JP5336912B2 - Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell - Google Patents

Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell Download PDF

Info

Publication number
JP5336912B2
JP5336912B2 JP2009094623A JP2009094623A JP5336912B2 JP 5336912 B2 JP5336912 B2 JP 5336912B2 JP 2009094623 A JP2009094623 A JP 2009094623A JP 2009094623 A JP2009094623 A JP 2009094623A JP 5336912 B2 JP5336912 B2 JP 5336912B2
Authority
JP
Japan
Prior art keywords
precursor sheet
resin composition
porous electrode
phenol resin
polyvinylpyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009094623A
Other languages
Japanese (ja)
Other versions
JP2010244957A (en
Inventor
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009094623A priority Critical patent/JP5336912B2/en
Publication of JP2010244957A publication Critical patent/JP2010244957A/en
Application granted granted Critical
Publication of JP5336912B2 publication Critical patent/JP5336912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a porous electrode base material which has sufficient gas permeability and is excellent in conductivity in thickness and passing-through directions and has small variation of battery performance caused by variation of humidification conditions, to provide a membrane-electrode assembly, and to provide a fuel cell. <P>SOLUTION: The manufacturing method for the porous electrode base material includes: a process (A) of dispersing short carbon fibers and short binder fibers in a two-dimensional plane and producing short carbon fiber paper; a process (B) of producing a precursor sheet by impregnating the short carbon fiber paper with a methanol solution which dissolves a phenol resin composition and polyvinylpyrrolidone; a process (C) of phase-separating the phenol resin composition and the polyvinylpyrrolidone in the precursor sheet; a process (D) of solidifying the phenol resin composition in the phase-separated precursor sheet; a process (E) of attaining the precursor sheet including the phenol resin composition removing methanol and the polyvinylpyrrolidone; and a process (F) of attaining a porous electrode base material by carbonizing the precursor sheet obtained in the process (E). These processes are carried out in the order in the manufacturing method for the porous electrode base material. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、多孔質電極基材の製造方法、ならびにその多孔質電極基材を用いた膜−電極接合体および燃料電池に関するものである。   The present invention relates to a method for producing a porous electrode substrate, and a membrane-electrode assembly and a fuel cell using the porous electrode substrate.

従来の多孔質電極基材の製造方法では、充分なガス透気度、厚みおよび貫通方向抵抗を備え、燃料電池とした時に、加湿条件の変動によっても電池性能の変動が少ない高い水分管理機能を発揮する多孔質電極基材、膜−電極接合体、および燃料電池は得られなかった。
特許文献1には、厚みが0.05〜0.5mmで嵩密度が0.3〜0.8g/cmであり、かつ、歪み速度10mm/min、支点間距離2cmおよび試験片幅1cmの条件での3点曲げ試験において曲げ強度が10MPa以上でかつ曲げの際のたわみが1.5mm以上であることを特徴とする燃料電池用多孔質炭素電極基材が記載されている。
しかし、この多孔質電極基材は、機械的強度、表面平滑性が高く、十分な導電性は有しているもの、均一性の高い構造であるために、保水性と、生成水の排水性のバランスを保つことが困難であるという問題があった。
特許文献2には、一方の面に触媒層が形成されたカーボンシートからなり、前期一方の面から他方の面に亘って複数の貫通孔が形成されていることを特徴とするガス拡散電極が記載されている。この多孔質電極基材は、高いガス拡散性を有しているものの、機械的強度を維持することと、保水性を保つことが困難であるといった問題があった。
The conventional method for producing a porous electrode substrate has sufficient gas permeability, thickness and resistance in the penetration direction, and when used as a fuel cell, it has a high moisture management function with little variation in cell performance due to variation in humidification conditions. A porous electrode substrate, a membrane-electrode assembly, and a fuel cell to be exhibited were not obtained.
In Patent Document 1, the thickness is 0.05 to 0.5 mm, the bulk density is 0.3 to 0.8 g / cm, the strain rate is 10 mm / min, the distance between fulcrums is 2 cm, and the specimen width is 1 cm. Describes a porous carbon electrode substrate for a fuel cell, characterized in that the bending strength is 10 MPa or more and the bending deflection is 1.5 mm or more.
However, this porous electrode base material has high mechanical strength, surface smoothness, sufficient conductivity, and a highly uniform structure, so it has water retention and drainage of generated water. There was a problem that it was difficult to maintain the balance.
Patent Document 2 includes a gas diffusion electrode comprising a carbon sheet having a catalyst layer formed on one surface, and a plurality of through holes formed from one surface to the other surface in the previous period. Have been described. Although this porous electrode base material has high gas diffusivity, there is a problem that it is difficult to maintain mechanical strength and maintain water retention.

国際公開第2001/056103号パンフレットInternational Publication No. 2001/056103 Pamphlet 特開2002/110182号JP 2002/110182 A

本発明は、充分に高いガス透気度を備え、厚み方向にも貫通方向にも導電性に優れ、燃料電池とした時に、加湿条件の変動によっても電池性能の変動が少ない高い水分管理機能を発揮する多孔質電極基材の製造方法、膜−電極接合体、および燃料電池を提供することを目的とする。   The present invention has a sufficiently high gas permeability, excellent conductivity both in the thickness direction and in the penetration direction, and has a high moisture management function that, when used as a fuel cell, has little fluctuation in battery performance due to fluctuations in humidification conditions. It aims at providing the manufacturing method of the porous electrode base material to exhibit, a membrane-electrode assembly, and a fuel cell.

本発明は以下の通りである。
(1)以下(A)〜(F)の工程を順に行う多孔質電極基材の製造方法。
(A)炭素短繊維と、バインダー短繊維とを二次元平面内において分散し、炭素短繊維紙を作製する工程;
(B)フェノール樹脂組成物とポリビニルピロリドンとを溶解したメタノール溶液を前記炭素短繊維紙に含浸して前駆体シートを作製する工程;
(C)前記前駆体シート中のフェノール樹脂組成物とポリビニルピロリドンとを相分離させる工程;
(D)相分離した前駆体シート中のフェノール樹脂組成物を凝固させる工程;
(E)次いで、メタノールを除去したフェノール樹脂組成物とポリビニルピロリドンとを含む前駆体シートを得る工程;および
(F)(E)工程で得られた前駆体シートを炭素化処理して多孔質電極基材を得る工程
(2)(F)工程において、乾燥した前駆体シートを炭素化処理する前に加熱加圧する(1)の多孔質電極基材の製造方法。
The present invention is as follows.
(1) The manufacturing method of the porous electrode base material which performs the process of (A)-(F) below in order.
(A) a step of dispersing carbon short fibers and binder short fibers in a two-dimensional plane to produce carbon short fiber paper;
(B) A step of impregnating the short carbon fiber paper with a methanol solution in which a phenol resin composition and polyvinylpyrrolidone are dissolved to prepare a precursor sheet;
(C) a step of phase-separating the phenol resin composition and polyvinylpyrrolidone in the precursor sheet;
(D) solidifying the phenol resin composition in the phase-separated precursor sheet;
(E) Next, a step of obtaining a precursor sheet containing a phenol resin composition from which methanol has been removed and polyvinylpyrrolidone; and (F) a porous electrode obtained by carbonizing the precursor sheet obtained in step (E) (1) The method for producing a porous electrode substrate according to (1), wherein in step (2) (F), the dried precursor sheet is heated and pressurized before being carbonized.

本発明によれば、充分に高いガス透気度を備え、厚み方向にも貫通方向にも導電性に優れ、燃料電池とした時に、加湿条件の変動によっても電池性能の変動が少ない高い水分管理機能を発揮する多孔質電極基材の製造方法、膜−電極接合体、および燃料電池を得ることができる。   According to the present invention, it has a sufficiently high gas permeability, has excellent conductivity in both the thickness direction and the penetration direction, and when used as a fuel cell, has high moisture management with little fluctuation in battery performance due to fluctuations in humidification conditions. A method for producing a porous electrode substrate, a membrane-electrode assembly, and a fuel cell that exhibit functions can be obtained.

実施例1の多孔質電極基材の表面SEM像である。2 is a surface SEM image of the porous electrode substrate of Example 1. FIG.

<炭素短繊維>
本発明で用いる炭素短繊維の原料である炭素繊維は、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれであっても良いが、PAN系炭素繊維が好ましい。特に、多孔質炭素電極基材の機械的強度が比較的高くできることから、PAN系炭素繊維のみからなることが好ましい。
炭素短繊維の直径は、炭素短繊維の生産コスト、分散性の面から、3〜9μmであることが好ましい。最終的に得られる多孔質電極基材の平滑性の面から、4μm以上、8μm以下であることがさらに好ましい。
炭素短繊維の繊維長は、分散性の点から、2〜12mmが好ましい。
<Short carbon fiber>
The carbon fiber that is a raw material of the short carbon fiber used in the present invention may be any of polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, etc., but PAN-based carbon fiber is preferable. In particular, since the mechanical strength of the porous carbon electrode substrate can be made relatively high, it is preferable that the porous carbon electrode substrate is made of only PAN-based carbon fibers.
The diameter of the short carbon fiber is preferably 3 to 9 μm from the viewpoint of production cost and dispersibility of the short carbon fiber. From the aspect of smoothness of the finally obtained porous electrode substrate, it is more preferably 4 μm or more and 8 μm or less.
The fiber length of the short carbon fiber is preferably 2 to 12 mm from the viewpoint of dispersibility.

<分散>
本発明において、「二次元平面内において分散」とは、炭素短繊維がおおむね一つの面を形成するように横たわっているという意味である。これにより炭素短繊維による短絡や炭素短繊維の折損を防止することができる。二次元平面内での炭素短繊維の配向方向は実質的にランダムであっても、特定方向への配向性が高くなっていても良い。
<Dispersion>
In the present invention, “dispersion in a two-dimensional plane” means that the carbon short fibers lie so as to form a single plane. Thereby, the short circuit by carbon short fiber and the breakage of carbon short fiber can be prevented. The orientation direction of the short carbon fibers in the two-dimensional plane may be substantially random, or the orientation in a specific direction may be high.

<製造方法>
本発明の多孔質電極基材の製造方法は、以下に示す方法である。
以下(A)〜(F)の工程を順に行う多孔質電極基材の製造方法である。
(A)炭素短繊維と、バインダー短繊維とを二次元平面内において分散し、炭素短繊維紙を作製する工程;
(B)フェノール樹脂組成物とポリビニルピロリドンとを溶解したメタノール溶液を前記炭素短繊維紙に含浸して前駆体シートを作製する工程;
(C)前記前駆体シート中のフェノール樹脂組成物とポリビニルピロリドンとを相分離させる工程;
(D)相分離した前駆体シート中のフェノール樹脂組成物を凝固させる工程;
(E)次いで、メタノールを除去したフェノール樹脂組成物とポリビニルピロリドンとを含む前駆体シートを得る工程;および
(F)(E)工程で得られた前駆体シートを炭素化処理して多孔質電極基材を得る工程;
(F)工程において、乾燥した前駆体シートを炭素化処理する前に加熱加圧しても良い。
<Manufacturing method>
The manufacturing method of the porous electrode base material of this invention is the method shown below.
Hereinafter, it is a method for producing a porous electrode substrate in which the steps (A) to (F) are sequentially performed.
(A) a step of dispersing carbon short fibers and binder short fibers in a two-dimensional plane to produce carbon short fiber paper;
(B) A step of impregnating the short carbon fiber paper with a methanol solution in which a phenol resin composition and polyvinylpyrrolidone are dissolved to prepare a precursor sheet;
(C) a step of phase-separating the phenol resin composition and polyvinylpyrrolidone in the precursor sheet;
(D) solidifying the phenol resin composition in the phase-separated precursor sheet;
(E) Next, a step of obtaining a precursor sheet containing a phenol resin composition from which methanol has been removed and polyvinylpyrrolidone; and (F) a porous electrode obtained by carbonizing the precursor sheet obtained in step (E) Obtaining a substrate;
In step (F), the dried precursor sheet may be heated and pressurized before being carbonized.

<バインダー短繊維>
バインダー短繊維は、炭素短繊維を含む前駆体シート中で各成分をつなぎとめるバインダー(糊剤)として使用される。バインダー短繊維としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニルなどを用いることができる。特にポリビニルアルコールは前駆体シート作製工程での結着力に優れるため、炭素短繊維の脱落が少なくバインダーとして好ましい。
<Binder staple fiber>
The binder short fiber is used as a binder (glue) that holds the components together in a precursor sheet containing carbon short fibers. As the binder short fiber, polyvinyl alcohol (PVA), polyvinyl acetate or the like can be used. In particular, polyvinyl alcohol is preferable as a binder because it has excellent binding power in the precursor sheet preparation process, and the short carbon fibers do not fall off.

<前駆体シートを作製する工程>
炭素短繊維とバインダー短繊維とを二次元平面内において分散させて、前駆体シートを作製する方法としては、液体の媒体中に炭素短繊維とバインダー短繊維を分散させて抄造する湿式法や、空気中に炭素短繊維とバインダー短繊維を分散させて降り積もらせる乾式法が適用できるが、中でも湿式法が好ましい。炭素短繊維が単繊維に分散するのを助け、分散した単繊維が再び収束を防止するのを防ぐことができる。
<Process for producing precursor sheet>
As a method of producing a precursor sheet by dispersing carbon short fibers and binder short fibers in a two-dimensional plane, a wet method of making paper by dispersing carbon short fibers and binder short fibers in a liquid medium, A dry method in which carbon short fibers and binder short fibers are dispersed in the air to be deposited can be applied, but a wet method is particularly preferable. The short carbon fibers can be dispersed into the single fibers, and the dispersed single fibers can be prevented from preventing convergence again.

炭素短繊維とバインダー短繊維を混合する方法としては、炭素短繊維とともに水中で攪拌分散させる方法と、直接混ぜ込む方法があるが、均一に分散させるためには水中で拡散分散させる方法が好ましい。このようにバインダー短繊維を混ぜることにより、炭素繊維紙の強度を保持し、その製造途中で炭素繊維紙から炭素短繊維が剥離したり、炭素短繊維の配向が変化したりするのを防止することができる。   As a method of mixing the short carbon fiber and the short binder fiber, there are a method of stirring and dispersing in water together with the carbon short fiber and a method of mixing directly, but a method of diffusing and dispersing in water is preferable for uniform dispersion. By mixing the binder short fibers in this way, the strength of the carbon fiber paper is maintained, and it is possible to prevent the carbon short fibers from being peeled off from the carbon fiber paper during the production or the orientation of the carbon short fibers from being changed. be able to.

また、前駆体シートの作製は連続で行う方法やバッチ式で行なう方法があるが、本発明において行なう前駆体シートの作製は、特に目付のコントロールが容易であるという点と生産性及び機械的強度の観点から連続が好ましい。前駆体シートの目付けは、10〜200g/mとすることが好ましい。 In addition, the preparation of the precursor sheet includes a continuous method and a batch method, but the preparation of the precursor sheet in the present invention is particularly easy to control the basis weight and the productivity and mechanical strength. From the viewpoint of, continuous is preferable. The basis weight of the precursor sheet is preferably 10 to 200 g / m 2 .

<フェノール樹脂組成物>
本発明で用いるフェノール樹脂組成物は、炭素化可能なものである。炭素化後も導電性物質として残存する物質であり、常温において粘着性、あるいは流動性を示す。用いる樹脂の種類、後述する樹脂の含浸の際の含浸量、硬化、炭素化温度によって残存する炭素化量が異なる。フェノール樹脂組成物として、フェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂単体を用いることもできるが、固体の熱融着性を示すノボラックタイプのフェノール樹脂を混合させることも好ましい。
<Phenolic resin composition>
The phenol resin composition used in the present invention is carbonizable. It is a substance that remains as a conductive substance even after carbonization and exhibits adhesiveness or fluidity at room temperature. The amount of carbonization remaining varies depending on the type of resin used, the amount of impregnation during resin impregnation described below, curing, and the carbonization temperature. As the phenol resin composition, a resol type phenol resin alone obtained by reaction of phenols and aldehydes can be used, but it is also preferable to mix a novolak type phenol resin exhibiting solid heat-fusibility.

<ポリビニルピロリドン>
本発明で用いるポリビニルピロリドンは、フェノール樹脂組成物と相分離可能な樹脂である。炭素化時に導電性物質としてほとんど残存しない物質としては、ポリビニルピロリドンを用いることができ、フェノール樹脂組成物を用いる場合は、ポリビニルピロリドンが相分離構造を形成した後、洗浄によって容易に除去できる。
<Polyvinylpyrrolidone>
Polyvinylpyrrolidone used in the present invention is a resin that can be phase-separated from the phenol resin composition. Polyvinyl pyrrolidone can be used as a substance that hardly remains as a conductive substance at the time of carbonization. When a phenol resin composition is used, polyvinyl pyrrolidone can be easily removed by washing after forming a phase separation structure.

<フェノール樹脂組成物とポリビニルピロリドンの含浸方法>
前駆体シートにフェノール樹脂組成物とポリビニルピロリドンを含浸する方法としては、前駆体シートに樹脂組成物を含浸させることができればよく、特に限定されないが、コーターを用いて前駆体シート表面に樹脂を均一にコートする方法、絞り装置を用いるdip−nip方法、若しくは前駆体シートと樹脂フィルムを重ねて樹脂を前駆体シートに転写する方法が、連続的に行うことができ、生産性及び長尺ものも製造できるという点で好ましい。
<Impregnation method of phenol resin composition and polyvinylpyrrolidone>
The method of impregnating the precursor sheet with the phenol resin composition and polyvinyl pyrrolidone is not particularly limited as long as the precursor sheet can be impregnated with the resin composition, but the resin is uniformly applied to the surface of the precursor sheet using a coater. The coating method, the dip-nip method using a squeezing device, or the method of transferring the resin to the precursor sheet by overlaying the precursor sheet and the resin film can be performed continuously, and the productivity and the long one are also available. It is preferable in that it can be manufactured.

<フェノール樹脂組成物の含浸量>
多孔質電極基材に排水性と保湿性、ガス拡散性のバランスを保つことができる水分管理機能を発現させるためにはフェノール樹脂組成物が炭化した多孔質炭素が、炭素短繊維100質量部に対し20〜50質量部であることが好ましいため、前駆体シートに含浸させる炭素化可能な樹脂量は、炭素短繊維100質量部に対し、70〜120質量部含浸させることが好ましい。
<Impregnation amount of phenol resin composition>
In order to develop a moisture management function capable of maintaining a balance between drainage, moisture retention, and gas diffusibility in the porous electrode substrate, porous carbon carbonized with the phenol resin composition is added to 100 parts by mass of carbon short fibers. On the other hand, since it is preferable that it is 20-50 mass parts, it is preferable to make the amount of resin which can be impregnated to a precursor sheet impregnate 70-120 mass parts with respect to 100 mass parts of carbon short fibers.

<ポリビニルピロリドンの含浸量>
フェノール樹脂組成物が炭化した多孔質炭素の強度を維持し、かつ多孔質電極基材に排水性と保湿性、ガス拡散性のバランスを保つことができる水分管理機能を発現させるためには抄紙体に含浸させるポリビニルピロリドン量は、炭素化可能な樹脂100質量部に対し、30〜300質量部含浸させることが好ましい。
<Polyvinylpyrrolidone impregnation amount>
In order to maintain the strength of porous carbon carbonized by the phenol resin composition and to develop a moisture management function capable of maintaining a balance between drainage, moisture retention, and gas diffusibility in the porous electrode substrate, a papermaking body The amount of polyvinylpyrrolidone to be impregnated is preferably 30 to 300 parts by mass with respect to 100 parts by mass of the carbonizable resin.

<フェノール樹脂組成物とポリビニルピロリドンの相分離>
フェノール樹脂組成物とポリビニルピロリドンの相分離は、炭素短繊維とバインダー短繊維とを二次元平面内において分散させて成る前駆体シートにフェノール樹脂組成物とポリビニルピロリドンの混合溶液を含浸させた後、静置または吸湿させ相分離構造を形成させる。
例えば、フェノール樹脂組成物とポリビニルピロリドンとし、雰囲気を相対湿度90%温度60度とした場合は、好ましい相分離時間は5秒〜2分である。
その後、含浸させたフェノール樹脂組成物に対し、貧溶媒となる凝固浴中に浸漬させ、フェノール樹脂組成物を凝固させ、相分離構造を固定化することによって行う。凝固浴に用いる溶媒としては、一般的には水系溶媒を用いることができるが、フェノール樹脂組成物に対して貧溶媒となるものであれば特に限定されない。
また、単一溶媒であっても、複数の溶媒を混ぜた混合溶媒を用いても良い。フェノール樹脂組成物を用いた場合は、水や水/アルコールの混合溶媒などを用いることができる。
フェノール樹脂組成物とポリビニルピロリドンとの相分離構造のサイズは、静置時間、吸湿時間、吸湿量、凝固浴中での凝固速度に依存するため、前駆体シートに含浸させた際のフェノール樹脂組成物とポリビニルピロリドンの混合溶液濃度、混合比、相分離時間、相分離時の雰囲気湿度、凝固浴組成、凝固浴温度によって精密に制御することができる。樹脂溶液濃度としては、含浸時の作業性の点で5〜40質量%とすることが好ましい。
<Phase separation of phenol resin composition and polyvinylpyrrolidone>
Phase separation of the phenol resin composition and polyvinyl pyrrolidone is carried out by impregnating a precursor sheet in which short carbon fibers and short binder fibers are dispersed in a two-dimensional plane with a mixed solution of the phenol resin composition and polyvinyl pyrrolidone. Allow to stand or absorb moisture to form a phase separation structure.
For example, when the phenol resin composition and polyvinyl pyrrolidone are used and the atmosphere is 90% relative humidity and 60 ° C., the preferred phase separation time is 5 seconds to 2 minutes.
Thereafter, the impregnated phenol resin composition is immersed in a coagulation bath serving as a poor solvent, the phenol resin composition is solidified, and the phase separation structure is fixed. As the solvent used in the coagulation bath, an aqueous solvent can be generally used, but is not particularly limited as long as it becomes a poor solvent for the phenol resin composition.
Moreover, even if it is a single solvent, you may use the mixed solvent which mixed several solvent. When a phenol resin composition is used, water or a mixed solvent of water / alcohol can be used.
The size of the phase separation structure between the phenol resin composition and polyvinyl pyrrolidone depends on the standing time, moisture absorption time, moisture absorption, and coagulation rate in the coagulation bath, so the phenol resin composition when impregnating the precursor sheet It can be precisely controlled by the mixed solution concentration of the product and polyvinylpyrrolidone, the mixing ratio, the phase separation time, the atmospheric humidity during the phase separation, the coagulation bath composition, and the coagulation bath temperature. The resin solution concentration is preferably 5 to 40% by mass in terms of workability during impregnation.

<炭素化処理>
フェノール樹脂組成物を凝固された前駆体シートは、そのまま炭素化処理することができる。その他、得られた前駆体シートを加熱加圧成型後に炭素化処理することが可能である。フェノール樹脂組成物を凝固された前駆体シートの炭素化処理は、炭素短繊維をフェノール樹脂組成物で融着させ、かつフェノール樹脂組成物を炭素化することより、多孔質電極基材の機械的強度と導電性を発現させることを目的に行う。
炭素化処理は、多孔質電極基材の導電性を高めるために、不活性ガス中で行うことが好ましい。炭素化処理は、1000℃以上の温度で行う。1000〜3000℃の温度範囲で炭素化処理することが好ましく1000〜2200℃の温度範囲がより好ましい。1000℃未満の温度で炭素化処理して得られた多孔質電極基材は、導電性が十分ではない。炭素化処理の前に300〜800℃の程度の不活性雰囲気での焼成による前処理を行っても良い。
炭素化処理の時間は、例えば10分〜1時間とすることができる。
連続製造によるフェノール樹脂組成物を凝固された前駆体シートを炭素化処理する場合は、前駆体シートの全長にわたって連続で炭素化処理を行うことが、低コスト化という観点で好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなるだけでなく、その後のMEA製造も連続で行うことができ、燃料電池のコスト低減に大きく寄与することができる。また、本発明の製造方法で得られる多孔質電極基材は、連続的に巻き取ることも可能で、多孔質電極基材や燃料電池の生産性、コストの観点から好ましい。
<Carbonization treatment>
The precursor sheet solidified with the phenol resin composition can be carbonized as it is. In addition, the obtained precursor sheet can be carbonized after heat-press molding. The carbonization treatment of the precursor sheet solidified with the phenol resin composition is performed by fusing the short carbon fibers with the phenol resin composition and carbonizing the phenol resin composition. The purpose is to develop strength and conductivity.
The carbonization treatment is preferably performed in an inert gas in order to increase the conductivity of the porous electrode substrate. The carbonization treatment is performed at a temperature of 1000 ° C. or higher. Carbonization treatment is preferably performed in a temperature range of 1000 to 3000 ° C, and a temperature range of 1000 to 2200 ° C is more preferable. A porous electrode substrate obtained by carbonization treatment at a temperature of less than 1000 ° C. does not have sufficient conductivity. Before the carbonization treatment, a pretreatment by firing in an inert atmosphere of about 300 to 800 ° C. may be performed.
The time for the carbonization treatment can be, for example, 10 minutes to 1 hour.
When the precursor sheet solidified with the phenol resin composition by continuous production is carbonized, it is preferable to perform the carbonization process continuously over the entire length of the precursor sheet from the viewpoint of cost reduction. If the porous electrode substrate is long, not only the productivity of the porous electrode substrate is increased, but also the subsequent MEA production can be performed continuously, which can greatly contribute to the cost reduction of the fuel cell. it can. Moreover, the porous electrode substrate obtained by the production method of the present invention can be continuously wound, and is preferable from the viewpoints of productivity and cost of the porous electrode substrate and the fuel cell.

<加熱加圧成型>
フェノール樹脂組成物を凝固された前駆体シートは、炭素化処理の前に、200℃以下の温度で加熱加圧成型することが、炭素短繊維をポフェノール樹脂組成物で融着させ、かつ、多孔質電極基材の厚みムラを低減できるという点で好ましい。加熱加圧成型は、抄紙体を均等に加熱加圧成型できる技術であれば、いかなる技術も適用できる。その例としては、上下両面から平滑な剛板にて熱プレスする方法や連続ベルトプレス装置を用いて行う方法がある。
連続製造によるフェノール樹脂組成物を凝固された前駆体シートを加熱加圧成型する場合は、連続ベルトプレス装置を用いて行う方法が、長尺の多孔質電極基材ができるという点で好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなるだけでなく、その後のMEA製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。また、本発明の製造方法で得られる多孔質電極基材は、連続的に巻き取ることも可能で、多孔質電極基材や燃料電池の生産性、コストの観点から好ましい。連続ベルト装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法と液圧ヘッドプレスにより面圧でプレスする方法があるが、後者の方がより平滑な多孔質電極基材が得られるという点で好ましい。
加熱温度は、効果的に表面を平滑にするために、200℃以下が好ましく、120〜190℃がより好ましい。
成型圧力は特に限定されないが、フェノール樹脂組成物とポリビニルピロリドンの比率が多い場合は、成型圧が低くても前駆体シートの表面を平滑にすることが容易である。このとき必要以上にプレス圧を高くすることは、成型時に炭素短繊維を破壊する、多孔質電極基材としたときその組織が緻密になりすぎるなどの問題が生じる場合がある。例えば、20kPa〜10MPaの圧力で加圧することができる。
加熱加圧成型の時間は、例えば30秒〜10分とすることができる。
剛板に挟んで、又連続ベルト装置で抄紙体の加熱加圧成型を行う時は、剛板やベルトにフェノール樹脂組成物とポリビニルピロリドンなどが付着しないようにあらかじめ剥離剤を塗っておくか、前駆体シートと剛板やベルトとの間に離型紙を挟んで行うことが好ましい。
<Heat and pressure molding>
The precursor sheet solidified with the phenol resin composition is subjected to heat and pressure molding at a temperature of 200 ° C. or less before the carbonization treatment, and the carbon short fibers are fused with the pophenol resin composition, and This is preferable in that the thickness unevenness of the porous electrode substrate can be reduced. Any technique can be applied to the heat and pressure molding as long as the paper body can be uniformly heat and pressure molded. As an example, there are a method of performing hot pressing with smooth rigid plates from both upper and lower surfaces, and a method of performing using a continuous belt press apparatus.
In the case where a precursor sheet obtained by coagulating a phenol resin composition by continuous production is heated and pressurized, a method using a continuous belt press apparatus is preferable in that a long porous electrode substrate can be formed. If the porous electrode substrate is long, not only the productivity of the porous electrode substrate is increased, but also the subsequent MEA production can be performed continuously, which greatly contributes to the cost reduction of the fuel cell. Can do. Moreover, the porous electrode substrate obtained by the production method of the present invention can be continuously wound, and is preferable from the viewpoints of productivity and cost of the porous electrode substrate and the fuel cell. As a pressing method in the continuous belt device, there are a method of applying pressure to the belt by a roll press by a linear pressure and a method of pressing by a surface pressure by a hydraulic head press, but the latter is a smoother porous electrode substrate. It is preferable in that it is obtained.
In order to effectively smooth the surface, the heating temperature is preferably 200 ° C. or less, and more preferably 120 to 190 ° C.
The molding pressure is not particularly limited, but when the ratio between the phenol resin composition and polyvinyl pyrrolidone is large, it is easy to smooth the surface of the precursor sheet even if the molding pressure is low. If the press pressure is increased more than necessary at this time, problems such as destruction of short carbon fibers during molding and excessively dense structure when used as a porous electrode substrate may occur. For example, pressurization can be performed at a pressure of 20 kPa to 10 MPa.
The time for heat and pressure molding can be, for example, 30 seconds to 10 minutes.
When sandwiching between rigid plates and heating and pressure molding of paper bodies with a continuous belt device, apply a release agent in advance so that the phenolic resin composition and polyvinylpyrrolidone do not adhere to the rigid plate or belt, It is preferable that the release sheet is sandwiched between the precursor sheet and the rigid plate or belt.

<多孔質電極基材>
本発明の製造方法で得られる多孔質電極基材の厚みは、50〜300μmであることが好ましい。
<Porous electrode substrate>
The thickness of the porous electrode substrate obtained by the production method of the present invention is preferably 50 to 300 μm.

<膜−電極接合体(MEA)、燃料電池>
以上のような本発明の製造方法で得られる多孔質電極基材は、膜−電極接合体に好適に用いることができる。そして、本発明の多孔質電極基材を用いた膜−電極接合体は、燃料電池に好適に用いることができる。
<Membrane-electrode assembly (MEA), fuel cell>
The porous electrode substrate obtained by the production method of the present invention as described above can be suitably used for a membrane-electrode assembly. And the membrane-electrode assembly using the porous electrode base material of this invention can be used suitably for a fuel cell.

炭素短繊維として、平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維を用意した。また、バインダー短繊維として、平均繊維長が3mmのポリビニルアルコール(PVA)短繊維(クラレ(株)製、商品名:VBP105−1)を用意した。
炭素短繊維100質量部を水中に均一に分散して単繊維に解繊し、十分に分散したところに、PVA短繊維25質量部を均一に分散し、標準角型シートマシン(熊谷理機工業(株)製、商品名:No.2555 標準角型シートマシン)を用いてJIS P−8209法に準拠して手動により前駆体シート作製を行い、乾燥させて、目付けが25g/mの前駆体シートを得た。炭素短繊維の分散状態は良好であった。
前駆体シートに、13質量%フェノール樹脂組成物と10質量%ポリビニルピロリドンを含むメタノール溶液を含浸させた後、相対湿度90%の温度60℃の蒸気中で30秒間静置し、相分離構造を形成させた後、57℃の水からなる凝固浴中に浸漬させることにより、ポリアクリロニトリルを凝固させ相分離構造を固定化させた。その後、80℃の乾燥機中で乾燥させることによって、目付けが63g/mのポリアクリロニトリルとポリビニルピロリドン含浸前駆体シートを得た。これは、炭素短繊維100質量部に対し、ポリアクリロニトリルを94質量部付着させたことになる。
As short carbon fibers, polyacrylonitrile (PAN) carbon fibers having an average fiber diameter of 7 μm and an average fiber length of 3 mm were prepared. Moreover, the polyvinyl alcohol (PVA) short fiber (Kuraray Co., Ltd. make, brand name: VBP105-1) whose average fiber length is 3 mm was prepared as binder short fiber.
100 parts by mass of carbon short fibers are uniformly dispersed in water, defibrated into single fibers, and when sufficiently dispersed, 25 parts by mass of PVA short fibers are uniformly dispersed, and a standard square sheet machine (Kumaya Riki Kogyo) A precursor sheet was manually prepared in accordance with JIS P-8209 method using a product name (trade name: No. 2555 standard square sheet machine) manufactured by Co., Ltd., dried, and a precursor having a basis weight of 25 g / m 2 . A body sheet was obtained. The dispersion state of the short carbon fibers was good.
After impregnating the precursor sheet with a methanol solution containing 13% by mass phenol resin composition and 10% by mass polyvinylpyrrolidone, the precursor sheet was allowed to stand for 30 seconds in steam at a relative humidity of 90% and a temperature of 60 ° C. to obtain a phase separation structure. After the formation, the polyacrylonitrile was solidified by being immersed in a coagulation bath made of water at 57 ° C., and the phase separation structure was fixed. Then, the polyacrylonitrile and polyvinylpyrrolidone impregnation precursor sheet | seat with a fabric weight of 63 g / m < 2 > was obtained by making it dry in 80 degreeC drying machine. This means that 94 parts by mass of polyacrylonitrile is attached to 100 parts by mass of the short carbon fibers.

次に、2枚重ね合わせたこの前駆体シートを2枚のシリコーン系離型剤をコートした紙に挟んだ後、バッチプレス装置にて180℃、30kPaの条件下で3分間加圧加熱成型した。   Next, two precursor sheets that were overlapped were sandwiched between two sheets of paper coated with a silicone-based release agent, and then press-molded for 3 minutes under conditions of 180 ° C. and 30 kPa using a batch press apparatus. .

加圧加熱成型した前駆体シートをバッチ炭素化炉にて、窒素ガス雰囲気中、2000℃の条件下で1時間炭素化することで多孔質電極基材を得た。得られた多孔質電極基材は、ガス透気度、厚み、貫通方向抵抗がそれぞれ良好な結果であった。結果を表1に示した。   A porous electrode base material was obtained by carbonizing the pressure-heated precursor sheet in a batch carbonization furnace in a nitrogen gas atmosphere at 2000 ° C. for 1 hour. The obtained porous electrode base material had good gas permeability, thickness, and penetration direction resistance. The results are shown in Table 1.

Figure 0005336912
なお、得られた多孔質電極基材の表面SEM写真を図1に示す。2次元平面内に分散した炭素短繊維同士が、多孔質化した炭素によって接合されていることが確認できた。また、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好な結果であった。
Figure 0005336912
In addition, the surface SEM photograph of the obtained porous electrode base material is shown in FIG. It was confirmed that the short carbon fibers dispersed in the two-dimensional plane were joined by the porous carbon. Moreover, the gas permeability, thickness, and penetration direction resistance were also good results.

尚、本発明の実施例中の各物性値等は以下の方法で測定した。   In addition, each physical-property value in the Example of this invention was measured with the following method.

(1)ガス透気度
JIS規格P−8117に準拠し、ガーレーデンソメーターを使用して200mLの空気が透過するのにかかった時間を測定し、ガス透気度を算出した。
(1) Gas air permeability Based on JIS standard P-8117, the time required for 200 mL of air to permeate was measured using a Gurley densometer, and the gas air permeability was calculated.

(2)厚み
多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ((株)ミツトヨ製、商品名:7321)を使用して測定した。測定子の大きさは直径10mmで、測定圧力は1.5kPaとした。
(2) Thickness The thickness of the porous electrode base material was measured using a thickness measuring device dial thickness gauge (manufactured by Mitutoyo Corporation, trade name: 7321). The size of the probe was 10 mm in diameter, and the measurement pressure was 1.5 kPa.

(3)貫通方向抵抗
多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、試料を金メッキした銅板に挟み、金メッキした銅板の上下から1MPaで加圧し、10mA/cmの電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
貫通抵抗(mΩ・cm)=測定抵抗値(mΩ)×試料面積(cm

<比較例1>
(3) Penetration direction resistance The thickness direction electrical resistance (penetration direction resistance) of the porous electrode substrate is obtained by sandwiching a sample between gold-plated copper plates and pressurizing at 1 MPa from above and below the gold-plated copper plate, and a current of 10 mA / cm 2 . The resistance value when a current was passed at a density was measured and obtained from the following equation.
Penetration resistance (mΩ · cm 2 ) = Measured resistance value (mΩ) × Sample area (cm 2 )

<Comparative Example 1>

実施例1の樹脂含浸後の抄紙体を120℃で1時間乾燥させたこと以外は実施例1と同様にして多孔質電極基材を得た。表面SEM観察により2次元平面内に分散した炭素短繊維同士が、多孔質化していない炭素によって接合されていることが確認できた。また、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好な結果であった。   A porous electrode substrate was obtained in the same manner as in Example 1 except that the paper body after resin impregnation in Example 1 was dried at 120 ° C. for 1 hour. It was confirmed by surface SEM observation that short carbon fibers dispersed in a two-dimensional plane were joined by carbon that was not made porous. The gas permeability, thickness, and penetration direction resistance were good results.

(1)膜−電極接合体(MEA)の作製
実施例1で得られた多孔質電極基材をカソード用、アノード用に2組用意した。両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm、Pt付着量:0.3mg/cm)を形成したパーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)を、カソード用、アノード用の多孔質電極基材で挟持し、これらを接合してMEAを得た。
(1) Production of membrane-electrode assembly (MEA) Two sets of the porous electrode base material obtained in Example 1 were prepared for the cathode and the anode. Perfluorosulfonic acid based catalyst in which a catalyst layer (catalyst layer area: 25 cm 2 , Pt adhesion amount: 0.3 mg / cm 2 ) composed of catalyst-supported carbon (catalyst: Pt, catalyst support amount: 50% by mass) is formed on both surfaces. A polymer electrolyte membrane (film thickness: 30 μm) was sandwiched between porous electrode substrates for cathode and anode, and these were joined to obtain MEA.

(2)MEAの燃料電池特性評価
前記(1)で作製したMEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。
(2) Evaluation of MEA Fuel Cell Characteristics The MEA produced in (1) was sandwiched between two carbon separators having bellows-like gas flow paths to form a polymer electrolyte fuel cell (single cell).

この単セルの電流密度−電圧特性を測定することによって、燃料電池特性評価を行った。燃料ガスとしては水素ガスを用い、酸化ガスとしては空気を用いた。セル温度を80℃、燃料ガス利用率を60%、酸化ガス利用率を40%とした。また、ガス加湿はバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。
加湿器温度80℃、電流密度が0.8A/cmのときの燃料電池セルのセル電圧が0.643Vであった。
また、加湿器温度60℃、電流密度が0.8A/cmのときの燃料電池セルのセル電圧が0.592Vと良好な特性を示し、加湿条件の変動によっても電池性能の変動が少ない高い水分管理機能を有していることが確認できた。
<比較例2>
The fuel cell characteristics were evaluated by measuring the current density-voltage characteristics of this single cell. Hydrogen gas was used as the fuel gas, and air was used as the oxidizing gas. The cell temperature was 80 ° C., the fuel gas utilization rate was 60%, and the oxidizing gas utilization rate was 40%. Gas humidification was performed by passing fuel gas and oxidizing gas through a bubbler.
The cell voltage of the fuel cell when the humidifier temperature was 80 ° C. and the current density was 0.8 A / cm 2 was 0.643V.
In addition, the cell voltage of the fuel cell when the humidifier temperature is 60 ° C. and the current density is 0.8 A / cm 2 is 0.592 V, showing good characteristics, and there is little variation in battery performance due to variation in humidification conditions. It was confirmed that it had a moisture management function.
<Comparative example 2>

比較例1の多孔質電極基材を用いたこと以外は、実施例2と同様にして燃料電池評価を行った。
加湿器温度80℃、電流密度が0.8A/cmのときの燃料電池セルのセル電圧が0.645Vであった。
また、加湿器温度60℃、電流密度が0.8A/cmのときの燃料電池セルのセル電圧が0.521Vと燃料電池セル内での保水性の低下による性能低下が顕著に見られた。
The fuel cell was evaluated in the same manner as in Example 2 except that the porous electrode substrate of Comparative Example 1 was used.
The cell voltage of the fuel cell when the humidifier temperature was 80 ° C. and the current density was 0.8 A / cm 2 was 0.645V.
Further, when the humidifier temperature was 60 ° C. and the current density was 0.8 A / cm 2 , the cell voltage of the fuel cell was 0.521 V, and the performance degradation due to the decrease in water retention in the fuel cell was noticeable. .

Claims (2)

以下(A)〜(F)の工程を順に行う多孔質電極基材の製造方法。
(A)炭素短繊維とバインダー短繊維とを二次元平面内において分散し、炭素短繊維紙を作製する工程;
(B)フェノール樹脂組成物とポリビニルピロリドンとを溶解したメタノール溶液を前記炭素短繊維紙に含浸して前駆体シートを作製する工程;
(C)前記前駆体シート中のフェノール樹脂組成物とポリビニルピロリドンとを相分離させる工程;
(D)相分離した前駆体シート中のフェノール樹脂組成物を凝固させる工程;
(E)次いで、メタノールを除去したフェノール樹脂組成物とポリビニルピロリドンとを含む前駆体シートを得る工程;および
(F)(E)工程で得られた前駆体シートを炭素化処理して多孔質電極基材を得る工程
The manufacturing method of the porous electrode base material which performs the process of (A)-(F) in order below.
(A) a step of dispersing carbon short fibers and binder short fibers in a two-dimensional plane to produce carbon short fiber paper;
(B) A step of impregnating the short carbon fiber paper with a methanol solution in which a phenol resin composition and polyvinylpyrrolidone are dissolved to prepare a precursor sheet;
(C) a step of phase-separating the phenol resin composition and polyvinylpyrrolidone in the precursor sheet;
(D) solidifying the phenol resin composition in the phase-separated precursor sheet;
(E) Next, a step of obtaining a precursor sheet containing a phenol resin composition from which methanol has been removed and polyvinylpyrrolidone; and (F) a porous electrode obtained by carbonizing the precursor sheet obtained in step (E) Step of obtaining a substrate
(F)工程において、乾燥した前駆体シートを炭素化処理する前に加熱加圧する請求項1に記載の多孔質電極基材の製造方法。   In the step (F), the method for producing a porous electrode substrate according to claim 1, wherein the dried precursor sheet is heated and pressurized before being carbonized.
JP2009094623A 2009-04-09 2009-04-09 Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell Expired - Fee Related JP5336912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094623A JP5336912B2 (en) 2009-04-09 2009-04-09 Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094623A JP5336912B2 (en) 2009-04-09 2009-04-09 Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell

Publications (2)

Publication Number Publication Date
JP2010244957A JP2010244957A (en) 2010-10-28
JP5336912B2 true JP5336912B2 (en) 2013-11-06

Family

ID=43097740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094623A Expired - Fee Related JP5336912B2 (en) 2009-04-09 2009-04-09 Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell

Country Status (1)

Country Link
JP (1) JP5336912B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234017B1 (en) * 2016-12-29 2021-03-29 코오롱인더스트리 주식회사 Method of manufacturing roll type gas diffusion layer with excellent spreading property

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286085A (en) * 2002-03-27 2003-10-07 Toray Ind Inc Porous carbon plate and manufacturing method thereof
JP2006040886A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method

Also Published As

Publication number Publication date
JP2010244957A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2010090164A1 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and solid polymer-type fuel cell
CN103534852B (en) Gas diffusion layer for fuel cell and method for producing same
JP7129751B2 (en) carbon sheet, gas diffusion electrode substrate, and fuel cell
JP6743805B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP5336804B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5484777B2 (en) Porous electrode substrate and method for producing the same
JP5336911B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and fuel cell
JP5336912B2 (en) Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell
JP4801354B2 (en) Electrode base material for polymer electrolyte fuel cell and method for producing the same
CN117063315A (en) Electrode base material and method for producing same
JP5322212B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2018142450A (en) Gas diffusion layer for solid polymer fuel cell, gas diffusion electrode, and manufacturing method thereof
JP5322213B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6291818B2 (en) Porous carbon electrode and manufacturing method thereof
JP6183065B2 (en) Porous carbon electrode and manufacturing method thereof
JP5250328B2 (en) Method for producing carbonaceous electrode substrate
JP5260948B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2016157653A (en) Gas diffusion electrode base material and gas diffusion layer including the same
JP2014239028A (en) Porous carbon electrode
JP6212966B2 (en) Porous carbon electrode
JP5433146B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2009076347A (en) Gas diffusion electrode substrate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R151 Written notification of patent or utility model registration

Ref document number: 5336912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees