄紙体は実質的に均一な目付を有しており、かつ、前記樹脂の炭化物は、幅方向に目付の分布を有するガス拡散電極基材。 A gas diffusion electrode base material comprising a carbon fiber paper body and a resin carbide, wherein the carbon fiber paper body has a substantially uniform basis weight, and the resin carbide is in a width direction. A gas diffusion electrode substrate having a basis weight distribution. 前記幅方向の目付の分布が、幅方向の目付が連続的に増加または減少する傾斜的な分布である、請求項1に記載のガス拡散電極基材。 The gas diffusion electrode substrate according to claim 1, wherein the distribution of the fabric weight in the width direction is an inclined distribution in which the fabric weight in the width direction continuously increases or decreases. 炭素繊維抄紙体に樹脂を吹き付けた後に、樹脂硬化、焼成する工程を含むガス拡散電極基材の製造方法であって、前記樹脂の量を、前記炭素繊維抄紙体の幅方向に分布を設けて吹き付けるガス拡散電極基材の製造方法。 A method of manufacturing a gas diffusion electrode substrate including a step of resin curing and firing after spraying a resin on a carbon fiber paper body, wherein the amount of the resin is distributed in the width direction of the carbon fiber paper body A method for producing a gas diffusion electrode substrate to be sprayed. 前記幅方向の分布が、樹脂の吹き付け量を幅方向に増加または減少させる傾斜的な分布である、請求項3に記載のガス拡散電極基材の製造方法。 The method for producing a gas diffusion electrode substrate according to claim 3, wherein the distribution in the width direction is an inclined distribution that increases or decreases the amount of resin sprayed in the width direction. 炭素繊維抄紙体に樹脂を吹き付けた後に、樹脂硬化、焼成する工程を含むガス拡散電極基材の製造方法であって、前記炭素繊維抄紙体を、水平面に対して角度を設けて配置した後に樹脂を吹き付ける、ガス拡散電極基材の製造方法。 A method for producing a gas diffusion electrode substrate including a step of resin curing and firing after spraying a resin on a carbon fiber paper body, wherein the carbon fiber paper body is disposed at an angle with respect to a horizontal plane. A method for producing a gas diffusion electrode substrate. 炭素繊維抄紙体に樹脂を含浸した後に、樹脂硬化、焼成する工程を含むガス拡散電極基材の製造方法であって、樹脂硬化、焼成する前に、幅方向で隙間の異なる1対のロール間を通過する工程を有する、ガス拡散電極基材の製造方法。 A method for producing a gas diffusion electrode substrate comprising a step of resin curing and baking after impregnating a resin into a carbon fiber paper body, between a pair of rolls having different gaps in the width direction before resin curing and baking The manufacturing method of the gas diffusion electrode base material which has the process of passing through.
JP2007244860A 2007-09-21 2007-09-21 Gas diffusion electrode substrate and its manufacturing method Pending JP2009076347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244860A JP2009076347A (en) 2007-09-21 2007-09-21 Gas diffusion electrode substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244860A JP2009076347A (en) 2007-09-21 2007-09-21 Gas diffusion electrode substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009076347A true JP2009076347A (en) 2009-04-09

Family

ID=40611125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244860A Pending JP2009076347A (en) 2007-09-21 2007-09-21 Gas diffusion electrode substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009076347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172993A1 (en) * 2011-06-17 2012-12-20 日産自動車株式会社 Gas diffusion layer for fuel cell and method for producing same
CN103855407A (en) * 2012-12-04 2014-06-11 中国科学院大连化学物理研究所 Membrane electrode for improving voltage distribution uniformity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172993A1 (en) * 2011-06-17 2012-12-20 日産自動車株式会社 Gas diffusion layer for fuel cell and method for producing same
JP2013004343A (en) * 2011-06-17 2013-01-07 Nissan Motor Co Ltd Gas diffusion layer for fuel cell and method for manufacturing the same
US9325022B2 (en) 2011-06-17 2016-04-26 Nissan Motor Co., Ltd. Gas diffusion layer for fuel cell and method for manufacturing the same
CN103855407A (en) * 2012-12-04 2014-06-11 中国科学院大连化学物理研究所 Membrane electrode for improving voltage distribution uniformity
CN103855407B (en) * 2012-12-04 2016-05-25 中国科学院大连化学物理研究所 A kind of membrane electrode that improves voltage distribution uniformity

Similar Documents

Publication Publication Date Title
CA2424948C (en) Carbon fiber electrode substrate for electrochemical cells
CA3009605C (en) Gas diffusion electrode and method for manufacturing same
EP3217456B1 (en) Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same
EP3343680B1 (en) Gas diffusion electrode
JP7129751B2 (en) carbon sheet, gas diffusion electrode substrate, and fuel cell
JP2005038738A (en) Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell
TWI794685B (en) Gas Diffusion Layers for Fuel Cells
WO2016060044A1 (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
US11283082B2 (en) Gas diffusion electrode and production method therefor
WO2017099181A1 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5544960B2 (en) Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same
KR20160120060A (en) Carbon Substrate used for gas diffusion layer of fuel cell, and the fuel cell comprising the same
EP4131519A1 (en) Method for producing gas diffusion electrode substrate
JP5484777B2 (en) Porous electrode substrate and method for producing the same
JP2009076347A (en) Gas diffusion electrode substrate and its manufacturing method
EP3573156A1 (en) Gas diffusion electrode and fuel cell
JP5416990B2 (en) Porous carbon electrode substrate, membrane-electrode assembly and solid polymer fuel cell using the same
CN117063315A (en) Electrode base material and method for producing same
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP2006004858A5 (en)
JP5322212B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5336912B2 (en) Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell
TW202437579A (en) A gas diffusion layer for a fuel cell with a property gradient and with a low plastic deformability and a method for producing the same
JP2010182682A (en) Method for manufacturing porous electrode substrate
JP2017139219A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell