JP5484777B2 - Porous electrode substrate and method for producing the same - Google Patents

Porous electrode substrate and method for producing the same Download PDF

Info

Publication number
JP5484777B2
JP5484777B2 JP2009106402A JP2009106402A JP5484777B2 JP 5484777 B2 JP5484777 B2 JP 5484777B2 JP 2009106402 A JP2009106402 A JP 2009106402A JP 2009106402 A JP2009106402 A JP 2009106402A JP 5484777 B2 JP5484777 B2 JP 5484777B2
Authority
JP
Japan
Prior art keywords
porous electrode
resin
electrode substrate
mass
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009106402A
Other languages
Japanese (ja)
Other versions
JP2010257748A (en
Inventor
宏人 龍野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009106402A priority Critical patent/JP5484777B2/en
Publication of JP2010257748A publication Critical patent/JP2010257748A/en
Application granted granted Critical
Publication of JP5484777B2 publication Critical patent/JP5484777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は固体高分子型燃料電池に用いられる多孔質電極基材およびその製造方法に関するものである。   The present invention relates to a porous electrode substrate used for a polymer electrolyte fuel cell and a method for producing the same.

固体高分子型燃料電池は、水素イオン(プロトン)を選択的に伝導する高分子電解質膜を有する。また、貴金属系触媒を担持した炭素質粉末を主成分とする触媒層と多孔質電極基材とを有するガス拡散電極が、触媒層側を内側にして、高分子電解質膜の両面に接合された構造となっている。
このような高分子電解質膜と2枚のガス拡散電極からなる接合体は膜−電極接合体(MEA:Membrane Electrode Assembly)と呼ばれている。またMEAの両外側には燃料ガス又は酸化ガスを供給し、かつ生成ガス及び過剰ガスを排出することを目的としたガス流路を形成したセパレーターが設置されている。
多孔質電極基材は主に次の3つの機能を持つ。第1に、多孔質電極基材の外側に配置されたセパレーターに形成されたガス流路より触媒層中の貴金属系触媒に均一に燃料ガス又は酸化ガスを供給する機能である。第2に、触媒層で反応により生成した水を排出する機能である。第3に、触媒層での反応に必要な電子又は生成される電子をセパレーターへ伝導する機能である。
The solid polymer fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). In addition, a gas diffusion electrode having a catalyst layer mainly composed of carbonaceous powder supporting a noble metal catalyst and a porous electrode substrate was bonded to both surfaces of the polymer electrolyte membrane with the catalyst layer side inside. It has a structure.
Such a joined body composed of a polymer electrolyte membrane and two gas diffusion electrodes is called a membrane-electrode assembly (MEA). In addition, separators having gas flow paths for supplying fuel gas or oxidizing gas and discharging generated gas and excess gas are installed on both outer sides of the MEA.
The porous electrode substrate mainly has the following three functions. The first function is to uniformly supply the fuel gas or the oxidizing gas to the noble metal catalyst in the catalyst layer from the gas flow path formed in the separator disposed outside the porous electrode substrate. The second function is to discharge water produced by the reaction in the catalyst layer. The third function is to conduct electrons necessary for the reaction in the catalyst layer or generated electrons to the separator.

固体高分子型燃料電池に用いられる多孔質電極基材として、炭素短繊維を含む抄造媒体との混合物を抄造してシート状中間基材を得た後、その中間基材を加熱することにより炭素化する樹脂、たとえば、熱硬化性樹脂であるレゾール型フェノール樹脂を含浸し、さらにフェノール樹脂を含浸した中間基材を加熱してフェノール樹脂を炭素化することにより、炭素短繊維同士を樹脂炭素化物で結着した基材が用いられる。ところが、このような方法によって製造した基材は、炭素短繊維同士を結着するフェノール樹脂が硬化時および炭素化時に収縮して、炭素短繊維と樹脂炭素化物との間に隙間が残ったり、樹脂炭素化物に亀裂が入ったりするため、十分な導電性を得ることができない。また、固体高分子型燃料電池で多孔質電極基材を使用する際には、ポリテトラフルオロエチレン(PTFE)等の撥水剤の含浸や塗工による撥水処理を行うことが一般的であるが、この際、絶縁性の撥水剤が樹脂炭素化物の亀裂や隙間部位に浸透、堆積するため、多孔質電極基材の導電性がさらに著しく低下するという問題がある。   As a porous electrode base material used in a polymer electrolyte fuel cell, a sheet-like intermediate base material is obtained by making a mixture with a paper making medium containing short carbon fibers, and then the intermediate base material is heated to produce carbon. Resin, for example, resol type phenolic resin, which is thermosetting resin, and the intermediate base material impregnated with phenolic resin is heated to carbonize the phenolic resin, thereby carbonizing short carbon fibers with each other. The base material bound by is used. However, the base material produced by such a method is such that the phenol resin that binds the short carbon fibers shrinks when cured and carbonized, leaving a gap between the short carbon fibers and the resin carbonized product, Since the resin carbonized material is cracked, sufficient conductivity cannot be obtained. Further, when using a porous electrode base material in a polymer electrolyte fuel cell, it is common to perform a water repellent treatment by impregnation or coating with a water repellent such as polytetrafluoroethylene (PTFE). However, at this time, since the insulating water repellent penetrates and accumulates in cracks and gaps in the resin carbonized product, there is a problem that the conductivity of the porous electrode substrate is further remarkably lowered.

このような問題を解決するために、例えば特許文献1では、ノボラック型フェノール樹脂Nとレゾール型フェノール樹脂Rを混合した樹脂組成物を用いた多孔質電極基材の製造方法が開示されている。Nは熱可塑性でありRの硬化温度においても流動性を有するため、樹脂組成物が硬化する際の収縮を抑制する。さらに、Nは易黒鉛化性であり炭素化温度においても流動性を有するため、樹脂組成物が炭素化する際の収縮も抑制する。従って、NとRを混合した樹脂組成物を用いることは、樹脂炭素化物を炭素短繊維に隙間や亀裂なく結着させるために必要である。NとRの混合比についても同文献および特許文献2に示されているが、前記樹脂組成物の流動性はNの軟化点やRの溶液粘度に大きく依存することから、これらの物性を無視した単純な混合比を規定するだけでは不十分である。例えば、前記文献に示された混合比の範囲内でも、軟化点の高いNを用いたり溶液粘度の高いRを用いたりした場合には十分な流動性を示さず、樹脂組成物が硬化する際に亀裂を生じる。すなわち、樹脂炭素化物が炭素短繊維を隙間や亀裂なく結着した多孔質電極基材を得るには、最適なNの軟化点範囲およびRの溶液粘度範囲を規定しなければならない。   In order to solve such a problem, for example, Patent Document 1 discloses a method for producing a porous electrode substrate using a resin composition in which a novolac type phenol resin N and a resol type phenol resin R are mixed. Since N is thermoplastic and has fluidity even at the curing temperature of R, it suppresses shrinkage when the resin composition is cured. Furthermore, since N is graphitizable and has fluidity at the carbonization temperature, it also suppresses shrinkage when the resin composition is carbonized. Therefore, it is necessary to use a resin composition in which N and R are mixed in order to bind the resin carbonized product to the short carbon fibers without gaps or cracks. The mixing ratio of N and R is also shown in the same document and Patent Document 2, but the fluidity of the resin composition largely depends on the softening point of N and the solution viscosity of R, so these physical properties are ignored. It is not sufficient to specify a simple mixing ratio. For example, even when N having a high softening point or R having a high solution viscosity is used even within the range of the mixing ratio shown in the above document, sufficient fluidity is not exhibited and the resin composition is cured. Cracks. That is, in order to obtain a porous electrode base material in which the carbonized carbon resin binds short carbon fibers without gaps or cracks, an optimum N softening point range and R solution viscosity range must be defined.

特公平8−18882号公報Japanese Patent Publication No. 8-18882 特許第4051714号公報Japanese Patent No. 4051714

本発明は、フェノール樹脂炭素化物が炭素短繊維に隙間や亀裂なく結着した、厚み方向の導電性の高い多孔質電極基材であって、撥水剤によるコーティングを行っても導電性低下が最小限にとどまり、さらに高いガス透過性を兼ね備えた多孔質電極基材を、従来よりも低コストで提供することを課題とするものである。   The present invention is a porous electrode base material in which a phenol resin carbonized material is bonded to short carbon fibers without gaps or cracks, and has a high conductivity in the thickness direction. An object of the present invention is to provide a porous electrode base material that has minimal gas permeability and further has high gas permeability at a lower cost than conventional ones.

上記課題を解決する本発明は、下記の構成からなる。
(1)平面内に分散した炭素短繊維集合体に、環球法で測定した軟化点が75〜95℃であるノボラック型フェノール樹脂Nと、B型粘度計で測定した見掛け粘度が50〜140mPa・sであるレゾール型フェノール樹脂Rの60wt%メタノール溶液を固形分質量比でN:R=80:20〜85:15となるように混合した樹脂組成物を、炭素繊維100質量部に対して樹脂組成物が70〜130質量部になるように含浸して中間基材を得る工程;
前記中間基材を加熱して前記樹脂組成物を炭素化する工程;
を有する多孔質電極基材の製造方法。
(2)上記(1)に記載の製造方法で得られた多孔質電極基材を、固形分5〜30重量%のポリテトラフルオロエチレンディスパージョンに浸漬する工程;
さらに乾燥し、ポリテトラフルオロエチレンを多孔質電極基材に焼結させる工程;
を有する多孔質電極基材の製造方法。
(3)撥水処理前に対する撥水処理後の厚み方向の比抵抗増加量ΔR[Ω・cm]および比抵抗増加率S[%]が、ΔR≦0.1およびS≦25の関係を満足する、請求項2に記載の製造方法で製造された多孔質電極基材。
The present invention for solving the above-described problems has the following configuration.
(1) A short carbon fiber aggregate dispersed in a plane has a novolac type phenolic resin N having a softening point of 75 to 95 ° C. measured by the ring and ball method and an apparent viscosity of 50 to 140 mPa · s measured by a B type viscometer. The resin composition obtained by mixing a 60 wt% methanol solution of the resol type phenolic resin R, which is s, with a solid content mass ratio of N: R = 80: 20 to 85:15 is obtained with respect to 100 parts by mass of the carbon fiber. Impregnating the composition to 70 to 130 parts by mass to obtain an intermediate substrate;
Heating the intermediate substrate to carbonize the resin composition;
The manufacturing method of the porous electrode base material which has this.
(2) A step of immersing the porous electrode substrate obtained by the production method described in (1) above in a polytetrafluoroethylene dispersion having a solid content of 5 to 30% by weight;
Further drying and sintering polytetrafluoroethylene to the porous electrode substrate;
The manufacturing method of the porous electrode base material which has this.
(3) The specific resistance increase ΔR [Ω · cm] and the specific resistance increase rate S [%] in the thickness direction after the water repellent treatment before the water repellent treatment satisfy the relationship of ΔR ≦ 0.1 and S ≦ 25. A porous electrode substrate produced by the production method according to claim 2.

本発明により、フェノール樹脂炭素化物が炭素短繊維に隙間や亀裂なく結着した、厚み方向の導電性の高い多孔質電極基材であって、撥水剤によるコーティングを行っても導電性低下が最小限にとどまり、さらに高いガス透過性を兼ね備えた多孔質電極基材を、従来よりも低コストで提供できる。   According to the present invention, a porous electrode substrate in which a phenol resin carbonized material is bonded to short carbon fibers without gaps or cracks and has a high conductivity in the thickness direction. It is possible to provide a porous electrode base material that has minimal gas permeability and further has high gas permeability at a lower cost than the conventional one.

実施例1で得られた多孔質電極基材の走査型電子顕微鏡による表面観察写真である。2 is a surface observation photograph of the porous electrode substrate obtained in Example 1 with a scanning electron microscope. 比較例1で得られた多孔質電極基材の走査型電子顕微鏡による表面観察写真である。2 is a surface observation photograph of the porous electrode substrate obtained in Comparative Example 1 with a scanning electron microscope. 実施例5で得られた撥水処理済み多孔質電極基材の走査型電子顕微鏡による表面観察写真である。6 is a surface observation photograph of a water-repellent treated porous electrode substrate obtained in Example 5 using a scanning electron microscope.

〔平面内に分散した炭素短繊維集合体〕
本発明において、平面内に分散した炭素短繊維集合体は、特定の厚みや大きさに限定されず、炭素短繊維を主要構成要素とする不織布、抄紙体、フェルト、クロス等を包含する。また、それらの製造方法は特に限定されず、例えば、ウォータージェット処理やスチームジェット処理などによって繊維を交絡してもよい。特に、複数本の炭素短繊維が集合してなる抄紙体が好ましく、表面平滑性が高く、電気的接触が良好で、かつ高分子電解質膜への突き刺さりによる短絡が低減される複数本の炭素短繊維が集合してなる抄紙体がより好ましい。
[Aggregates of short carbon fibers dispersed in a plane]
In the present invention, the short carbon fiber aggregate dispersed in the plane is not limited to a specific thickness or size, and includes non-woven fabrics, paper bodies, felts, cloths and the like whose main constituents are carbon short fibers. Moreover, those manufacturing methods are not specifically limited, For example, you may entangle a fiber by a water jet process, a steam jet process, etc. In particular, a paper body formed by aggregating a plurality of carbon short fibers is preferable, has a high surface smoothness, good electrical contact, and a plurality of carbon shorts that reduce short circuit due to sticking to the polymer electrolyte membrane. A paper body made of aggregated fibers is more preferable.

〔炭素短繊維〕
本発明で使用する炭素短繊維の平均直径は特に限定されないが、例えば、表面平滑性、導電性の付与のためには3〜30μm程度が好ましく、4〜20μmがより好ましく、4〜8μmがさらに好ましい。また、異なる平均直径の炭素短繊維を2種類以上用いることも、表面平滑性、導電性の両立のために好ましい。炭素短繊維の長さは特に限定されないが、抄紙時の分散性、及び機械的強度を高めるために、3mm以上12mm以下が好ましく、3mm以上9mm以下がより好ましい。
炭素繊維の種類は特に限定されるものでなく、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、フェノール樹脂系炭素繊維、再生セルロース系炭素繊維、セルロース系炭素繊維等を使用することができる。これらの炭素繊維を1種又は2種以上組み合わせて使用することができる。特に、圧縮強度や引張強度が高いことから、PAN系炭素繊維が好ましい。
[Short carbon fiber]
Although the average diameter of the short carbon fiber used in the present invention is not particularly limited, for example, it is preferably about 3 to 30 μm, more preferably 4 to 20 μm, and further preferably 4 to 8 μm for imparting surface smoothness and conductivity. preferable. It is also preferable to use two or more types of short carbon fibers having different average diameters in order to achieve both surface smoothness and conductivity. The length of the short carbon fibers is not particularly limited, but is preferably 3 mm or more and 12 mm or less, and more preferably 3 mm or more and 9 mm or less in order to improve the dispersibility during papermaking and the mechanical strength.
The type of carbon fiber is not particularly limited, and for example, polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, phenol resin-based carbon fiber, regenerated cellulose-based carbon fiber, cellulose-based carbon fiber, etc. should be used. Can do. These carbon fibers can be used alone or in combination of two or more. In particular, PAN-based carbon fibers are preferable because of their high compressive strength and tensile strength.

〔ノボラック型フェノール樹脂〕
本発明で使用するノボラック型フェノール樹脂は、一般的なノボラック型フェノール樹脂(軟化点100℃以上)に比べても軟化点が低く、環球法(JIS K5601−2−2)で測定した軟化点が75〜95℃である。75〜90℃であることがより好ましく、75〜85℃であることが特に好ましい。軟化点が95℃以下であることによって、従来よりも低い温度での成形加工が可能となり、製造工程におけるユーティリティコストを低減できる。また軟化点が75℃以上であることによって、室温で融着することなく取り扱うことができる。
[Novolac type phenolic resin]
The novolak type phenolic resin used in the present invention has a lower softening point than a general novolac type phenolic resin (softening point of 100 ° C. or higher), and has a softening point measured by the ring and ball method (JIS K5601-2-2). 75-95 ° C. More preferably, it is 75-90 degreeC, and it is especially preferable that it is 75-85 degreeC. When the softening point is 95 ° C. or lower, molding processing at a lower temperature than before can be performed, and utility costs in the manufacturing process can be reduced. Further, when the softening point is 75 ° C. or higher, it can be handled without fusing at room temperature.

〔レゾール型フェノール樹脂〕
本発明で使用するレゾール型フェノール樹脂は、固体高分子電解質のプロトン伝導性低下の要因となる金属を含まない触媒を用いて製造されたものが好ましく、そのようなレゾール型フェノール樹脂としては、アンモニア触媒レゾール型フェノール樹脂がある。レゾール型フェノール樹脂の見掛け粘度は、溶媒の種類や固形分濃度によって容易に変化するため一概には言えないが、固形分濃度60wt%のメタノール溶液であれば、後の樹脂含浸工程において良好な取扱性を維持したまま樹脂付着量を制御するために、JIS K7117−1に準拠してB型粘度計で測定した値が、50〜140mPa・sである。
[Resol type phenolic resin]
The resol-type phenol resin used in the present invention is preferably produced using a catalyst that does not contain a metal that causes a decrease in proton conductivity of the solid polymer electrolyte. As such a resol-type phenol resin, ammonia There are catalytic resol type phenolic resins. The apparent viscosity of a resol type phenolic resin is not easy to say because it easily changes depending on the type of solvent and the solid content concentration, but if it is a methanol solution with a solid content concentration of 60 wt%, it will be handled well in the subsequent resin impregnation step. In order to control the resin adhesion amount while maintaining the properties, the value measured with a B-type viscometer in accordance with JIS K7117-1 is 50 to 140 mPa · s.

〔樹脂組成物〕
前記ノボラック型フェノール樹脂Nおよび前記レゾール型フェノール樹脂Rの混合比率は、樹脂組成物の流動性を制御するために適宜設定することができるが、固形分質量比でN:R=80:20〜85:15である。N比率を80%以上とすることで、得られる多孔質電極基材のガス透過性と導電性が、Rを単独で用いて製造した場合に比べ著しく向上する。またN比率を85%以下とすることで、残炭率が低くなりすぎず力学的強度や導電性を維持できる。ここで残炭率とは、元の樹脂組成物の固形分質量を100%としたときの樹脂炭素化物の質量比であり、炭素化の度合いを表す指標である。一般にR単独の残炭率は50〜60%程度、N単独の残炭率は20〜30%程度である。本発明の樹脂組成物はN比率が80〜85%と非常に高く、従って、先行文献で示された樹脂組成物に比べ残炭率は低くなる。炭素化後の結着面積および結着点数を十分確保する観点から、炭素短繊維集合体に対する樹脂組成物の付着量は、炭素繊維100質量部に対して70〜130質量部であり、好ましくは70〜100質量部がよい。
(Resin composition)
The mixing ratio of the novolak-type phenol resin N and the resol-type phenol resin R can be appropriately set in order to control the fluidity of the resin composition, but the solid content mass ratio is N: R = 80: 20 to 85:15. By setting the N ratio to 80% or more, the gas permeability and conductivity of the obtained porous electrode substrate are remarkably improved as compared with the case where R is used alone. Further, by setting the N ratio to 85% or less, the residual carbon ratio does not become too low, and the mechanical strength and conductivity can be maintained. Here, the residual carbon ratio is a mass ratio of the resin carbonized material when the solid content mass of the original resin composition is 100%, and is an index representing the degree of carbonization. Generally, the residual carbon rate of R alone is about 50 to 60%, and the residual carbon rate of N alone is about 20 to 30%. The N ratio of the resin composition of the present invention is as high as 80 to 85%, and therefore the residual carbon ratio is lower than that of the resin composition shown in the prior art. From the viewpoint of sufficiently securing the binding area and the number of binding points after carbonization, the amount of the resin composition attached to the short carbon fiber aggregate is 70 to 130 parts by mass with respect to 100 parts by mass of carbon fibers, preferably 70-100 mass parts is good.

〔樹脂組成物を含浸して中間基材を得る工程〕
前記炭素短繊維集合体に前記樹脂組成物を含浸して中間基材を得る方法としては、例えばコーターを用いて炭素短繊維集合体表面に樹脂を均一にコートする方法、絞り装置を用いるdip−nip方法、もしくは炭素短繊維集合体と樹脂フィルムを重ねて樹脂フィルムを炭素短繊維集合体に転写する方法などが知られているが、炭素短繊維集合体に樹脂組成物を均一に含浸する方法であればよく、本発明により特に限定されるものではない。
[Step of impregnating resin composition to obtain intermediate substrate]
Examples of a method for obtaining an intermediate base material by impregnating the carbon short fiber aggregate with the resin composition include a method of uniformly coating a resin on the surface of the carbon short fiber aggregate using a coater, and dip- The nip method or the method of transferring the resin film to the carbon short fiber aggregate by overlapping the carbon short fiber aggregate and the resin film is known. The method of uniformly impregnating the carbon short fiber aggregate with the resin composition The present invention is not particularly limited by the present invention.

〔中間基材を加熱して樹脂組成物を炭素化する工程〕
中間基材を加熱して樹脂組成物を炭素化する方法としては、室温からの連続昇温により完全に硬化し、さらに続けて炭素化するような方法であればよく、不活性雰囲気下にて800〜2400℃の温度範囲で行うことが好ましい。また、不活性雰囲気下にて300〜800℃の温度範囲で前処理をしても良い。前処理を行うことで炭素化初期段階において発生する分解ガスを十分に出し切ることができ、炭素化炉内壁への分解物の付着堆積を抑制することができるため好ましい。さらに、300〜2400℃での処理前に150〜300℃の温度範囲で加熱加圧処理をしても良い。加熱加圧処理により樹脂組成物がある程度硬化するため、基材の厚み制御の観点から行うことが好ましい。加熱加圧処理は中間基材を2枚以上重ねて行ってもよい。加熱加圧に要する圧力や時間は、均一な厚みのシートが得られる圧力範囲や時間範囲であればよく、本発明により特に限定されるものではない。
[Step of heating the intermediate substrate to carbonize the resin composition]
As a method of carbonizing the resin composition by heating the intermediate substrate, any method may be used as long as it is completely cured by continuous temperature increase from room temperature and then carbonized continuously, under an inert atmosphere. It is preferable to carry out in the temperature range of 800-2400 degreeC. Moreover, you may pre-process in the temperature range of 300-800 degreeC by inert atmosphere. By performing the pretreatment, it is preferable because the decomposition gas generated in the initial stage of carbonization can be sufficiently discharged, and the adhesion and deposition of decomposition products on the inner wall of the carbonization furnace can be suppressed. Furthermore, you may heat-press in a temperature range of 150-300 degreeC before the process at 300-2400 degreeC. Since the resin composition is cured to some extent by the heat and pressure treatment, it is preferably performed from the viewpoint of controlling the thickness of the substrate. The heat and pressure treatment may be performed by stacking two or more intermediate base materials. The pressure and time required for heating and pressurization are not particularly limited by the present invention as long as they are within the pressure range and time range in which a sheet having a uniform thickness can be obtained.

〔撥水処理工程〕
固体高分子型燃料電池はカソード側において電極反応生成物としての水や高分子電解質膜を浸透した水が発生する。またアノード側では高分子電解質膜の乾燥を抑制するために加湿された燃料が供給される。このような点から、本発明の多孔質電極基材は、ガス透過性を確保するため、撥水性高分子によって撥水処理がされている。撥水性高分子としては、化学的に安定でかつ高い撥水性を有するポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂を用いることが好ましい。
多孔質電極基材への撥水処理の方法としては、撥水性高分子の微粒子が分散した分散水溶液(ディスパージョン)中に多孔質電極基材を浸漬させるディップ法、分散水溶液を噴霧するスプレー法などを用いることができるが、面内方向、厚み方向への導入量の均一性の高いディップ法が好ましい。ディップ法で用いるPTFEディスパージョン濃度は特に限定されないが、多孔質電極基材の空隙を埋めることなく、かつ一様にPTFEを付着させるために固形分5〜30重量%程度が好ましい。10〜30重量%がより好ましく、15〜25重量%が特に好ましい。
PTFEを多孔質電極基材に焼結させる温度は、PTFEが軟化して炭素短繊維あるいは樹脂炭素化物に結着し、かつPTFEが熱分解しない温度範囲でなければならない。300〜390℃がより好ましく、330〜360℃が特に好ましい。
[Water repellent treatment process]
In the polymer electrolyte fuel cell, water as an electrode reaction product and water penetrating the polymer electrolyte membrane are generated on the cathode side. On the anode side, humidified fuel is supplied to suppress drying of the polymer electrolyte membrane. From such points, the porous electrode substrate of the present invention is subjected to water repellent treatment with a water repellent polymer in order to ensure gas permeability. Examples of the water-repellent polymer include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, which are chemically stable and have high water repellency. It is preferable to use a fluororesin such as coalescence (PFA).
As a method of water-repellent treatment to the porous electrode substrate, a dip method in which the porous electrode substrate is immersed in a dispersion aqueous solution (dispersion) in which fine particles of water-repellent polymer are dispersed, a spray method in which the dispersion aqueous solution is sprayed However, a dipping method with a high uniformity of the introduction amount in the in-plane direction and the thickness direction is preferable. The PTFE dispersion concentration used in the dip method is not particularly limited, but is preferably about 5 to 30% by weight in order to uniformly deposit PTFE without filling the voids of the porous electrode substrate. 10-30 weight% is more preferable, and 15-25 weight% is especially preferable.
The temperature at which PTFE is sintered to the porous electrode substrate must be within a temperature range in which PTFE softens and binds to carbon short fibers or resin carbonized products, and PTFE does not thermally decompose. 300-390 degreeC is more preferable, and 330-360 degreeC is especially preferable.

撥水処理は多孔質電極基材に撥水性を付与するために必要な処理であるが、絶縁性である撥水性高分子が、(a)多孔質電極基材の表面を被覆したり、(b)樹脂炭素化物の亀裂や炭素短繊維との隙間に堆積したりすることにより、撥水処理後の厚み方向の比抵抗は撥水処理前に比べて増加する。本発明で得られる多孔質電極基材は、樹脂炭素化物の亀裂や炭素短繊維との隙間がない、すなわち前記(b)の影響がないため、比抵抗増加を最小限に抑制できる。本発明の多孔質電極基材の厚み方向の比抵抗について、撥水処理後の値をRとし、撥水処理前の値をRとし、その差を比抵抗増加量ΔR=R−R[Ω・cm]とすると、ΔRの範囲はΔR≦0.1であり、S=ΔR/R×100として比抵抗増加率S[%]を定義すると、Sの範囲はS≦25である。 The water-repellent treatment is a treatment necessary for imparting water repellency to the porous electrode substrate, and the water-repellent polymer that is insulating covers the surface of the porous electrode substrate (a) b) The specific resistance in the thickness direction after the water-repellent treatment is increased as compared with that before the water-repellent treatment by being deposited in the cracks of the resin carbonized material or in the gaps with the short carbon fibers. The porous electrode substrate obtained in the present invention has no cracks in the resin carbonized product and no gaps with the short carbon fibers, that is, no influence of the above (b), so that an increase in specific resistance can be minimized. Regarding the specific resistance in the thickness direction of the porous electrode substrate of the present invention, the value after the water repellent treatment is R 2 , the value before the water repellent treatment is R 1 , and the difference is the specific resistance increase ΔR = R 2 − Assuming R 1 [Ω · cm], the range of ΔR is ΔR ≦ 0.1, and when the specific resistance increase rate S [%] is defined as S = ΔR / R 1 × 100, the range of S is S ≦ 25 It is.

以下、本発明を実施例により、さらに具体的に説明する。実施例中の各物性等は以下の方法で測定した。
・ ノボラック型フェノール樹脂の軟化点
本発明におけるノボラック型フェノール樹脂の軟化点の測定は、JIS K5601−2−2に規定する環球法に準拠し、環球式自動軟化点試験器(商品名:ASP−MG2、株式会社メイテック製)を使用し、下記の測定条件で行った。
環:内径16mm、深さ6.4mmの黄銅製肩付き環
球:直径9.5mm、重量3.5gの鋼球
温度:液浴の液温を5℃/minで上昇させた。
・ レゾール型フェノール樹脂メタノール溶液の見掛け粘度
本発明におけるレゾール型フェノール樹脂メタノール溶液(固形分濃度60wt%)の測定は、JIS K7117−1に準拠し、B型粘度計(商品名:BII形粘度計、東機産業株式会社製)を使用し、Mロータ(No.1)の回転速度を30rpmとし、温度25℃にて行った。
・ 厚み
多孔質電極基材の厚みは、厚み測定装置(商品名:ダイヤルシックネスゲージ7321、株式会社ミツトヨ製)を使用して測定した。測定子の大きさは直径10mmで、測定圧力は1.5kPaとした。
(4)厚み方向の比抵抗
多孔質電極基材の厚み方向の比抵抗は、試料を金メッキした銅板に挟み、金メッキした銅板の上下から1MPaで加圧し、10mA/cmの電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
厚み方向の比抵抗(Ω・cm)=測定抵抗値(Ω)×試料面積(cm)/試料厚み(cm)
(5)厚み方向のガス透過係数
多孔質電極基材の厚み方向のガス透過係数は、JIS P8117に準拠し、ガーレー式デンソメーター(熊谷理機工業株式会社製)を使用し、ガス流通部の径が2mmφの冶具(圧縮部面積0.0314cm)を200mLの気体(空気)が通過する時間を測定し、次式より算出した。
透過係数(mL・mm/cm/hr/mmAq)=透気度(mL/cm/hr/mmAq)×試料厚み(mm)
Hereinafter, the present invention will be described more specifically with reference to examples. Each physical property in the examples was measured by the following method.
-Softening point of novolac type phenol resin The softening point of the novolak type phenol resin in the present invention is measured according to the ring and ball method defined in JIS K5601-2-2, and is a ring and ball automatic softening point tester (trade name: ASP- MG2, manufactured by Meitec Co., Ltd.) was used, and the measurement was performed under the following measurement conditions.
Ring: Brass shoulder ring with an inner diameter of 16 mm and a depth of 6.4 mm Ball: Steel ball with a diameter of 9.5 mm and a weight of 3.5 g Temperature: The temperature of the liquid bath was increased at 5 ° C./min.
-Apparent viscosity of resol type phenol resin methanol solution The measurement of the resol type phenol resin methanol solution (solid content concentration 60 wt%) in the present invention is based on JIS K7117-1, and is a B type viscometer (trade name: BII type viscometer). , Manufactured by Toki Sangyo Co., Ltd.), the rotational speed of the M rotor (No. 1) was 30 rpm, and the temperature was 25 ° C.
-Thickness The thickness of the porous electrode substrate was measured using a thickness measuring device (trade name: Dial Thickness Gauge 7321, manufactured by Mitutoyo Corporation). The size of the probe was 10 mm in diameter, and the measurement pressure was 1.5 kPa.
(4) Specific resistance in the thickness direction Specific resistance in the thickness direction of the porous electrode substrate is determined by sandwiching a sample between gold-plated copper plates, pressurizing at 1 MPa from the top and bottom of the gold-plated copper plate, and applying a current at a current density of 10 mA / cm 2. The resistance value when flowing was measured and calculated from the following equation.
Specific resistance in thickness direction (Ω · cm) = measured resistance value (Ω) × sample area (cm 2 ) / sample thickness (cm)
(5) Gas permeability coefficient in the thickness direction The gas permeability coefficient in the thickness direction of the porous electrode base material is based on JIS P8117, using a Gurley type densometer (manufactured by Kumagai Riki Kogyo Co., Ltd.), The time required for 200 mL of gas (air) to pass through a jig having a diameter of 2 mmφ (compressed part area 0.0314 cm 2 ) was measured and calculated from the following equation.
Permeability coefficient (mL · mm / cm 2 / hr / mmAq) = Air permeability (mL / cm 2 / hr / mmAq) × Sample thickness (mm)

多孔質電極基材のガス透過係数の絶対値は、元の炭素繊維紙の組成や空隙率等に大きく依存する。樹脂の変更がガス透過係数の増減に及ぼした影響を定量的に評価するため、本発明で規定する樹脂組成物を用いて製造した多孔質電極基材のガス透過係数をP、レゾール型フェノール樹脂を単独で用いて製造した多孔質電極基材のガス透過係数をPとして次式を定義する。
P=P/P
P>1であれば、樹脂変更により多孔質電極基材のガス透過係数が増大したことを意味し、P<1であれば逆にガス透過係数が減少したことを意味する。P値としては、炭素繊維紙Aを用いた場合には比較例1で得られた値を、炭素繊維紙Bを用いた場合には比較例3で得られた値をそれぞれ用いた。
The absolute value of the gas permeability coefficient of the porous electrode substrate greatly depends on the composition of the original carbon fiber paper, the porosity, and the like. In order to quantitatively evaluate the influence of the change of the resin on the increase / decrease of the gas permeability coefficient, the gas permeability coefficient of the porous electrode substrate produced using the resin composition defined in the present invention is defined as P M , resol type phenol. the gas permeability coefficient was produced using the resin alone porous electrode substrate to define the following equation as P R.
P = P M / P R
If P> 1, it means that the gas permeability coefficient of the porous electrode substrate has increased due to the resin change, and if P <1, it means that the gas permeability coefficient has decreased. The P R value, the value obtained in Comparative Example 1 in the case of using the carbon fiber paper A, in the case of using the carbon fiber paper B was used as the values obtained in Comparative Example 3.

炭素繊維紙として、以下に示す方法で製造した炭素繊維紙Aを得た。
[炭素繊維紙Aの製造方法]
平均繊維径が7μmのポリアクリロニトリル(PAN)系炭素繊維の繊維束を切断し、平均繊維長が3mmの短繊維を得た。次にこの短繊維束100質量部を水中で開繊し、十分に分散したところに平均繊維長が3mmのポリビニルアルコール(PVA)の短繊維(商品名:VBP105−1、クラレ株式会社製)25質量部を均一に分散させ、標準角形シートマシン(熊谷理機工業株式会社製)を用いて抄紙を行った。得られた抄紙体を80℃に熱したロール乾燥機で乾燥し、単位面積当たりの質量が28g/mの炭素繊維紙Aを得た。
As carbon fiber paper, carbon fiber paper A manufactured by the method shown below was obtained.
[Method for producing carbon fiber paper A]
A fiber bundle of polyacrylonitrile (PAN) -based carbon fibers having an average fiber diameter of 7 μm was cut to obtain short fibers having an average fiber length of 3 mm. Next, 100 mass parts of this short fiber bundle was opened in water and when sufficiently dispersed, polyvinyl alcohol (PVA) short fibers having an average fiber length of 3 mm (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) 25 Mass parts were uniformly dispersed, and paper making was performed using a standard square sheet machine (manufactured by Kumagai Riki Kogyo Co., Ltd.). The obtained paper body was dried with a roll dryer heated to 80 ° C. to obtain a carbon fiber paper A having a mass per unit area of 28 g / m 2 .

次に、環球法による軟化点が80℃であるノボラック型フェノール樹脂N(商品名:レヂトップXPL−6111B、群栄化学工業株式会社製)と60wt%メタノール溶液の見掛け粘度が50〜140mPa・sであるレゾール型フェノール樹脂R(商品名:フェノライトJ−325、DIC株式会社製)を、固形分質量比でN:R=80:20となるように混合して樹脂組成物を得た。さらに固形分が8質量%となるようにメタノールで希釈し、そのメタノール溶液を前記炭素繊維紙Aに含浸し、室温でメタノールを十分に乾燥し、炭素繊維紙100質量部に対し99質量部の樹脂固形分を付着させた樹脂含浸紙を得た。   Next, the apparent viscosity of a novolac type phenol resin N (trade name: Resitop XPL-6111B, manufactured by Gunei Chemical Industry Co., Ltd.) having a softening point of 80 ° C. by the ring-and-ball method is 50 to 140 mPa · s. A certain resol type phenolic resin R (trade name: Phenolite J-325, manufactured by DIC Corporation) was mixed so that the solid mass ratio was N: R = 80: 20 to obtain a resin composition. Furthermore, it diluted with methanol so that solid content might be 8 mass%, the methanol solution was impregnated in the said carbon fiber paper A, methanol was fully dried at room temperature, 99 mass parts with respect to 100 mass parts of carbon fiber paper. A resin-impregnated paper having a resin solid content adhered thereto was obtained.

前記樹脂含浸紙を2枚重ねて離型紙に挟み、バッチプレス装置にて180℃、10MPaの条件下に3分間置いた後、プレス圧を解放して室温まで自然冷却して中間基材を得た。
続いて、前記中間基材を、窒素ガス雰囲気中バッチ炭素化炉にて2000℃で1時間加熱し、炭素化することで本発明の多孔質電極基材を得た。得られた多孔質電極基材の走査型電子顕微鏡による表面観察写真を図1に示す。
Two sheets of the resin impregnated paper are stacked and sandwiched between release papers, placed in a batch press machine at 180 ° C. and 10 MPa for 3 minutes, and then the press pressure is released to naturally cool to room temperature to obtain an intermediate substrate. It was.
Subsequently, the porous base material of the present invention was obtained by heating the intermediate base material in a batch carbonization furnace in a nitrogen gas atmosphere at 2000 ° C. for 1 hour for carbonization. The surface observation photograph by the scanning electron microscope of the obtained porous electrode base material is shown in FIG.

炭素繊維紙として、以下に示す方法で製造した炭素繊維紙Bを用いたこと以外は実施例1と同様にして、炭素繊維紙100質量部に対し75質量部の樹脂固形分を付着させた樹脂含浸紙を得て、さらに実施例1と同様にして本発明の多孔質電極基材を得た。   Resin in which 75 parts by mass of resin solid content was attached to 100 parts by mass of carbon fiber paper in the same manner as in Example 1 except that carbon fiber paper B produced by the method shown below was used as carbon fiber paper. Impregnated paper was obtained, and the porous electrode substrate of the present invention was obtained in the same manner as in Example 1.

[炭素繊維紙Bの製造方法]
平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維と平均繊維径が4μm、平均繊維長が3mmのPAN系炭素繊維を70:30(質量比)で混合した炭素短繊維を湿式短網連続抄紙装置のスラリータンクで水中に均一に分散して単繊維に解繊し、十分に分散したところに、平均繊維長が3mmのポリビニルアルコール(PVA)の短繊維(商品名:VBP105−1、クラレ株式会社製)と平均繊維長が5mmで1.1dtexのビニロン短繊維(商品名:ユニチカビニロンF、ユニチカ株式会社製)を、炭素短繊維100質量部に対してそれぞれ18質量部、32質量部となるように均一に分散し、ウェブ状にして送り出した。送り出されたウェブを短網板に通し、ドライヤー乾燥後、単位面積当たりの質量が20g/m、長さ100mの炭素繊維紙Bを得た。
[Method for producing carbon fiber paper B]
A carbon short in which a polyacrylonitrile (PAN) carbon fiber having an average fiber diameter of 7 μm and an average fiber length of 3 mm and a PAN carbon fiber having an average fiber diameter of 4 μm and an average fiber length of 3 mm are mixed at 70:30 (mass ratio). Fibers are uniformly dispersed in water in a slurry tank of a wet short net continuous paper making machine, fibrillated into single fibers, and when sufficiently dispersed, short fibers of polyvinyl alcohol (PVA) having an average fiber length of 3 mm (trade name) : VBP105-1, manufactured by Kuraray Co., Ltd.) and 1.1 dtex vinylon short fibers (trade name: Unitika Vinylon F, manufactured by Unitika Co., Ltd.) having an average fiber length of 5 mm and 18 parts by mass with respect to 100 parts by mass of carbon short fibers, respectively. It was uniformly dispersed so as to be 32 parts by mass and sent out as a web. The fed web was passed through a short mesh plate, and after drying the dryer, a carbon fiber paper B having a mass per unit area of 20 g / m 2 and a length of 100 m was obtained.

樹脂組成物の組成を、固形分質量比でN:R=85:15としたこと以外は実施例2と同様にして、炭素繊維紙100質量部に対し74質量部の樹脂固形分を付着させた樹脂含浸紙を得て、さらに実施例1と同様にして本発明の多孔質電極基材を得た。   In the same manner as in Example 2 except that the composition of the resin composition was N: R = 85: 15 in terms of solid content, 74 mass parts of resin solid content was attached to 100 mass parts of carbon fiber paper. Resin-impregnated paper was obtained, and the porous electrode substrate of the present invention was obtained in the same manner as in Example 1.

実施例1と同様にして樹脂組成物のメタノール溶液を得て、メタノール溶液が付着したローラーに炭素繊維紙Bを均一に片面ずつ接触させた後、連続的に熱風を吹きかけ乾燥し、炭素繊維紙100質量部に対し128質量部の樹脂固形分を付着させた樹脂含浸紙を得た。次に、この樹脂付着炭素繊維紙を短網板に接していた面が外側を向くように2枚貼り合せた後、例えば特許第3699447号に開示されている、一対のエンドレスベルトを備えた連続式加熱加圧装置を用いて連続的に加熱し、表面が平滑化された中間基材(厚み:110μm、幅30cm、長さ100m)を得た。このときの予熱ゾーンでの予熱温度は200℃、予熱時間は5分であり、加熱加圧ゾーンでの温度は250℃、加圧圧力は線圧8.0×10N/mであった。なお、中間基材がベルトに貼り付かないように2枚の離型紙の間に挟んで通した。
その後、得られた中間基材を、窒素ガス雰囲気中バッチ炭素化炉にて2000℃で1時間加熱し、炭素化することで本発明の多孔質電極基材を得た。
In the same manner as in Example 1, a methanol solution of the resin composition was obtained, and the carbon fiber paper B was uniformly brought into contact with each side of the roller on which the methanol solution was adhered, and then dried by spraying hot air continuously. A resin-impregnated paper having 128 parts by mass of resin solid content attached to 100 parts by mass was obtained. Next, two sheets of the resin-attached carbon fiber paper are bonded so that the surface in contact with the short mesh plate faces outward, and then, for example, disclosed in Japanese Patent No. 3699447, a continuous belt provided with a pair of endless belts. An intermediate base material (thickness: 110 μm, width 30 cm, length 100 m) having a smooth surface was obtained by continuous heating using a thermal heating and pressing apparatus. At this time, the preheating temperature in the preheating zone was 200 ° C., the preheating time was 5 minutes, the temperature in the heating and pressurizing zone was 250 ° C., and the pressurizing pressure was linear pressure 8.0 × 10 4 N / m. . The intermediate substrate was passed between two release papers so as not to stick to the belt.
Then, the porous base material of this invention was obtained by heating the obtained intermediate base material in a batch carbonization furnace in nitrogen gas atmosphere at 2000 degreeC for 1 hour, and carbonizing.

〔比較例1〕
樹脂組成物の組成を、固形分質量比でN:R=0:100としたこと以外は実施例1と同様にして、炭素繊維紙100質量部に対し85質量部の樹脂固形分を付着させた樹脂含浸紙を得て、さらに実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材の走査型電子顕微鏡による表面観察写真を図2に示す。
[Comparative Example 1]
Except that the composition of the resin composition was N: R = 0: 100 in terms of solid content mass ratio, 85 mass parts of resin solid content was adhered to 100 mass parts of carbon fiber paper in the same manner as in Example 1. A resin-impregnated paper was obtained, and a porous electrode substrate was obtained in the same manner as in Example 1. The surface observation photograph by the scanning electron microscope of the obtained porous electrode base material is shown in FIG.

〔比較例2〕
樹脂組成物の組成を、固形分質量比でN:R=60:40としたこと以外は実施例1と同様にして、炭素繊維紙100質量部に対し99質量部の樹脂固形分を付着させた樹脂含浸紙を得て、さらに実施例1と同様にして多孔質電極基材を得た。
[Comparative Example 2]
In the same manner as in Example 1 except that the composition of the resin composition was N: R = 60: 40 in terms of solid content mass ratio, 99 parts by mass of resin solid content was attached to 100 parts by mass of carbon fiber paper. A resin-impregnated paper was obtained, and a porous electrode substrate was obtained in the same manner as in Example 1.

〔比較例3〕
樹脂組成物の組成を、固形分質量比でN:R=0:100としたこと以外は実施例4と同様にして、炭素繊維紙100質量部に対し73質量部の樹脂固形分を付着させた樹脂含浸紙を得て、さらに実施例4と同様にして多孔質電極基材を得た。
[Comparative Example 3]
In the same manner as in Example 4 except that the composition of the resin composition was N: R = 0: 100 in terms of solid content mass ratio, 73 mass parts of resin solid content was adhered to 100 mass parts of carbon fiber paper. A resin-impregnated paper was obtained, and a porous electrode substrate was obtained in the same manner as in Example 4.

〔比較例4〕
樹脂組成物の組成を、固形分質量比でN:R=90:10としたこと以外は実施例2と同様にして、炭素繊維紙100質量部に対し75質量部の樹脂固形分を付着させた樹脂含浸紙を得て、さらに実施例1と同様にして多孔質電極基材を得た。
[Comparative Example 4]
In the same manner as in Example 2 except that the composition of the resin composition was N: R = 90: 10 in terms of solid content mass ratio, 75 mass parts of resin solid content was adhered to 100 mass parts of carbon fiber paper. A resin-impregnated paper was obtained, and a porous electrode substrate was obtained in the same manner as in Example 1.

〔比較例5〕
レゾール型フェノール樹脂として、60wt%メタノール溶液の見掛け粘度が170mPa・sであるレゾール型フェノール樹脂(商品名:レヂトップPL−2211、群栄化学工業株式会社製)を用いたこと以外は実施例2と同様にして、炭素繊維紙100質量部に対し72質量部の樹脂固形分を付着させた樹脂含浸紙を得て、さらに実施例2と同様にして多孔質電極基材を得た。
[Comparative Example 5]
Example 2 except that a resol type phenol resin (trade name: Resitop PL-2211, manufactured by Gunei Chemical Industry Co., Ltd.) whose apparent viscosity of a 60 wt% methanol solution is 170 mPa · s was used as the resol type phenol resin. Similarly, a resin-impregnated paper having 72 parts by mass of resin solid content adhered to 100 parts by mass of carbon fiber paper was obtained, and a porous electrode substrate was obtained in the same manner as in Example 2.

以上の多孔質電極基材の物性を表1に示す。
Table 1 shows the physical properties of the porous electrode substrate.

実施例1〜4の多孔質電極基材は、厚み方向の比抵抗がいずれも0.72Ω・cm以下と低く、かつP>1である。従って、含浸樹脂をレゾール型フェノール樹脂単体から、ノボラック型フェノール樹脂とレゾール型フェノール樹脂を混合した樹脂組成物に変えることにより、ガス透過性と厚み方向の導電性が共に向上したと言える。
本発明によって得られた樹脂炭素化物の亀裂や炭素短繊維との剥離界面が少ない多孔質電極基材は、固体高分子型燃料電池の運転に不可欠な撥水処理を行っても、撥水剤が亀裂・剥離部位に浸透、堆積し導電経路を阻害する可能性が低い。従って、亀裂・剥離部位の多い基材に撥水処理を行った場合に比べ、導電性低下を最小限に抑えられる。
The porous electrode base materials of Examples 1 to 4 each have a specific resistance in the thickness direction as low as 0.72 Ω · cm or less and P> 1. Therefore, it can be said that both the gas permeability and the conductivity in the thickness direction are improved by changing the impregnating resin from a single resol type phenol resin to a resin composition in which a novolac type phenol resin and a resol type phenol resin are mixed.
The porous electrode substrate obtained by the present invention has few cracks in the resin carbonized product and few peeling interfaces with the short carbon fibers, and the water repellent agent is water repellent even if the water repellent treatment essential for the operation of the polymer electrolyte fuel cell is performed. Is unlikely to penetrate and deposit on cracks and debonding sites and hinder the conduction path. Therefore, compared with the case where a water repellent treatment is performed on a base material having many cracks / peeling sites, a decrease in conductivity can be minimized.

実施例1で得られた多孔質電極基材を5cm四方に切り出し、撥水処理[市販のPTFEディスパージョン(商品名:31−JR、三井・デュポンフロロケミカル社製)を水で20重量%まで希釈したものに浸漬し、乾燥後360℃で焼結させた]を行った。得られた多孔質電極基材の走査型電子顕微鏡による表面観察写真を図3に示す。
撥水処理後の多孔質電極基材について厚み方向の比抵抗Rを測定し、撥水処理前の比抵抗Rの値(表1に示した値と同一)との差である比抵抗増加量ΔR[Ω・cm]、および比抵抗増加率S[%]を次式により算出した。
比抵抗増加量:ΔR=R−R
比抵抗増加率:S=ΔR/R×100
The porous electrode substrate obtained in Example 1 was cut into a 5 cm square, and water-repellent treatment [commercially available PTFE dispersion (trade name: 31-JR, manufactured by Mitsui / DuPont Fluorochemical Co., Ltd.) with water up to 20% by weight. It was immersed in the diluted one, dried and sintered at 360 ° C.]. The surface observation photograph by the scanning electron microscope of the obtained porous electrode base material is shown in FIG.
The thickness direction of the specific resistance R 2 measured for the porous electrode substrate after the water repellent treatment, a difference is that the resistivity of the resistivity R 1 value before water repellent treatment (identical to the value shown in Table 1) The increase amount ΔR [Ω · cm] and the specific resistance increase rate S [%] were calculated by the following equations.
Increase in specific resistance: ΔR = R 2 −R 1
Specific resistance increase rate: S = ΔR / R 1 × 100

〔比較例6〕
比較例1で得られた多孔質電極基材を用いたこと以外は実施例5と同様にしてΔRおよびSを算出した。
[Comparative Example 6]
ΔR and S were calculated in the same manner as in Example 5 except that the porous electrode substrate obtained in Comparative Example 1 was used.

〔比較例7〕
比較例2で得られた多孔質電極基材を用いたこと以外は実施例5と同様にしてΔRおよびSを算出した。
[Comparative Example 7]
ΔR and S were calculated in the same manner as in Example 5 except that the porous electrode substrate obtained in Comparative Example 2 was used.

以上の結果を表2に示す。
The results are shown in Table 2.

実施例5のΔRおよびSは比較例と比べて顕著に小さくΔR≦0.1およびS≦25の関係を満足する。   ΔR and S of Example 5 are significantly smaller than those of the comparative example, and satisfy the relationship of ΔR ≦ 0.1 and S ≦ 25.

本発明に係る多孔質電極基材は、特に燃料電池のガス拡散体として好適であるが、これに限らず、各種電池の電極基材などにも応用することができ、さらに、その応用範囲はこれらに限られるものではない。   The porous electrode substrate according to the present invention is particularly suitable as a gas diffuser for fuel cells, but is not limited to this, and can be applied to electrode substrates for various batteries. However, it is not limited to these.

Claims (3)

平面内に分散した炭素短繊維集合体に、環球法で測定した軟化点が75〜95℃であるノボラック型フェノール樹脂Nと、B型粘度計で測定した見掛け粘度が50〜140mPa・sであるレゾール型フェノール樹脂Rの60wt%メタノール溶液を固形分質量比でN:R=80:20〜85:15となるように混合した樹脂組成物を、炭素繊維100質量部に対して樹脂組成物が70〜130質量部になるように含浸して中間基材を得る工程;
前記中間基材を加熱して前記樹脂組成物を炭素化する工程;
を有する多孔質電極基材の製造方法。
An aggregate of short carbon fibers dispersed in a plane has a novolac type phenol resin N having a softening point of 75 to 95 ° C. measured by the ring and ball method and an apparent viscosity of 50 to 140 mPa · s measured by a B type viscometer. A resin composition obtained by mixing a 60 wt% methanol solution of a resol type phenolic resin R in a solid content mass ratio of N: R = 80: 20 to 85:15 is 100 parts by mass of carbon fiber. Impregnating to 70 to 130 parts by mass to obtain an intermediate substrate;
Heating the intermediate substrate to carbonize the resin composition;
The manufacturing method of the porous electrode base material which has this.
請求項1に記載の製造方法で得られた多孔質電極基材を、固形分5〜30重量%のポリテトラフルオロエチレンディスパージョンに浸漬する工程;
さらに乾燥し、ポリテトラフルオロエチレンを多孔質電極基材に焼結させる工程;
を有する多孔質電極基材の製造方法。
A step of immersing the porous electrode substrate obtained by the production method according to claim 1 in a polytetrafluoroethylene dispersion having a solid content of 5 to 30% by weight;
Further drying and sintering polytetrafluoroethylene to the porous electrode substrate;
The manufacturing method of the porous electrode base material which has this.
撥水処理前に対する撥水処理後の厚み方向の比抵抗増加量ΔR[Ω・cm]および比抵抗増加率S[%]が、ΔR≦0.1およびS≦25の関係を満足する、請求項2に記載の製造方法で製造された多孔質電極基材。 The specific resistance increase ΔR [Ω · cm] and the specific resistance increase rate S [%] in the thickness direction after the water repellent treatment before the water repellent treatment satisfy the relationship of ΔR ≦ 0.1 and S ≦ 25. Item 3. A porous electrode substrate produced by the production method according to Item 2.
JP2009106402A 2009-04-24 2009-04-24 Porous electrode substrate and method for producing the same Expired - Fee Related JP5484777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106402A JP5484777B2 (en) 2009-04-24 2009-04-24 Porous electrode substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106402A JP5484777B2 (en) 2009-04-24 2009-04-24 Porous electrode substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010257748A JP2010257748A (en) 2010-11-11
JP5484777B2 true JP5484777B2 (en) 2014-05-07

Family

ID=43318454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106402A Expired - Fee Related JP5484777B2 (en) 2009-04-24 2009-04-24 Porous electrode substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5484777B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2825663C (en) 2011-01-27 2023-03-21 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
KR101867747B1 (en) 2012-03-30 2018-07-23 미쯔비시 케미컬 주식회사 Porous electrode base material, method for manufacturing same and precursor sheet
JP6743805B2 (en) * 2015-12-11 2020-08-19 東レ株式会社 Carbon sheet, gas diffusion electrode substrate, and fuel cell
CN107681142B (en) * 2017-09-29 2020-11-27 合肥工业大学 Molybdenum disulfide coated carbon nanofiber used as lithium ion battery negative electrode material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360155A (en) * 1986-08-28 1988-03-16 株式会社神戸製鋼所 Manufacture of carbon/carbon composite material from nonwoven cloth as raw material
JPH0818882B2 (en) * 1987-12-16 1996-02-28 東レ株式会社 Method for manufacturing conductive substrate
JP4051714B2 (en) * 1995-12-06 2008-02-27 東レ株式会社 Electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP2006004858A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Porous electrode base material and its manufacturing method

Also Published As

Publication number Publication date
JP2010257748A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
US10727497B2 (en) Porous electrode substrate, membrane-electrode assembly using same, and polymer electrolyte fuel cell using same
JP7129751B2 (en) carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP4266699B2 (en) Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
WO2017099181A1 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5484777B2 (en) Porous electrode substrate and method for producing the same
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP7302474B2 (en) gas diffusion layer, membrane electrode assembly and fuel cell
JP5416990B2 (en) Porous carbon electrode substrate, membrane-electrode assembly and solid polymer fuel cell using the same
KR20190103175A (en) Gas Diffusion Electrodes and Fuel Cells
JP5336804B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6183065B2 (en) Porous carbon electrode and manufacturing method thereof
JP6265028B2 (en) Porous carbon electrode
JP6291818B2 (en) Porous carbon electrode and manufacturing method thereof
JP2018014275A (en) Porous electrode substrate
JP5322213B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5322212B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6212966B2 (en) Porous carbon electrode
JP5336912B2 (en) Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell
JP5260948B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2009076347A (en) Gas diffusion electrode substrate and its manufacturing method
JP2024043358A (en) Gas diffusion substrate and fuel cell
JP5433146B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2009117325A (en) Porous electrode substrate and fuel cell using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R151 Written notification of patent or utility model registration

Ref document number: 5484777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees