WO2007011073A1 - Passive hydrogen generator and packaged fuel cell power generation system using same - Google Patents
Passive hydrogen generator and packaged fuel cell power generation system using same Download PDFInfo
- Publication number
- WO2007011073A1 WO2007011073A1 PCT/JP2006/314944 JP2006314944W WO2007011073A1 WO 2007011073 A1 WO2007011073 A1 WO 2007011073A1 JP 2006314944 W JP2006314944 W JP 2006314944W WO 2007011073 A1 WO2007011073 A1 WO 2007011073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- passive
- hydrogen production
- fuel
- production apparatus
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a passive hydrogen production apparatus for producing a gas containing hydrogen by decomposing a fuel containing organic substances at a low temperature and a package type fuel cell power generation apparatus using the same.
- Patent Document 1 Japanese Patent No. 3328993
- Patent Document 2 Japanese Patent No. 3360349
- Patent Document 3 US Pat. No. 6,299,744, US Pat. No. 6,368,492, US Pat. No. 6,432,284, US Pat. No. 6,533,919 Description, US Patent Publication No. 2003/0226763
- Patent Document 4 JP 2001-297779 A
- Patent Document 1 states that “a pair of electrodes is provided on both opposing surfaces of a cation exchange membrane, and a fuel containing at least methanol and water is brought into contact with an electrode including a catalyst provided on one side, and the pair of electrodes is contacted. By applying a voltage to the electrode and extracting electrons from the electrode, a reaction for generating hydrogen ions from the methanol and water is allowed to proceed on the electrode, and the generated hydrogen ions are converted into the cation exchange membrane.
- a hydrogen generation method characterized in that an electrode provided on the other side of a pair of opposed surfaces is converted into hydrogen molecules by supplying electrons.
- Water or steam is supplied to the fuel electrode together with methanol as fuel, and the fuel is burned through an external circuit. By applying a voltage to extract electrons from the fuel electrode,
- Patent Document 2 describes the generation of hydrogen by this method. An invention of a fuel cell using hydrogen is described (paragraphs [0052] to [00 56]). According to the inventions described in Patent Documents 1 and 2, hydrogen can be generated at a low temperature (Patent Document 1, paragraph [0042], Patent Document 2, paragraph [0080]). Therefore, it is necessary to apply a voltage, and hydrogen is generated on the counter electrode side of the fuel electrode (fuel electrode), and does not supply oxidant to the counter electrode. This is clearly different from the passive hydrogen production system.
- the proton generated at the anode 11 12 serving as the fuel electrode permeates the diaphragm 110 and acts as a counter electrode.
- Hydrogen is generated at the sword 1 14, with the fuel electrode as the anode and the counter electrode as the power sword, voltage is applied from the DC power source 120, and organic fuel such as methanol is pumped at the anode 1 (fuel electrode) 1 1 2 is supplied for electrolysis, and hydrogen is generated on the opposite side of the fuel electrode and not for supplying oxidant to the counter electrode. It is clearly different from the device.
- Patent Document 4 describes that in a fuel cell system, a hydrogen generating electrode for generating hydrogen is provided (Claim 1).
- “Porosic electrode (fuel electrode) 1 contains alcohol and water.
- air is supplied to the gas diffusion electrode (oxidant electrode) 2 on the opposite side, and a load is connected between the terminal of the porous electrode 1 and the terminal of the gas diffusion electrode 2, the normal fuel An electrical connection is established such that a positive potential is applied to porous electrode 1 via a load from gas diffusion electrode 2 which is the positive electrode of ME A 2 having the battery function, and as a result, alcohol reacts with water.
- Carbon dioxide and hydrogen ions are generated, and the generated hydrogen ions are generated as hydrogen gas at the central gas diffusion electrode 6 via the electrolyte layer 5.
- a voltage is applied by using a reactor equipped with a diaphragm in which an anode (electrode A) and a cathode (electrode B) are formed through a proton conductive membrane (ion conductor), or applied.
- the invention of a method for oxidizing alcohol (methanol) without taking out electric energy or taking out electric energy is also known (see Patent Documents 5 and 6). In either case, the alcohol is oxidized using an electrochemical cell. It is related to the process (products are carbonic acid diester, formalin, methyl formate, dimethoxymethane, etc.), and is not a process that generates hydrogen as a reduction product from the viewpoint of alcohol.
- Patent Document 5 JP-A-6-73582 (Claims 1 to 3, paragraph [0050])
- Patent Document 6 JP-A-6_73583 (claims 1, 8, paragraphs [0006 ⁇ ], [00 1 9] ])
- any of the above-mentioned technologies forcibly supplies liquid fuel such as methanol to the fuel electrode with a pump or the like, and thus requires auxiliary energy for driving the pump or the like. It was. In addition, there is a limit to downsizing the system.
- liquid fuel direct supply fuel cells direct methanol fuel cells
- capillary action capillary force
- gravity drop for example, Patent Documents 7 and 8.
- air to the air electrode by natural diffusion or natural convection (see, for example, Patent Documents 9 and 11).
- Patent Document 7 Japanese Patent Application Laid-Open No. 59-66066 'Patent Document 8: Japanese Patent Application Laid-Open No. 6-188008
- Patent Document 9 Japanese Unexamined Patent Publication No. 2003-272697
- Patent Document 10 Japanese Patent Laid-Open No. 2003-28891 8
- Patent Document 11 Japanese Patent Laid-Open No. 2004-253197 According to the inventions described in Patent Documents 7 to 11, a pump for supplying liquid fuel to the fuel electrode and a blower for supplying air to the air electrode are not required, and it is small in size and has auxiliary energy. Passive direct methanol fuel cells that are not required can be obtained, but they all relate to fuel cells and do not suggest application to hydrogen production equipment.
- Non-patent Documents 1 and 2 states that "Hydrogen generation not only reduces the power output in the operating cell, but also continuously consumes fuel in an open circuit condition.” Therefore, it is important that the DM FC keep supplying oxygen to the power sword at both the operating and standby levels. ” For DM FCs with A area, the hydrogen caused by the system's shirtdown and startup Neither is intended to produce hydrogen because they conclude that they need to be careful about accumulation.
- Non-Patent Document 1 Electrochemical and Solid-State Letters, 8 (1) A52-A54 (2005)
- Non-Patent Document 2 Electrochemical and Solid-State Letters, 8 (4) A211-A214 (2005) Disclosure of the Invention
- the present invention solves the problems as described above, and can produce a gas containing hydrogen at a low temperature, and is small in size, and uses a passive hydrogen production apparatus that does not require auxiliary energy. It is an object of the present invention to provide a packaged fuel cell power generator. Means for solving the problem.
- the present invention employs the following means. (1) In a hydrogen production apparatus that decomposes a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, and a fuel containing organic matter and water in the fuel electrode Or means for supplying by gravity drop, an oxidizing electrode provided on the other surface of the diaphragm, means for supplying an oxidizing agent to the oxidizing electrode, and means for generating and taking out gas containing hydrogen from the fuel electrode side.
- the passive-type hydrogen production apparatus characterized by providing the area
- a hydrogen production apparatus for decomposing a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, and supplying a fuel containing organic matter and water to the fuel electrode Means, an oxidizing electrode provided on the other surface of the diaphragm, means for supplying air as an oxidizing agent to the oxidizing electrode by natural diffusion or natural convection, and means for generating and taking out a gas containing hydrogen from the fuel electrode side.
- a passive hydrogen production apparatus characterized in that a region where the supply of the oxidizing agent is insufficient is provided on the oxidation electrode side.
- the means for supplying the air by natural diffusion or natural convection has an air intake facing the air electrode that is the oxidation electrode, and has an adjustment valve at the air intake.
- the passive type hydrogen production apparatus has an air intake facing the air electrode that is the oxidation electrode, and has an adjustment valve at the air intake.
- the passive hydrogen production apparatus according to any one of (2) to (4), further including a fan for assisting natural diffusion or natural convection of the air.
- a hydrogen production apparatus for decomposing a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, and supplying a fuel containing organic matter and water to the fuel electrode Means, an oxidation electrode provided on the other surface of the diaphragm, means for supplying a liquid containing hydrogen peroxide as an oxidant to the oxidation electrode by capillary force or gravity drop, and generating a gas containing hydrogen from the fuel electrode side.
- a passive-type hydrogen production apparatus comprising a means for taking out and providing a region where supply of the oxidizing agent is insufficient on the oxidation electrode side.
- the region where the supply of the oxidizing agent is insufficient is provided without using an oxidation electrode separator having a flow channel for flowing the oxidizing agent.
- the passive hydrogen production apparatus according to any one of (1) to (18), further comprising means for taking out electric energy to the outside using the fuel electrode as a negative electrode and the oxidation electrode as a positive electrode.
- the passive hydrogen according to any one of (1) to (18), characterized in that it has means for applying electric energy from outside using the fuel electrode as a force sword and the oxidation electrode as an anode. Manufacturing equipment.
- the amount of the gas containing hydrogen is adjusted by adjusting a voltage between the fuel electrode and the oxidation electrode, wherein any one of the above (1) to (22) Passive hydrogen production equipment.
- the organic substance supplied to the fuel electrode is one or two or more organic substances selected from the group consisting of alcohol, aldehyde, carboxylic acid, and ether. 25) Any one of the passive hydrogen production apparatuses.
- diaphragm is a proton conductive solid electrolyte membrane
- the passive hydrogen production apparatus is connected to a passive solid polymer fuel cell, and the passive type polymer fuel cell is passively connected to the fuel electrode.
- a package type fuel cell power generator characterized by supplying a gas containing hydrogen produced by a hydrogen production device.
- the passive hydrogen production apparatus is connected to an active solid polymer fuel cell, and passively connected to the fuel electrode of the active solid polymer fuel cell.
- a package type fuel cell power generator characterized by supplying a gas containing hydrogen produced by a type hydrogen production device.
- masking shape strips and spots can be adopted as in (1 2) and (1 3), and as the masking material, resin can be adopted as in (14).
- As a means of masking force capable of adopting impregnation, coating and screen printing as in the above (14) and (15)
- Masking shape, material and means are not limited to these, Any shape, material, and means may be included as long as the region where the supply of the oxidizing agent is insufficient can be formed on the side.
- the passive hydrogen production apparatus has means for supplying fuel and an oxidant to the hydrogen production cell.
- the passive hydrogen production apparatus has means for supplying fuel and an oxidant to the hydrogen production cell.
- electric energy is supplied to the hydrogen production cell. Electrolytic means for applying is provided.
- the case (19) is an open circuit type that does not have a discharge control means for taking out electric energy from the hydrogen production cell and an electrolysis means for applying electric energy to the hydrogen production cell.
- the passive hydrogen production apparatuses of (1) to (6) include the passive hydrogen production apparatuses of (19) to (21). Furthermore, these passive hydrogen production apparatuses monitor the voltage of the hydrogen production cell and / or the generation amount of gas containing hydrogen, and supply and concentration of fuel and oxidant, as well as electric energy to be extracted (20 )) Or applied electric energy (in the case of (21) above).
- the basic structure of the hydrogen production cell constituting the passive hydrogen production apparatus is that a fuel electrode is provided on one surface of the diaphragm, and fuel is supplied to the fuel electrode. A structure for supplying an oxide electrode on the other surface of the diaphragm, and a structure for supplying an oxidizing agent to the oxide electrode.
- the fuel can be reformed at a temperature much lower than the conventional reforming temperature from room temperature to 1 oo ° C or less. It requires less energy, and the gas containing hydrogen does not contain nitrogen in the air, or the amount of contamination is very low and does not contain CO. If a gas is obtained and a CO removal process is not required, a lame effect is obtained.
- the passive hydrogen production apparatus of the present invention can generate hydrogen without supplying electric energy to the hydrogen production cell from the outside, but even if it has a means for taking out electric energy, Hydrogen can be generated even when a means for applying electrical energy is provided.
- the electrical energy can be used effectively.
- process control is possible by monitoring the voltage of the hydrogen production cell and / or the amount of gas containing hydrogen, thereby reducing the size of the hydrogen production equipment. As a result, the cost of the apparatus can be reduced.
- a pump for supplying liquid fuel to the fuel electrode and a blower for supplying air to the air electrode are not necessary, auxiliary energy can be saved, and a package using hydrogen production equipment and hydrogen production equipment.
- the type fuel cell power generator can be further reduced in size.
- FIG. 1 (a) is a diagram showing an example of a passive hydrogen production apparatus having a regulating valve at the air intake.
- FIG. 1 (b) is a diagram showing an example of a passive hydrogen production apparatus having a sliding air intake.
- FIG. 1 (c) is a diagram showing an example of a passive hydrogen production apparatus having a fan for assisting natural diffusion or natural convection.
- FIG. 1 (d) is a front view of a passive hydrogen production apparatus having a large number of air intake ports used in the examples. .
- FIG. 1 (e) is a perspective view of a passive hydrogen production apparatus having a large number of air intake ports used in the examples.
- FIG. 2 is a schematic diagram showing a reaction in the discharge region of the fuel electrode and the air electrode of the passive hydrogen production apparatus of the present invention.
- FIG. 3 is a schematic view showing the reaction in the hydrogen generation region of the fuel electrode and the air electrode of the passive hydrogen production apparatus of the present invention.
- FIG. 4 is a schematic view showing the total reaction at the fuel electrode and the air electrode of the passive hydrogen production apparatus of the present invention.
- FIG. 5 is a schematic view showing an example of MEA in which a mask is provided on a part of the surface of the air electrode used in the passive hydrogen production apparatus of the present invention.
- FIG. 6 is a schematic view showing an example of ME A in which a mask is provided on a part of the surface of the fuel electrode.
- FIG. 7 is a schematic view showing an example of MEA in which a mask is provided on part of the surface of the fuel electrode and the air electrode so as to face the same position.
- FIG. 8 is a schematic view showing an example of ME A provided with a mask on a part of the surface of the fuel electrode and the air electrode so as not to face the opposite positions. .
- Fig. 9 shows the mask facing part of the surface of the fuel electrode and air electrode, with only part of the mask facing. It is the schematic which shows an example of ME A provided by shifting by half so that.
- FIG. 10 is a schematic diagram showing the width, interval, and number of masks provided on part of the surfaces of the fuel electrode and the air electrode.
- FIG. 11 is a schematic view showing M EA used in the hydrogen production cell of the example of the present invention.
- Fig. 12 is a schematic diagram showing an example in which the gas diffusion layer of the air electrode is made non-uniform by combining different materials.
- Fig. 13 is a schematic diagram showing an example in which the gas diffusion layer of the air electrode is made non-uniform by the combination of density.
- Fig. 14 is a schematic diagram showing an example in which the gas diffusion layer of the air electrode is made uneven due to surface irregularities.
- Fig. 15 is a diagram showing an example of a passive hydrogen production system that naturally diffuses both fuel and air.
- Fig. 16 is a diagram showing an example of a passive hydrogen production system in which fuel is naturally dispersed and air is supplied by a blower.
- Fig. 17 is a diagram showing an example of a passive hydrogen production system in which fuel is supplied by a pump and air is naturally diffused.
- FIG. 18 is a diagram showing the relationship between the open voltage and the hydrogen production rate when hydrogen is generated using a passive hydrogen production system that naturally diffuses both fuel and air.
- FIG. 19 is a diagram showing an example of a packaged fuel cell power generation apparatus in which a passive hydrogen production apparatus is connected to a passive polymer electrolyte fuel cell.
- Fig. 20 is a diagram showing an example of a packaged fuel cell power generation device in which a passive hydrogen production device is connected to a passive solid polymer fuel cell (with a carbon dioxide absorber in the vicinity of the fuel electrode). is there.
- FIG. 21 is a diagram showing an example of a packaged fuel cell power generator in which a passive hydrogen production device is connected to an active polymer electrolyte fuel cell.
- Fuel cartridge 1 7 Member made of capillary material (porous material).
- the passive hydrogen production apparatus of the present invention is fundamentally novel, and what is described below is only one form, and the present invention is not limited thereby.
- the present inventors have developed a hydrogen production device (Japanese Patent Application No. 2004-367792) that uses a cell with the same structure as a conventional direct methanol fuel cell to decompose fuel containing organic matter and produce gas containing hydrogen.
- a passive-type hydrogen production system and a packaged fuel cell power generation system Japanese Patent Application No. 2005-148774.
- an oxidation electrode separator provided with a flow channel for flowing an oxidant is used, but without using a separator, It was discovered that hydrogen was generated by providing a region where the supply of oxidant was insufficient on the oxidation electrode side, and the invention of a hydrogen production device, etc. (Japanese Patent Application No. 2005-164145) was completed. Relates to the improved invention.
- Fig. 1 (a) to Fig. 1 (c) show an example of the passive hydrogen production apparatus of the present invention.
- This example has means for supplying a fuel containing organic matter and water to the fuel electrode of the hydrogen production cell by capillary force.
- the structure of the hydrogen production cell (10) has a fuel electrode (12) on one side of the diaphragm (11), and a flow path for supplying fuel (aqueous methanol solution) containing organic matter and water to the fuel electrode (12). (13), an oxidation electrode (14) provided on the other surface of the diaphragm (1 1), and a flow path (15) for supplying oxidant (air) to the oxidation electrode (14) Is.
- an organic or inorganic fiber material such as paper, cotton, synthetic fiber, asbestos, or glass is used as a base material in the flow path (1 3) for supplying fuel.
- a member (17) made of the capillary material (porous body) is arranged, and the capillary force of the capillary material sucks up fuel from the fuel cartridge (16) and supplies it to the fuel electrode (12).
- masks (12M) and (14M) face only part of the gas diffusion layers of the fuel electrode (12) and air electrode (14), and only parts of the masks (12M) and (14M) face each other.
- the fuel is supplied from the part other than the mask (12M) to the fuel electrode (12), and the air supply to the air electrode (14) is insufficient as will be described later. Is formed.
- a fuel cartridge ( 16 ) is provided at the top, and the fuel is supplied to the fuel electrode by dropping the fuel through the fuel guide.
- the amount of fuel supply can be adjusted by changing the position of the fuel tank in the case of gravity drop or by providing a valve structure at the outlet of the fuel tank. It can be adjusted by changing the material of the material.
- a liquid containing hydrogen peroxide as an oxidizer, it contains organic matter.
- a liquid containing hydrogen peroxide can be supplied to the oxidation electrode by capillary force or gravity drop.
- the amount of hydrogen-containing gas generated varies greatly depending on the supply amount, so optimal hydrogen generation can be achieved by adjusting the supply amount as described above. It is preferable to adjust so that it may become quantity.
- the passive hydrogen production apparatus of the present invention can be used when the oxidant is air.
- air can be supplied to the oxidation electrode (air electrode) by natural diffusion or natural convection.
- FIG. 1 (d) and 1 (e) show a large number of air intakes.
- a regulating valve (19) is installed in part or all of the inlet of the air intake port (18). It is preferable to adjust so that the optimal hydrogen generation amount is obtained by providing a slide member (20) at the air intake (18) and providing a slide-type air intake.
- the passive hydrogen production apparatus of the present invention supplies air to the air electrode by natural diffusion or natural convection, it does not require auxiliary equipment such as a blower for supplying air to the air electrode.
- auxiliary equipment such as a blower for supplying air to the air electrode.
- a fan (21) for assisting natural diffusion or natural convection may be provided.
- the hydrogen generation reaction mechanism in the passive hydrogen production apparatus of the present invention is estimated as follows.
- discharge region In the region of sufficient supply of oxidant (oxygen) provided on the oxidation electrode (air electrode) side (hereinafter referred to as “discharge region”), the following discharge reaction in a normal fuel cell, that is, as shown in FIG. Thus, reaction (A) occurs on the fuel electrode side and reaction (B) occurs on the air electrode side. '
- the invention according to claim 20 of the present application “having means for taking out electric energy to the outside with the fuel electrode as a negative electrode and the oxidation electrode as a positive electrode”
- discharge condition In the case of), hydrogen is considered to be generated by a mechanism similar to the hydrogen generation mechanism under open circuit conditions. However, unlike in the case of open circuit conditions, it is necessary to maintain the electrical neutral conditions of the entire cell by moving H + corresponding to the discharge current from the fuel electrode to the air electrode.
- the reaction (A) is likely to proceed faster (more) than the reaction (D) at the air electrode than the reaction (D).
- the invention according to claim 21 of the present application “having means for applying electric energy from the outside with the fuel electrode as a force sword and the oxidation electrode as an anode” Hydrogen production apparatus (hereinafter referred to as “charging condition”). In this case, hydrogen is considered to be generated by a mechanism similar to the hydrogen generation mechanism under open circuit conditions.
- reaction (C) is faster than the reaction (C)
- reaction (D) is faster (more) than the reaction (B) at the air electrode.
- ME A membrane-electrode assembly
- ME A membrane-electrode assembly
- the manufacturing method of ME A as shown in Fig. 5 to Fig. 9 is not limited, but the anode (1 2) consisting of the anode catalyst layer and gas diffusion layer, the air electrode catalyst layer and gas diffusion
- the air electrode (14) composed of layers can be manufactured by a method similar to the conventional method in which both sides of the diaphragm (11) are bonded by hot pressing.
- hydrogen is not generated when a mask is provided in part of the gas diffusion layer of the fuel electrode (12) and air electrode (14) so as to face the same position.
- a hydrogen generation region is formed by providing a mask (14M) in a part of the gas diffusion layer of the air electrode (14), but a mask is formed in the corresponding region of the fuel electrode (12).
- (1 2M) is provided, so it is thought that methanol does not diffuse for the reaction of (D), and hydrogen generation reaction (C) does not occur.
- hydrogen is not generated when a mask is provided in part of the gas diffusion layer of the fuel electrode (12) and air electrode (14) so as not to face the opposite positions.
- masks (1 2M) and (1 4 M) are applied to part of the gas diffusion layer of the fuel electrode (1 2) and air electrode (14), and masks (1 2 M) and (1 If only a part of (4 M) is placed in the opposite direction, a discharge region (1) and a hydrogen generation region (2) are formed, and a discharge reaction occurs in the region (1). Since hydrogen generation reaction occurs in the region of 2), hydrogen is generated.
- the shape of the masking is not limited, but it can be formed in a strip shape as shown in Fig. 10. Masking may be performed in spots.
- the amount of gas containing hydrogen can be adjusted by appropriately setting the width, interval, number, etc., of the strip-shaped masks, the size, number, etc. of the speckled masks.
- a resin such as an epoxy resin can be used as the masking material. Further, as a masking means, it is possible to carry out simply by impregnating the gas diffusion layer, coating, screen printing, sticking a seal, and the like.
- the gas diffusion layer may be formed densely, the gas diffusion layer may be combined with different materials, or irregularities may be formed on the surface of the gas diffusion layer.
- the electrode gas diffusion layer By making the electrode gas diffusion layer non-uniform, a region where the supply of the oxidizing agent is insufficient can be provided on the oxidation electrode side.
- a proton conductive solid electrolyte membrane used as a polymer electrolyte membrane in a fuel cell can be used as the hydrogen production apparatus of the invention.
- the proton conductive solid electrolyte membrane is preferably a perfluorocarbon sulfonic acid-based membrane having a sulfonic acid group, such as a DuPont Nafion membrane.
- the fuel electrode and the oxidation electrode are preferably electrodes having conductivity and catalytic activity.
- a catalyst and PTFE resin supported on a carrier made of carbon powder or the like in a gas diffusion layer It can be prepared by applying and drying a catalyst paste containing a binder such as a naphthoion solution and a substance for imparting ionic conductivity.
- the gas diffusion layer is preferably made of carbon paper that has been subjected to water repellent treatment.
- Any fuel electrode catalyst can be used, but a catalyst in which a platinum-ruthenium alloy is supported on carbon powder is preferable.
- Any air electrode catalyst can be used, but a catalyst in which platinum is supported on carbon powder is preferred.
- the amount of gas containing hydrogen tends to depend on the voltage between the fuel electrode and the oxidation electrode (air electrode). Therefore, the open circuit conditions, discharge conditions, and charge conditions In either case, the amount of gas containing hydrogen can be adjusted by adjusting the voltage (open circuit voltage or operating voltage) between the fuel electrode and the oxidation electrode (air electrode).
- the open circuit voltage or operating voltage and the amount of gas containing Z or hydrogen can be adjusted by adjusting the supply of oxidant (air, oxygen, etc.), adjusting the concentration of oxidant, and organic matter. It can be adjusted by adjusting the amount of fuel containing fuel and adjusting the concentration of fuel containing organic matter.
- oxidant air, oxygen, etc.
- concentration of oxidant and organic matter.
- the electrical energy extracted outside adjust the electrical energy extracted outside (adjust the current extracted outside, and use a power source capable of constant voltage control, a so-called potentio stud. Therefore, in the case of charging conditions, adjust the electric energy to be applied (by adjusting the applied current, and further, the power supply capable of constant voltage control).
- the operating voltage and the amount of gas containing hydrogen or hydrogen can be adjusted.
- the fuel containing organic matter can be decomposed at 1 oo ° C. or lower, so that the operating temperature of the hydrogen production apparatus can be made 10 ° C. or lower.
- the operating temperature is preferably 30 to 90 ° C.
- the present invention is advantageous in this respect because it is necessary to separately use a means for separating hydrogen.
- the present invention operates the hydrogen production apparatus of the present invention at a temperature slightly exceeding 100 ° C. It is not a denial of making it happen.
- the fuel containing organic matter may be a liquid or gaseous fuel that passes through a Proton conductive membrane and is oxidized electrochemically to produce Proton, such as methanol
- a liquid plate containing an alcohol such as ethanol, ethylene glycol or 2-propanol, an aldehyde such as formaldehyde, a carboxylic acid such as formic acid, or an ether such as jetyl ether is preferred.
- fuel containing organic matter is supplied together with water, a solution containing alcohol and water, and an aqueous solution containing methanol is preferred.
- the aqueous solution containing methanol as an example of the fuel described above is a solution containing at least methanol and water, and the concentration thereof can be arbitrarily selected in a region where a gas containing hydrogen is generated.
- a gas or liquid oxidant can be used as the oxidant.
- Gas oxidation As the agent, a gas containing oxygen or oxygen is preferable. The oxygen concentration of the gas containing oxygen is
- a liquid containing hydrogen peroxide is preferred as the liquid oxidant.
- a fuel circulation means is provided to increase the conversion rate to hydrogen. It is preferable.
- the passive hydrogen production apparatus of the present invention includes means for extracting a gas containing hydrogen from the fuel electrode side, and recovers hydrogen, but it is also preferable to recover carbon dioxide. Since it operates at a temperature as low as 10 ° C. or less, a carbon dioxide absorption part that absorbs carbon dioxide contained in a gas containing hydrogen can be provided by simple means.
- reference examples of the present invention hydrogen production examples
- the ratio of the catalyst, PTFE, naphthion, etc., the thickness of the catalyst layer, gas diffusion layer, electrolyte membrane, etc. can be appropriately changed. It is not limited by.
- a hydrogen production cell was prepared as follows.
- a DuPont proton conductive electrolyte membrane (Nafion 1 115) was used as the electrolyte, and carbon paper (Toray) was immersed in the 5% polytetrafluoroethylene dispersion at the air electrode.
- An air electrode catalyst prepared by mixing the air electrode catalyst (platinum-supported carbon: made by Tanaka Kikinzoku), PTF E 'fine powder, and 5% Nafion solution (made by Aldrich) on one side. The paste was applied to form a gas diffusion layer with an air electrode catalyst.
- the weight ratio of the air electrode catalyst, PTFE, and Nafion was set to 65%: 15%: 20%. Air electrode produced in this way
- the amount of the catalyst was 1 mgZcm 2 in terms of platinum.
- the effective electrode area of MEA produced in this way was 60.8 cm 2 (80 mm long and 76 mm wide).
- the thickness of the catalyst layer of the air electrode and fuel electrode after fabrication, and the thickness of the gas diffusion layer of the air electrode and fuel electrode were approximately the same at about 30 ⁇ and 1.70
- the outline of the prepared ME A is shown in Fig. 11.
- the MEA created in this way is provided with an air electrode side end plate with an air inlet and an air outlet on the air electrode side through silicon rubber, and the fuel inlet and fuel exhaust on the fuel electrode side.
- a fuel electrode side end braid provided with an outlet is arranged via silicon rubber, stacked and sandwiched so that fuel is supplied to the surface of the fuel electrode, so that air is supplied to the surface of the air electrode.
- a space was provided.
- silicon rubber packing was provided around the fuel and air electrodes. In order to measure the potential of each electrode, a stainless steel foil in contact with the electrode was inserted between the packing and MEA.
- the hydrogen S cell made in this way is installed in a hot air circulation type electric furnace, the cell temperature (operating temperature) is 50 ° C, the air is supplied to the air electrode side at a flow rate of 10-50 ml / min, fuel A 1M aqueous methanol solution (fuel) was flowed to the pole side at a flow rate of 5.0 m 1 min, and the voltage difference (open voltage) between the fuel electrode and the air electrode at that time and the amount of gas generated on the fuel electrode side were measured. . ⁇ Underwater displacement method was used to measure the amount of gas generated. In addition, the hydrogen concentration in the generated gas The hydrogen production rate was determined by analysis by S-chromatography.
- the rate of hydrogen generation (hydrogen generation amount) tends to depend on the open circuit voltage.
- a hydrogen production cell was prepared in the same manner as in Reference Example 1 except that it was placed so as to face the same position, and the amount of gas generated on the fuel electrode side was measured as in Reference Example 1.
- a strip mask with a width of 5 mm is spaced at intervals of 5 mm.
- a hydrogen production cell was prepared in the same manner as in Reference Example 1 except that 8 electrodes were provided on the electrode and 6 electrodes were provided on the air electrode so as not to face each other, and gas generated on the fuel electrode side as in Reference Example 1 The amount was measured. '
- a hydrogen production cell was prepared in the same manner as in Reference Example 1 using ME A prepared in a separate outlet, and the amount of gas generated on the fuel electrode side was measured in the same manner as in Reference Example 1.
- the hydrogen generation rate (hydrogen generation amount) tended to depend on the open circuit voltage, and it was found that hydrogen was generated at an open circuit voltage of 400 to 60 mV. The peak of hydrogen production rate was observed around 47 mV. (Reference Example 4)
- Fig. 12 shows a polyimide sheet (air blocking layer) with a width of 1 O mm and carbon paper (air permeable layer: gas diffusion layer with an air electrode catalyst) with a width of 1 O mm on the air electrode side of the electrolyte membrane.
- the carbon film gas diffusion layer with fuel electrode catalyst
- a MEA was prepared in the same manner as in Example 1 except that bonding was performed using
- the thickness of the polyimide sheet was 1 30 ⁇ m before and after pressing, and the thickness of the carbon paper was 2 80 ⁇ ⁇ before pressing and 1 65 ⁇ m after pressing (polyimide sheet). Can be restored by pressing).
- the thickness of the catalyst layer of the air electrode and fuel electrode after pressing was about 30 ⁇ m, respectively.
- a thin carbon paper (gas diffusion layer with air electrode catalyst) with a width of 1 O mm and a thickness of 190 ⁇ m and a thick carbon paper with a width of 1 O mm and a thickness of 3 3 5 ⁇ on the air electrode side of the electrolyte membrane.
- a thin carbon paper (a gas diffusion layer with a fuel electrode catalyst) with a thickness of 190 ⁇ m is placed on the fuel electrode side of the electrolyte membrane.
- MEA was produced in the same manner as in Example 1 except that bonding was performed by hot pressing (simultaneous pressing) at 140 ° C. and the same pressing pressure (l OMP a).
- the thickness of the carbon paper that is the gas diffusion layer of the air electrode before and after pressing is 1 90 ⁇ 0 ⁇ 1 65 m, 3 3 5 ⁇ ⁇ ⁇ 1 8 5 ⁇ ⁇ , which is almost the same thickness. Therefore, the carbon paper is a combination of sparse and dense (thin carbon paper, sparse, thick carbon paper ⁇ dense) as shown in Fig. 13. Air electrode and fuel after pressing Each of the electrode catalyst layers had a thickness of about 30 ⁇ .
- a hydrogen production cell was produced using ME ME thus produced in the same manner as in Reference Example 1, except that the flow rate of air flowing to the air electrode side was in the range of 10 to 90 m 1 / min. Using the same conditions as in Example 1, the amount of gas generated on the fuel electrode side was measured. The results are shown in Table 8.
- a thin carbon paper (gas diffusion layer with an air electrode catalyst) with a width of 1 Omm and thickness of 1 90 ⁇ m is arranged with a gap of 1 Omm, and on the fuel electrode side of the electrolyte membrane.
- a thin carbon paper (gas diffusion layer with fuel electrode catalyst) with a thickness of 1 90 ⁇ is placed on the entire surface, hot-pressed at 140 ° C and 10 MPa pressure, and then into the 1 Omm gap.
- the thickness of the carbon paper that is the gas diffusion layer of the air electrode before and after pressing is 1 90 m ⁇ 1 40 m, 3 3 5 ⁇ m ⁇ 2 1 5 ⁇ m, and the unevenness (thin carbon paper ⁇ ⁇ concave, thick carbon paper ""> It is a carbon paper with protrusions.
- the thickness of the catalyst layer of the air electrode and fuel electrode after pressing was about 30 ⁇ respectively.
- a hydrogen production cell was produced using ME ⁇ thus produced in the same manner as in Reference Example 1, except that the flow rate of air flowing to the air electrode side was in the range of 10 to 9 O m 1 Z.
- the amount of gas generated on the fuel electrode side was measured using the same conditions as in Reference Example 1. The results are shown in Table 9.
- a flow path is provided to allow air to flow and fuel to flow, respectively.
- Natural diffusion with fuel and air (Fig. 15)
- Three types of passive hydrogen production equipment were prepared: natural diffusion of fuel, supply of air by blower (Fig. 16), supply of fuel by pump, and natural diffusion of air (Fig. 17).
- a means of natural fuel diffusion as shown in FIGS. 15 and 16, a member made of a capillary material is arranged in a flow path for supplying fuel, and the capillary of the capillary material is arranged.
- a means was used to suck up fuel from the fuel cartridge by force and supply it to the fuel electrode.
- As a means of natural air diffusion as shown in Fig. 15 and Fig. 17, we adopted a means to naturally diffuse air by forming a number of air intakes facing the air electrode.
- the hydrogen production device shown in Fig. 15 was used to supply air from the air intake port to the air electrode side by natural diffusion at an operating temperature of 30 ° C, without using an air blower or fuel pump. Then, the 1.OM methanol aqueous solution (fuel) in the fuel cartridge is supplied to the fuel electrode side, the voltage difference between the fuel electrode and the air electrode (open voltage) at that time, and the hydrogen generation rate generated on the fuel electrode side Study was carried out.
- Open circuit voltage (open voltage) Hydrogen generation from the fuel electrode side of the cell was confirmed at around 50 mV.
- the passive hydrogen production apparatus of the present invention is connected to a passive solid polymer fuel cell (2 2) to connect the fuel electrode of the passive solid polymer fuel cell (2
- a passive solid polymer fuel cell (2 2) By supplying a gas containing hydrogen produced by a passive hydrogen production device to 4), a package type fuel cell power generation device can be obtained.
- Passive solid The polymer fuel cell (2 2) has a fuel electrode (2 4) on one side of the diaphragm (2 3) and an air electrode (2 5) on the other side of the diaphragm (2 3). Conventional ones can be used.
- an alkali for absorbing carbon dioxide contained in the gas containing hydrogen It is preferable to provide a carbon dioxide absorption part (2 6) made of zeolite.
- the passive hydrogen production apparatus of the present invention has a conventional active solid polymer fuel cell (2 7) having a fuel pump (2 8) and an air blower (2 9). ) And supplying a gas containing hydrogen produced by a passive hydrogen production device to the fuel electrode of an active solid polymer fuel cell, thereby providing a packaged fuel cell power generator. .
- a carbon dioxide absorption section is provided between the hydrogen production cell (1 0) and the radiator (3 0) of the passive hydrogen production apparatus. Can also be provided.
- the package type fuel cell power generation apparatus using the passive hydrogen production apparatus of the present invention as described above does not require any special means for protecting the control device built in the package from the heat generated by the hydrogen production apparatus. Furthermore, since the entire device including the fuel cell does not generate much heat, it is extremely advantageous when used as a mobile power source or an on-site power source.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Disclosed is a passive hydrogen generator for generating a gas containing hydrogen by decomposing a fuel containing an organic matter. This hydrogen generator comprises a diaphragm (11), a fuel electrode (12) arranged on one surface of the diaphragm (11), a means for supplying a fuel containing an organic matter and water to the fuel electrode (12), an oxidation electrode (14) arranged on the other surface of the diaphragm (11), a means for supplying an oxidizing agent to the oxidation electrode (14), and a means for generating and taking out a gas containing hydrogen on the fuel electrode side. This hydrogen generator is characterized in that (a) the fuel containing an organic matter and water is supplied to the fuel electrode (12) by capillary force (17) or gravitational fall, (b) the oxidizing agent is the air and supplied to the oxidation electrode (14) by natural diffusion (18) or natural convection, or (c) the oxidizing agent is a liquid containing hydrogen peroxide and supplied to the oxidation electrode (14) by capillary force or gravitational fall. This hydrogen generator is also characterized in that a region (14M) where supply of the oxidizing agent is deficient is provided on the side of the oxidation electrode (14).
Description
明細書 パッシブ型水素製造装置及びそれを用いたパッケージ型燃料電池発電装置 Passive type hydrogen production apparatus and package type fuel cell power generation apparatus using the same
技術分野 . Technical field .
本発明は、 有機物を含む燃料を低温で分解し水素を含むガスを製造するための パッシブ型水素製造装置及びそれを用いたパッケージ型燃科電池発電装置に関す るものである。 背景技術 The present invention relates to a passive hydrogen production apparatus for producing a gas containing hydrogen by decomposing a fuel containing organic substances at a low temperature and a package type fuel cell power generation apparatus using the same. Background art
有機物を含む燃料を低温で分解し水素を含むガスを製造する技術として、 電気 化学的反応により水素を発生させる方法及び装置が知られており、 また、 そのよ うな電気化学的方法により発生した水素を利用した燃料電池が知られている (特 許文献:!〜 4参照)。 As a technique for producing a gas containing hydrogen by decomposing a fuel containing organic matter at a low temperature, a method and an apparatus for generating hydrogen by an electrochemical reaction are known, and hydrogen generated by such an electrochemical method is known. There are known fuel cells that use (see Patent Literature:! ~ 4).
特許文献 1 :特許第 3328993号公報 Patent Document 1: Japanese Patent No. 3328993
•特許文献 2 :特許第 3360349号公報 • Patent Document 2: Japanese Patent No. 3360349
特許文献 3 :米国特許第 6, 299, 744号明細書、米国特許第 6, 368, 492号明細書、 米国特許第 6, 432, 284号明細書、 米国特許第 6, 53 3, 919号明細書、 米国特許公開 2003/0226763号公報 Patent Document 3: US Pat. No. 6,299,744, US Pat. No. 6,368,492, US Pat. No. 6,432,284, US Pat. No. 6,533,919 Description, US Patent Publication No. 2003/0226763
特許文献 4 :特開 2001— 297779号公報 Patent Document 4: JP 2001-297779 A
特許文献 1には、 「陽イオン交換膜の対向する両面に 1対の電極を設け、 一方 に設けられた触媒を含む電極に、 メタノールと水を少なくとも含む燃料を接触さ せ、 前記 1対の電極に電圧を印加して前記電極から電子を取出すことによって前 記電極上で前記メタノールおよび水から水素イオンを発生させる反応を進行さ せ、 発生させた前記水素イオンを、 前記陽イオン交換膜の対向する 1対の面の他 方に設けられた電極において、 電子の供給により水素分子に変換することを特徴 とする、 水素発生方法。」 (請求項 1) の発明が記載され、 また、 燃料用電極に 燃料であるメタノールとともに水または水蒸気を供給し、 外部回路を通じて、 燃
料用電極から電子を引き抜くように電圧を印加することにより、 燃料用電極で、Patent Document 1 states that “a pair of electrodes is provided on both opposing surfaces of a cation exchange membrane, and a fuel containing at least methanol and water is brought into contact with an electrode including a catalyst provided on one side, and the pair of electrodes is contacted. By applying a voltage to the electrode and extracting electrons from the electrode, a reaction for generating hydrogen ions from the methanol and water is allowed to proceed on the electrode, and the generated hydrogen ions are converted into the cation exchange membrane. A hydrogen generation method characterized in that an electrode provided on the other side of a pair of opposed surfaces is converted into hydrogen molecules by supplying electrons. ”(Claim 1) Water or steam is supplied to the fuel electrode together with methanol as fuel, and the fuel is burned through an external circuit. By applying a voltage to extract electrons from the fuel electrode,
CH3〇H+ 2H2〇→C〇2+ 6 e + 6 H +の反応を進行させ、 このようにして 発生した水素イオンを、 陽イオン交換膜を通過させ、 対向電極側で、 6H + +6 e—→3H2により、 水素を選択的に生成させることが示されており (段落 [00 33] 〜 [003 8])、 さらに、 特許文献 2には、 このような方法で発生させ た水素を利用する燃料電池の発明が記載されている (段落 [0052] 〜 [00 56])。 . 特許文献 1及び 2に記载された発明によれば、 低温度で水素を発生させること ができる (特許文献 1の段落 [0042]、 特許文献 2の段落 [0080]) 、 水素を発生させるためには、 電圧を印加する必要があり、 また、 水素が発生する のは燃料用電極 (燃料極) の対向電極側であり、 対向電極に酸化剤を供給するも のではないから、 本発明のパッシプ型水素製造装置とは明らかに異なる。 CH 3 ○ H + 2H 2 ○ → C ○ 2 + 6 e + 6 H + reaction proceeds, the hydrogen ions generated in this way pass through the cation exchange membrane, and on the counter electrode side, 6H + + 6 e— → 3H 2 indicates that hydrogen is selectively generated (paragraphs [00 33] to [003 8]). Further, Patent Document 2 describes the generation of hydrogen by this method. An invention of a fuel cell using hydrogen is described (paragraphs [0052] to [00 56]). According to the inventions described in Patent Documents 1 and 2, hydrogen can be generated at a low temperature (Patent Document 1, paragraph [0042], Patent Document 2, paragraph [0080]). Therefore, it is necessary to apply a voltage, and hydrogen is generated on the counter electrode side of the fuel electrode (fuel electrode), and does not supply oxidant to the counter electrode. This is clearly different from the passive hydrogen production system.
特許文献 3に記載された発明も、特許文献 1及び 2に記載された発明と同様に、 燃料極であるアノード 1 1 2で生成したプロトンが隔膜 1 1 0を透過して、 対極 である力ソード 1 14で水素が発生するものであるが、 燃料極をアノードとし対 極を力ソードとして直流電源 1 20から電圧を印加し、 メタノール等の有機物燃 料をポンプ 1 30でアノード (燃料極) 1 1 2に供給して電気分解するものであ り、 また、 水素が発生するのは燃料極の対極側であり、 対極に酸化剤を供給する ものではないから、 本発明のパッシブ型水素製造装置とは明らかに異なる。 In the invention described in Patent Document 3, as in the inventions described in Patent Documents 1 and 2, the proton generated at the anode 11 12 serving as the fuel electrode permeates the diaphragm 110 and acts as a counter electrode. Hydrogen is generated at the sword 1 14, with the fuel electrode as the anode and the counter electrode as the power sword, voltage is applied from the DC power source 120, and organic fuel such as methanol is pumped at the anode 1 (fuel electrode) 1 1 2 is supplied for electrolysis, and hydrogen is generated on the opposite side of the fuel electrode and not for supplying oxidant to the counter electrode. It is clearly different from the device.
特許文献 4には、 燃料電池システムにおいて、 水素を発生する水素発生極を設 けること (請求項 1) が記載されているが、 「多孔質電極 (燃料極) 1にアルコ 一ルと水を含む液体燃料を供給し、 反対側のガス拡散電極 (酸化剤極) 2に空気 を供給し、多孔質電極 1の端子とガス拡散電極 2の端子との間に負荷をつなぐと、 通常の燃料電池の機能を有する ME A 2の正極であるガス拡散電極 2から負荷を 介して多孔質電極 1に正の電位が印加されるような電気的つながりができる。 そ の結果、 アルコールは水と反応して炭酸ガスと水素イオンが生成し、 生成した水 素ィオンは電解質層 5を経由して、 中央のガス拡散電極 6で水素ガスとして発生 する。ガス拡散電極 6では、もう一つの電解質層 7との界面で電極反応が起こり、 再び水素イオンとなって電解質層 7中を移動し、 ガス拡散電極 2に到達する。 ガ
ス拡散電極 2では、空気中の酸素と反応 て水が生成する。」 (段落 [0007]) と記載されているから、 燃料電池によって発生させた電気エネルギーを用いて水 素発生極 (ガス拡散電極 6) で水素を発生させ、 これを燃料電池に供給するもの であり、 また、 水素が発生するのは燃料極の対極側であるという点では、 特許文 献 1〜3と同じである。 Patent Document 4 describes that in a fuel cell system, a hydrogen generating electrode for generating hydrogen is provided (Claim 1). However, “Porosic electrode (fuel electrode) 1 contains alcohol and water. When the liquid fuel containing is supplied, air is supplied to the gas diffusion electrode (oxidant electrode) 2 on the opposite side, and a load is connected between the terminal of the porous electrode 1 and the terminal of the gas diffusion electrode 2, the normal fuel An electrical connection is established such that a positive potential is applied to porous electrode 1 via a load from gas diffusion electrode 2 which is the positive electrode of ME A 2 having the battery function, and as a result, alcohol reacts with water. Carbon dioxide and hydrogen ions are generated, and the generated hydrogen ions are generated as hydrogen gas at the central gas diffusion electrode 6 via the electrolyte layer 5. In the gas diffusion electrode 6, another electrolyte layer 7 is generated. An electrode reaction occurs at the interface with hydrogen ions again It is to move in the electrolyte layer 7 to reach the gas diffusion electrode 2. Moth The diffusion electrode 2 reacts with oxygen in the air to produce water. (Paragraph [0007]), hydrogen is generated at the hydrogen generation electrode (gas diffusion electrode 6) using the electric energy generated by the fuel cell and supplied to the fuel cell. Yes, it is the same as Patent Documents 1 to 3 in that hydrogen is generated on the opposite side of the fuel electrode.
また、 プロ トン伝導膜 (イオン伝導体) を介してアノード (電極 A) とカソー ド (電極 B) とが形成された隔膜を備えた反応装置を用いて、 電圧を印加し、 若 しくは印加しないで、 又は電気エネルギーを取り出しながら、 アルコール (メタ ノール) を酸化する方法の発明 (特許文献 5及び 6参照) も知られているが、 い ずれも、 アルコールを電気化学セルを用いて酸化させるプロセス (生成物は、 炭 酸ジエステル、 ホルマリン、 蟻酸メチル、 ジメ トキシメタン等) に関するもので あり、 アルコールからみて還元物である水素を発生させるプロセスではない。 特許文献 5 :特開平 6— 73582号公報 (請求項 1〜 3、 段落 [ 0050]) 特許文献 6 :特開平 6_ 73583号公報 (請求項 1、 8、 段落 [ 0006·]、 [00 1 9]) In addition, a voltage is applied by using a reactor equipped with a diaphragm in which an anode (electrode A) and a cathode (electrode B) are formed through a proton conductive membrane (ion conductor), or applied. The invention of a method for oxidizing alcohol (methanol) without taking out electric energy or taking out electric energy is also known (see Patent Documents 5 and 6). In either case, the alcohol is oxidized using an electrochemical cell. It is related to the process (products are carbonic acid diester, formalin, methyl formate, dimethoxymethane, etc.), and is not a process that generates hydrogen as a reduction product from the viewpoint of alcohol. Patent Document 5: JP-A-6-73582 (Claims 1 to 3, paragraph [0050]) Patent Document 6: JP-A-6_73583 (claims 1, 8, paragraphs [0006 ·], [00 1 9] ])
'そして、 上記いずれの技術も、 メタノール等の液体燃料をポンプ等により強制 的に燃料極に供給するものであるから、 このポンプ等の駆動のための補機ェネル ギーを必要とするものであった。 また、 そのために、 システムの小型化に限界が あつに。 'And any of the above-mentioned technologies forcibly supplies liquid fuel such as methanol to the fuel electrode with a pump or the like, and thus requires auxiliary energy for driving the pump or the like. It was. In addition, there is a limit to downsizing the system.
さらに、 液体燃料直接供給形燃料電池 (直接メタノール型燃料電池) について は、 液体燃料を毛細管作用 (毛管力) や重力落下によって燃料極に供給すること が公知であり (例えば、 特許文献 7、 8及び 1 0参照)、 また、 空気を自然拡散 や自然対流によって空気極に供給することが公知である (例えば、 特許文献 9及 び 1 1参照)。 In addition, liquid fuel direct supply fuel cells (direct methanol fuel cells) are known to supply liquid fuel to the fuel electrode by capillary action (capillary force) or gravity drop (for example, Patent Documents 7 and 8). In addition, it is known to supply air to the air electrode by natural diffusion or natural convection (see, for example, Patent Documents 9 and 11).
特許文献 7 :特開昭 59— 66066号公報 ' 特許文献 8 :特開平 6 _ 188008号公報 Patent Document 7: Japanese Patent Application Laid-Open No. 59-66066 'Patent Document 8: Japanese Patent Application Laid-Open No. 6-188008
特許文献 9 :特開 2003— 272697号公報 Patent Document 9: Japanese Unexamined Patent Publication No. 2003-272697
特許文献 1 0 :特開 2003— 28891 8号公報 Patent Document 10: Japanese Patent Laid-Open No. 2003-28891 8
特許文献 1 1 :特開 2004— 2531 97号公報
特許文献 7〜1 1に記載された発明によれば、 液体燃料を燃料極に供給するた めのポンプや空気を空気極に供給するためのブロアが不要になり、 小型で、 補機 エネルギーを必要としないパッシブ型の直接メタノール型燃料電池が得られる が、 いずれも、 燃料電池に関するもので、 水素製造装置に適用することを示唆す るものではない。 Patent Document 11: Japanese Patent Laid-Open No. 2004-253197 According to the inventions described in Patent Documents 7 to 11, a pump for supplying liquid fuel to the fuel electrode and a blower for supplying air to the air electrode are not required, and it is small in size and has auxiliary energy. Passive direct methanol fuel cells that are not required can be obtained, but they all relate to fuel cells and do not suggest application to hydrogen production equipment.
また、 直接メタノール型燃料電池 (DM F C ) に関して、 開回路で酸素欠乏状 態の場合に、 単一セル内で、 電池反応と電解反応が共存し、 酸化極で C H 3 O H + H 2 0→C 0 2 + 6 H + + 6 e—の反応、 燃料極で 6 H + + 6 e—→3 H 2の反応が 生じ、 燃料極側から水素が発生することが非特許文献 1及ぴ 2には示されている が、 非特許文献 1の論文は、 「水素の発生は、 運転中のセルにおける電力のァゥ トプットを減少させるばかりでなく、開回路状態で燃料を連続的に消費するので、 DM F Cが運転中及び待機中のいずれの時でも、 力ソードに酸素を+分かつ一定 に供給し続けることが重要である」 と結論付け、 非特許文献 2の論文も、 「大き な ME A面積を有する DM F Cについては、 システムのシャツトダウン及ぴスタ ートアップによって引き起こされる水素の蓄積に注意する必要がある」 と結論付 けているから、 いずれも、 水素の製造を意図するものではない。 Also, for direct methanol fuel cells (DM FC), when the open circuit is oxygen-deficient, the cell reaction and the electrolysis reaction coexist in a single cell, and CH 3 OH + H 2 0 → Non-patent Documents 1 and 2 that the reaction of C 0 2 + 6 H + + 6 e—, the reaction of 6 H + + 6 e— → 3 H 2 occurs at the fuel electrode, and hydrogen is generated from the fuel electrode side. However, Non-Patent Document 1 states that "Hydrogen generation not only reduces the power output in the operating cell, but also continuously consumes fuel in an open circuit condition." Therefore, it is important that the DM FC keep supplying oxygen to the power sword at both the operating and standby levels. ” For DM FCs with A area, the hydrogen caused by the system's shirtdown and startup Neither is intended to produce hydrogen because they conclude that they need to be careful about accumulation.
非特許文献 1 : Electrochemical and Solid-State Letters,8 (1) A52-A54 (2005) 非特許文献 2 : Electrochemical and Solid-State Letters,8 (4) A211-A214 (2005) 発明の開示 Non-Patent Document 1: Electrochemical and Solid-State Letters, 8 (1) A52-A54 (2005) Non-Patent Document 2: Electrochemical and Solid-State Letters, 8 (4) A211-A214 (2005) Disclosure of the Invention
発明が解決しようとする課題 Problems to be solved by the invention
本発明は、 上記のような問題を解決するものであり、 低温で水素を含むガスを 製造することができ、 しかも、 小型で、 補機エネルギーを必要としないパッシブ 型水素製造装置及びそれを用いたパッケージ型燃料電池発電装置を提供すること を課題とする。 課題を解決するための手段 . The present invention solves the problems as described above, and can produce a gas containing hydrogen at a low temperature, and is small in size, and uses a passive hydrogen production apparatus that does not require auxiliary energy. It is an object of the present invention to provide a packaged fuel cell power generator. Means for solving the problem.
上記課題を解決するために、 本発明においては、 以下の手段を採用する。
( 1 ) 有機物を含む燃料を分解し水素を含むガスを製造する水素製造装置におい て、 隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む 燃料を毛管力又は重力落下によって供給する手段、 前記隔膜の他方の面に設けた 酸化極、 前記酸化極に酸化剤を供給する手段、 燃料極側から水素を含むガスを発 生させて取り出す手段を備えてなり、 かつ、 酸化極側に前記酸化剤の供給の不足 する領域を設けたことを特徴とするパッシブ型水素製造装置。 In order to solve the above problems, the present invention employs the following means. (1) In a hydrogen production apparatus that decomposes a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, and a fuel containing organic matter and water in the fuel electrode Or means for supplying by gravity drop, an oxidizing electrode provided on the other surface of the diaphragm, means for supplying an oxidizing agent to the oxidizing electrode, and means for generating and taking out gas containing hydrogen from the fuel electrode side. And the passive-type hydrogen production apparatus characterized by providing the area | region where supply of the said oxidizing agent is insufficient on the oxidation electrode side.
( 2 ) 有機物を含む燃料を分解し水素を含むガスを製造する水素製造装置におい て、 隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む 燃料を供給する手段、 前記隔膜の他方の面に設けた酸化極、 前記酸化極に酸化剤 として空気を自然拡散又は自然対流によって供給する手段、 燃料極側から水素を 含むガスを発生させて取り出す手段を備えてなり、 かつ、 酸化極側に前記酸化剤 の供給の不足する領域を設けたことを特徴とするパッシブ型水素製造装置。 (2) In a hydrogen production apparatus for decomposing a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, and supplying a fuel containing organic matter and water to the fuel electrode Means, an oxidizing electrode provided on the other surface of the diaphragm, means for supplying air as an oxidizing agent to the oxidizing electrode by natural diffusion or natural convection, and means for generating and taking out a gas containing hydrogen from the fuel electrode side. And a passive hydrogen production apparatus characterized in that a region where the supply of the oxidizing agent is insufficient is provided on the oxidation electrode side.
( 3 ) 前記空気を自然拡散又は自然対流によって供給する手段が、 前記酸化極で ある空気極に面して空気取り入れ口を有し、 前記空気取り入れ口に調整バルブを 有するものであることを特徴とする前記 (2 ) のパッシブ型水素製造装置。 (3) The means for supplying the air by natural diffusion or natural convection has an air intake facing the air electrode that is the oxidation electrode, and has an adjustment valve at the air intake. (2) The passive type hydrogen production apparatus.
( 4 ) 前記空気を自然拡散又は自然対流によって供給する手段が、 前記酸化極で ある空気極に面してスライド式空気取り入れ口を有するものであることを特徴と する前記 (2 ) のパッシブ型水素製造装置。 (4) The passive type of (2), wherein the means for supplying the air by natural diffusion or natural convection has a sliding air intake facing the air electrode as the oxidation electrode. Hydrogen production equipment.
( 5 ) 前記空気の自然拡散又は自然対流を補助するためのファンを有することを 特徴とする前記 (2 ) 〜 (4 ) のいずれか一のパッシブ型水素製造装置。 (5) The passive hydrogen production apparatus according to any one of (2) to (4), further including a fan for assisting natural diffusion or natural convection of the air.
( 6 ) 有機物を含む燃料を分解し水素を含むガスを製造する水素製造装置におい て、 隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む 燃料を供給する手段、 前記隔膜の他方の面に設けた酸化極、 前記酸化極に酸化剤 として過酸化水素を含む液体を毛管力又は重力落下によって供給する手段、 燃料 極側から水素を含むガスを発生させて取り出す手段を備えてなり、 かつ、 酸化極 側に前記酸化剤の供給の不足する領域を設けたことを特徴とするパッシブ型水素 製造装置。 ' (6) In a hydrogen production apparatus for decomposing a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, and supplying a fuel containing organic matter and water to the fuel electrode Means, an oxidation electrode provided on the other surface of the diaphragm, means for supplying a liquid containing hydrogen peroxide as an oxidant to the oxidation electrode by capillary force or gravity drop, and generating a gas containing hydrogen from the fuel electrode side. A passive-type hydrogen production apparatus comprising a means for taking out and providing a region where supply of the oxidizing agent is insufficient on the oxidation electrode side. '
( 7 ) 前記酸化剤の供給の不足する領域を、 前記酸化剤を流すための流路溝を設 けた酸化極セパレータを用いないで設けたことを特徴とする前記 (1 ) 〜 (6 )
のいずれか一のパッシブ型水素製造装置。 (7) In the above (1) to (6), the region where the supply of the oxidizing agent is insufficient is provided without using an oxidation electrode separator having a flow channel for flowing the oxidizing agent. One of the passive type hydrogen production equipment.
(8) 前記酸化剤の供給の不足する領域を、 前記酸化極のガス拡散層に設けたこ とを特徴とする前記 (1) 〜 (7) のいずれか一のパッシブ型水素製造装置。 (8) The passive hydrogen production apparatus according to any one of (1) to (7), wherein a region where the supply of the oxidizing agent is insufficient is provided in a gas diffusion layer of the oxidation electrode.
(9) 前記酸化剤の供給の不足する領域を、 前記酸化極のガス拡散層の一部にマ スキングを行うことによって設けたことを特徴とする前記 (8) のパッシブ型水 素製造装置。 ' (9) The passive hydrogen production apparatus according to (8), wherein the region where the supply of the oxidizing agent is insufficient is provided by masking a part of the gas diffusion layer of the oxidation electrode. '
(10) 前記酸化剤の供給の不足する領域を、 前記燃料極のガス拡散層のみの一 部にマスキングを行うことによって設けたことを特徴とする前記 (1) 〜 (7) のいずれか一のパッシブ型水素製造装置。 (10) Any one of the above (1) to (7), wherein the region where the supply of the oxidant is insufficient is provided by masking only a part of the gas diffusion layer of the fuel electrode. Passive hydrogen production equipment.
(1 1) 前記酸化剤の供給の不足する領域を、 前記酸化極及び前記燃料極の両極 のガス拡散層の一部にマスキングを行うとともに、 その対向する両側のマスキン グの少なくとも一部をずらして行うことによって設けたことを特徴とする前記 (1 1) Masking the region where the supply of the oxidant is insufficient on a part of the gas diffusion layer on both sides of the oxidation electrode and the fuel electrode, and shifting at least a part of the masking on both opposing sides. Characterized in that it is provided by performing
(1) 〜 (9) のいずれか一のパッシブ型水素製造装置。 (1) The passive hydrogen production apparatus according to any one of (9).
(12) 前記マスキングを帯状に行うことを特徴とする前記 (9) 〜 (1 1) の いずれか一のパッシブ型水素製造装置。 (12) The passive hydrogen production apparatus according to any one of (9) to (11), wherein the masking is performed in a band shape.
(13) 前記マスキングを斑点状に行うことを特徴とする前記 (9) 〜 (11) のいずれか一のパッシブ型水素製造装置。 (13) The passive hydrogen production apparatus according to any one of (9) to (11), wherein the masking is performed in a spot shape.
(14) 前記マスキングを前記ガス拡散層に樹脂を含浸または前記ガス拡散層の 表面に樹脂を塗布することによって行うことを特徴とする前記 (9) 〜 (13) のいずれか一のパッシブ型水素製造装置。 (14) The passive-type hydrogen according to any one of (9) to (13), wherein the masking is performed by impregnating the gas diffusion layer with a resin or applying a resin to a surface of the gas diffusion layer. Manufacturing equipment.
(15)前記マスキングをスクリーン印刷により行うことを特徴とする前記(9) 〜 (14) のいずれか一のパッシブ型水素製造装置。 (15) The passive hydrogen production apparatus according to any one of (9) to (14), wherein the masking is performed by screen printing.
(16) 前記酸化剤の供給の不足する領域を、 前記酸化極のガス拡散層を不均一 にして設けたことを特徴とする前記 (8) のパッシブ型水素製造装置。 (16) The passive hydrogen production apparatus according to (8), wherein the region where the supply of the oxidant is insufficient is provided with the gas diffusion layer of the oxidation electrode being non-uniform.
(17) 前記酸化極のガス拡散層を、 疎密に形成するか、 材質の異なるもめを組 み合わせることによって不均一にしたことを特徴とする前記 (16) のパッシブ 型水素製造装置。 ' (17) The passive-type hydrogen production apparatus according to (16), wherein the gas diffusion layer of the oxidation electrode is made non-uniform by forming it densely or by combining seams made of different materials. '
(18) 前記酸化極のガス拡散層を、 表面に凹凸を形成することによって不均一 にしたことを特徴とする前記 (16) 又は (17) のパッシブ型水素製造装置。
(19) 水素製造装置を構成する水素製造セルから外部に電気エネルギーを取り 出す手段及び前記水素製造セルに外部から電気エネルギーを印加する手段を有し ない開回路であることを特徴とする前記 (1) 〜 (18) のいずれか一のパッシ ブ型水素製造装置。 ' (18) The passive hydrogen production apparatus according to (16) or (17), wherein the gas diffusion layer of the oxidation electrode is made uneven by forming irregularities on the surface. (19) The open circuit having no means for taking out electric energy from the hydrogen production cell constituting the hydrogen production apparatus and means for applying electric energy from the outside to the hydrogen production cell. 1) Passive type hydrogen production apparatus according to any one of (18). '
(20) 前記燃料極を負極とし前記酸化極を正極として外部に電気エネルギーを 取り出す手段を有することを特徴とする前記 (1) 〜 (18) のいずれか一のパ ッシブ型水素製造装置。 . (20) The passive hydrogen production apparatus according to any one of (1) to (18), further comprising means for taking out electric energy to the outside using the fuel electrode as a negative electrode and the oxidation electrode as a positive electrode. .
(21) 前記燃料極を力ソードとじ前記酸化極をアノードとして外部から電気工 ネルギーを印加する手段を有することを特徴とする前記 (1) 〜 (18) のいず れか一のパッシブ型水素製造装置。 (21) The passive hydrogen according to any one of (1) to (18), characterized in that it has means for applying electric energy from outside using the fuel electrode as a force sword and the oxidation electrode as an anode. Manufacturing equipment.
(22) 前記燃料極と前記酸化極との間の電圧が 400〜600mVであること を特徴とする前記 (1) 〜 (21) のいずれか一のパッシブ型水素製造装置。 (22) The passive hydrogen production apparatus according to any one of (1) to (21), wherein a voltage between the fuel electrode and the oxidation electrode is 400 to 600 mV.
(23) 前記燃料極と前記酸化極との間の電圧を調整することにより、 前記水素 を含むガスの発生量を調整することを特徴とする前記 (1) 〜 (22) のいずれ か一のパッシブ型水素製造装置。 (23) The amount of the gas containing hydrogen is adjusted by adjusting a voltage between the fuel electrode and the oxidation electrode, wherein any one of the above (1) to (22) Passive hydrogen production equipment.
(24) 前記酸化剤の供給量を調整する'ことにより、 前記燃料極と前記酸化極と の間の電圧及び Z又は前記水素を含むガスの発生量を調整することを特徴とする 前記 (1) 〜 (23) のいずれか一のパッシブ型水素製造装置。 (24) adjusting the supply amount of the oxidant to adjust the voltage between the fuel electrode and the oxidation electrode and the generation amount of gas containing Z or the hydrogen. ) The passive hydrogen production apparatus according to any one of (23).
(25) 運転温度が 100°C以下であることを特徴とする前記 (1) 〜 (24) のいずれか一のパッシブ型水素製造装置。 (25) The passive hydrogen production apparatus according to any one of (1) to (24), wherein the operating temperature is 100 ° C or lower.
(26) 前記燃料極に供給する前記有機物がアルコール、 アルデヒ ド、 カルボン 酸、 及ぴエーテルよりなる群から選択される一種又は二種以上の有機物であるこ とを特徴とする前記 (1) 〜 (25) のいずれか一のパッシブ型水素製造装置。 (26) The organic substance supplied to the fuel electrode is one or two or more organic substances selected from the group consisting of alcohol, aldehyde, carboxylic acid, and ether. 25) Any one of the passive hydrogen production apparatuses.
(27) 前記アルコールがメタノールであることを特徴とする前記 (26) のパ ッシブ型水素製造装置。 '(27) The passive hydrogen production apparatus according to (26), wherein the alcohol is methanol. '
(28) 前記隔膜がプロトン導電性固体電解質膜であることを特徴とする前記(28) wherein the diaphragm is a proton conductive solid electrolyte membrane
(1) 〜 (27) のいずれか一のパッシブ型水素製造装置。 (1) The passive hydrogen production apparatus according to any one of (27).
(29) 前記プロトン導電性固体電解質膜がパーフルォロカーボンスルホン酸系 固体電解質膜であることを特徴とする前記 (28) のパッシブ型水素製造装置。
(30) 前記燃料極の触媒が白金一ルテニウム合金を炭素粉末に担持したもので あることを特徴とする前記 (1) 〜 (29) のいずれか一のパッシブ型水素製造 装置。 (29) The passive hydrogen production apparatus according to (28), wherein the proton conductive solid electrolyte membrane is a perfluorocarbon sulfonic acid solid electrolyte membrane. (30) The passive hydrogen production apparatus according to any one of (1) to (29), wherein the catalyst of the fuel electrode is a platinum-ruthenium alloy supported on carbon powder.
(3 1) 前記酸化極の触媒が白金を炭素粉末に担持したものであることを特徴と する前記 (1) 〜 (30) のいずれか一のパッシブ型水素製造装置。 (3 1) The passive hydrogen production apparatus according to any one of (1) to (30), wherein the catalyst of the oxidation electrode is obtained by supporting platinum on carbon powder.
(32) 前記有機物を含む燃料の循環手段を設けたことを特徴とする前記 (1) 〜 (31) のいずれか一のパッシブ型水素製造装置。 . (32) The passive hydrogen production apparatus according to any one of (1) to (31), wherein a circulating means for fuel containing the organic matter is provided. .
(33) 前記水素を含むガスに含まれる二酸化炭素を吸収する二酸化炭素吸収部 を設けたことを特徴とする前記 (1) 〜 (32) のいずれか一のパッシブ型水素 製造装置。 (33) The passive hydrogen production apparatus according to any one of (1) to (32), wherein a carbon dioxide absorption unit that absorbs carbon dioxide contained in the gas containing hydrogen is provided.
(34) 前記 (1) 〜 (33) のいずれか一のパッシブ型水素製造装置をパッシ ブ型固体高分子型燃料電池と接続して、 パッシブ型固体高分子型燃料電池の燃料 極にパッシブ型水素製造装置で製造した前記水素を含むガスを供給することを特 徴とするパッケージ型燃料電池発電装置。 (34) The passive hydrogen production apparatus according to any one of (1) to (33) is connected to a passive solid polymer fuel cell, and the passive type polymer fuel cell is passively connected to the fuel electrode. A package type fuel cell power generator characterized by supplying a gas containing hydrogen produced by a hydrogen production device.
(35) 前記 (1) 〜 (33) のいずれか一のパッシブ型水素製造装置をァクテ ィブ型固体高分子型燃料電池と接続して、 ァクティブ型固体高分子型燃料電池の 燃料極にパッシブ型水素製造装置で製造した前記水素を含むガスを供給すること を特徴とするパッケ一ジ型燃料電池発電装置。 , (35) The passive hydrogen production apparatus according to any one of the above (1) to (33) is connected to an active solid polymer fuel cell, and passively connected to the fuel electrode of the active solid polymer fuel cell. A package type fuel cell power generator characterized by supplying a gas containing hydrogen produced by a type hydrogen production device. ,
(36) 前記水素を含むガスに含まれる二酸化炭素を吸収する二酸化炭素吸収部 を設けたことを特徴とする前記 (34) 又は (35) のパッケージ型燃料電池発 (36) The package type fuel cell device according to (34) or (35), characterized in that a carbon dioxide absorbing section for absorbing carbon dioxide contained in the gas containing hydrogen is provided.
(37) 前記二酸化炭素吸収部をパッシブ型固体高分子型燃料電池の燃料極の近 傍に設けたことを特徴とする前記 (36) のパッケージ型燃料電池発電装置。 ここで、 前記 (1)、 (2) 及び (6) の 「酸化極側に前記酸化剤の供給の不 足する領域を設けた」 とは、 酸化極側において、 放電反応が抑制され、 水素発生 反応が起きるように酸化剤の供給の不足する領域を設けたことを意味し、 前記 (9)及び(1 1) のように酸化極のガス拡散層の一部にマスキングを行うこと、 又は、前記 (1 6)〜(1 8) のように酸化極のガス拡散層を、疎密に形成する、
材質の異なるものを組み合わせる、' 凹凸を形成する等の手段で不均質にすること により、 酸化極のガス拡散層に酸化剤の供給の不足する領域を直接的に設けた場 合 (前記 (8) 参照) を包含するが、 これに限定されず、 前記 (1 0) のように 燃料極のガス拡散層のみの一部にマスキングを行うこと等の手段により、 酸化極 側に酸化剤の供給の不足する領域を間接的に設けた場合も包含する。 (37) The package type fuel cell power generator according to (36), wherein the carbon dioxide absorption part is provided in the vicinity of a fuel electrode of a passive solid polymer fuel cell. Here, in (1), (2) and (6), “providing a region where the supply of the oxidant is insufficient on the oxidation electrode side” means that the discharge reaction is suppressed on the oxidation electrode side, and hydrogen This means that a region where the supply of oxidant is insufficient is provided so that the reaction occurs, masking a part of the gas diffusion layer of the oxidation electrode as in (9) and (11), or The gas diffusion layer of the oxidation electrode is formed densely as in (16) to (18), When a region where the supply of oxidant is insufficient is provided directly in the gas diffusion layer of the oxidation electrode by combining different materials or making it non-homogeneous by means such as forming irregularities ((8 However, the present invention is not limited to this, and the supply of the oxidant to the oxidation electrode side by means such as masking only a part of the gas diffusion layer of the fuel electrode as described in (10). It also includes the case where a region lacking is indirectly provided.
マスキングの形状としては、 前記 (1 2)、 (1 3) のように帯状、 斑点状を 採用することができ、 マスキングの材料としては、 前記 (14) のように樹脂を 採用することができ、 マスキングの手段としては、 前記 (14)、 (1 5) のよ うに含浸、塗布、スクリーン印刷を採用することができる力 マスキングの形状、 材料、 手段は、 これらに限定されず、 「酸化極側に前記酸化剤の供給の不足する 領域」 を形成し得るものであれば、 いかなる形状、 材料、 手段も包含するもので ある。 As the masking shape, strips and spots can be adopted as in (1 2) and (1 3), and as the masking material, resin can be adopted as in (14). As a means of masking, force capable of adopting impregnation, coating and screen printing as in the above (14) and (15) Masking shape, material and means are not limited to these, Any shape, material, and means may be included as long as the region where the supply of the oxidizing agent is insufficient can be formed on the side.
また、 前記 (7) の 「酸化剤を流すための流路溝を設けた酸化極セパレータを 用いない」 とは、 従来の直接メタノール型燃料電池に見られるような酸化剤 (空 気) を流すための流路溝を設けた酸化極セパレータを用いないことを意味する。 さらに、. 前記 (1) 〜 (6)、 (1 9)'〜 (21) のパッシブ型水素製造装置 は、 水素製造セルに燃料及び酸化剤を供給する手段を有している。 また、 この外 に、 前記 (20) の場合は、 水素製造セルから電気エネルギーを取り出すための 放電制御手段を有しており、 前記 (21) の場合は、 水素製造セルに電気工ネル ギーを印加するための電解手段を有している。 前記 (1 9) の場合は、 水素製造 セルから電気エネルギーを取り出すための放電制御手段及び水素製造セルに電気 エネルギーを印加するための電解手段を有しない開回路のものである。 そして、 前記 (1) 〜 (6) のパッシブ型水素製造装置は、 前記 (1 9) 〜 (21) のパ ッシブ型水素製造装置を包含するものである。 さらに、 これらのパッシブ型水素 製造装置は、 水素製造セルの電圧及び/又は水素を含むガスの発生量をモニター して、燃料及び酸化剤の供給量若しくは濃度、並びに取り出す電気エネルギー(前 記 (20) の場合) 又は印加する電気エネルギー (前記 (21) の場合) をコン トロールする機能を有している。 なお、 パッシブ型水素製造装置を構成する水素 製造セルの基本構成は、 隔膜の一方の面に燃料極を設け、 前記燃料極に燃料を供
給するための構造、 前記隔膜の他方の面に酸化極を設け、 前記酸化極に酸化剤を 供給するための構造を有したものである。 発明の効果 In addition, in the above (7), “Do not use an oxidation electrode separator provided with a flow channel for flowing an oxidant” means that an oxidant (air) such as that found in a conventional direct methanol fuel cell is flowed. This means that an oxidation electrode separator provided with a flow channel groove is not used. Further, the passive hydrogen production apparatus according to the above (1) to (6) and (19) ′ to (21) has means for supplying fuel and an oxidant to the hydrogen production cell. In addition, in the case of (20), there is a discharge control means for taking out electric energy from the hydrogen production cell. In the case of (21), electric energy is supplied to the hydrogen production cell. Electrolytic means for applying is provided. The case (19) is an open circuit type that does not have a discharge control means for taking out electric energy from the hydrogen production cell and an electrolysis means for applying electric energy to the hydrogen production cell. The passive hydrogen production apparatuses of (1) to (6) include the passive hydrogen production apparatuses of (19) to (21). Furthermore, these passive hydrogen production apparatuses monitor the voltage of the hydrogen production cell and / or the generation amount of gas containing hydrogen, and supply and concentration of fuel and oxidant, as well as electric energy to be extracted (20 )) Or applied electric energy (in the case of (21) above). The basic structure of the hydrogen production cell constituting the passive hydrogen production apparatus is that a fuel electrode is provided on one surface of the diaphragm, and fuel is supplied to the fuel electrode. A structure for supplying an oxide electrode on the other surface of the diaphragm, and a structure for supplying an oxidizing agent to the oxide electrode. The invention's effect
本発明のパッシブ型水素製造装置を採用することにより、 室温から 1 o o °c以 下という従来の改質温度と比較して格段に低い温度で燃料を改質することができ るので、 改質に必要なエネルギーが少なくてすみ、 また、 生成した水素を含むガ スに空気中の窒素が混入しないか又は非常に混入量が少なく、 かつ、 C Oが含ま れないので、 比較的高い水素濃度のガスが得られ、 C O除去工程が不要であると レヽぅ効果を奏する。 By adopting the passive hydrogen production apparatus of the present invention, the fuel can be reformed at a temperature much lower than the conventional reforming temperature from room temperature to 1 oo ° C or less. It requires less energy, and the gas containing hydrogen does not contain nitrogen in the air, or the amount of contamination is very low and does not contain CO. If a gas is obtained and a CO removal process is not required, a lame effect is obtained.
また、 本発明のパッシブ型水素製造装置は、 水素製造セルに外部から電気エネ ルギーを供給することなく、 水素を発生させることもできるが、 電気エネルギー を取り出す手段を有する場合であっても、 外部から電気エネルギーを印加する手 段を備えている場合であっても、 水素を発生させることができる。 Further, the passive hydrogen production apparatus of the present invention can generate hydrogen without supplying electric energy to the hydrogen production cell from the outside, but even if it has a means for taking out electric energy, Hydrogen can be generated even when a means for applying electrical energy is provided.
電気エネルギーを取り出す手段を有する場合には、 その電気エネルギーを有効 に利用することができる。 If there is a means for extracting electrical energy, the electrical energy can be used effectively.
外部から電気エネルギーを印加する手段を備えている場合でも、 水素製造セル に外部から少量の電気エネルギーを供給することにより、 投入した電気工ネルギ 一以上の水素を発生することができるという効果を奏する。 Even when a means for applying electric energy from the outside is provided, by supplying a small amount of electric energy from the outside to the hydrogen production cell, it is possible to generate one or more hydrogens of the input electric energy. .
さらに、 いずれの場合であっても、 水素製造セルの電圧及び又は水素を含むガ スの発生量をモ二ターすることによってプロセスコント口ールが可能となり、 水 素製造装置のコンパクト化を図ることができるので、 装置のコストが低減できる という効果を奏する。 Furthermore, in any case, process control is possible by monitoring the voltage of the hydrogen production cell and / or the amount of gas containing hydrogen, thereby reducing the size of the hydrogen production equipment. As a result, the cost of the apparatus can be reduced.
また、 液体燃料を燃料極に供給するためのポンプや空気を空気極に供給するた めのブロアが不要になるから、 補機エネルギーが節約でき、 水素製造装置及び水 素製造装置を用いたパッケージ型燃料電池発電装置をさらに小型にすることがで きるという効果を奏する。 In addition, since a pump for supplying liquid fuel to the fuel electrode and a blower for supplying air to the air electrode are not necessary, auxiliary energy can be saved, and a package using hydrogen production equipment and hydrogen production equipment. The type fuel cell power generator can be further reduced in size.
セパレータを用いない場合には、 さらに水素製造装置のコンパク ト化を図るこ
とができるという効果を奏する。 図面の簡単な説明 If separators are not used, the hydrogen production system should be made more compact. It has the effect of being able to. Brief Description of Drawings
図 1 ( a )は、 空気取り入れ口に調整バルブを有するパッシブ型水素製造装置の 一例を示す図である。 FIG. 1 (a) is a diagram showing an example of a passive hydrogen production apparatus having a regulating valve at the air intake.
図 1 ( b )は、 スライド式空気取り入れ口を有するパッシブ型水素製造装置の一 例を示す図である。 FIG. 1 (b) is a diagram showing an example of a passive hydrogen production apparatus having a sliding air intake.
図 1 ( c )は、 自然拡散又は自然対流を補助するためのファンを有するパッシブ 型水素製造装置の一例を示す図である。 FIG. 1 (c) is a diagram showing an example of a passive hydrogen production apparatus having a fan for assisting natural diffusion or natural convection.
図 1 ( d )は、 実施例で使用した多数の空気取り入れ口を有するパッシブ型水素 製造装置の正面図である。 . FIG. 1 (d) is a front view of a passive hydrogen production apparatus having a large number of air intake ports used in the examples. .
図 1 ( e )は、 実施例で使用した多数の空気取り入れ口を有するパッシブ型水素 製造装置の斜視図である。 FIG. 1 (e) is a perspective view of a passive hydrogen production apparatus having a large number of air intake ports used in the examples.
図 2は、 本発明のパッシブ型水素製造装置の燃料極と空気極の放電領域におけ る反応を示す概略図である。 FIG. 2 is a schematic diagram showing a reaction in the discharge region of the fuel electrode and the air electrode of the passive hydrogen production apparatus of the present invention.
図 3は、 本発明のパッシブ型水素製造装置の燃料極と空気極の水素発生領域に おける反応を示す概略図である。 FIG. 3 is a schematic view showing the reaction in the hydrogen generation region of the fuel electrode and the air electrode of the passive hydrogen production apparatus of the present invention.
図 4は、 本発明のパッシブ型水素製造装置の燃料極と空気極におけるトータル 反応を示す概略図である。 FIG. 4 is a schematic view showing the total reaction at the fuel electrode and the air electrode of the passive hydrogen production apparatus of the present invention.
図 5は、 本発明のパッシブ型水素製造装置で使用する空気極の表面の一部にマ スクを設けた M E Aの一例を示す概略図である。 FIG. 5 is a schematic view showing an example of MEA in which a mask is provided on a part of the surface of the air electrode used in the passive hydrogen production apparatus of the present invention.
図 6は、 燃料極の表面の一部にマスクを設けた ME Aの一例を示す概略図であ る。 FIG. 6 is a schematic view showing an example of ME A in which a mask is provided on a part of the surface of the fuel electrode.
図 7は、 燃料極及び空気極の表面の一部にマスクを同じ位置に対向するように 設けた M E Aの一例を示す概略図である。 FIG. 7 is a schematic view showing an example of MEA in which a mask is provided on part of the surface of the fuel electrode and the air electrode so as to face the same position.
図 8は、 燃料極及び空気極の表面の一部にマスクを反対位置に対向しないよう に設けた ME Aの一例を示す概略図である。 . FIG. 8 is a schematic view showing an example of ME A provided with a mask on a part of the surface of the fuel electrode and the air electrode so as not to face the opposite positions. .
図 9は、 燃料極及び空気極の表面の一部にマスクをマスクの一部のみが対向す
るように半分ずらして設けた ME Aの一例を示す概略図である。 Fig. 9 shows the mask facing part of the surface of the fuel electrode and air electrode, with only part of the mask facing. It is the schematic which shows an example of ME A provided by shifting by half so that.
図 1 0は、 燃料極及び空気極の表面の一部に設けたマスクの幅、 間隔、 本数を 示す概略図である。 FIG. 10 is a schematic diagram showing the width, interval, and number of masks provided on part of the surfaces of the fuel electrode and the air electrode.
図 1 1は、 本発明の実施例の水素製造セルで使用する M E Aを示す概略図であ る。 FIG. 11 is a schematic view showing M EA used in the hydrogen production cell of the example of the present invention.
図 1 2は、 空気極のガス拡散層を異なる素材の組み合わせにより不均一にした 例を示す概略図である。 . 図 1 3は、 空気極のガス拡散層を疎密の組合せにより不均一にした例を示す概 略図である。 Fig. 12 is a schematic diagram showing an example in which the gas diffusion layer of the air electrode is made non-uniform by combining different materials. Fig. 13 is a schematic diagram showing an example in which the gas diffusion layer of the air electrode is made non-uniform by the combination of density.
図 1 4は、 空気極のガス拡散層を表面の凹凸により不均一にした例を示す概略 図である。 Fig. 14 is a schematic diagram showing an example in which the gas diffusion layer of the air electrode is made uneven due to surface irregularities.
図 1 5は、 燃料、 空気ともに自然拡散させるパッシブ型水素製造装置の一例を 示す図である。 Fig. 15 is a diagram showing an example of a passive hydrogen production system that naturally diffuses both fuel and air.
図 1 6は、 燃料は自然散させ、 空気はブロアで供給するパッシブ型水素製造装 置の一例を示す図である。 Fig. 16 is a diagram showing an example of a passive hydrogen production system in which fuel is naturally dispersed and air is supplied by a blower.
図 1 7は、 燃料はポンプで供給し、 空気は自然拡散させるパッシブ型水素製造 装置の一例を示す図である。 Fig. 17 is a diagram showing an example of a passive hydrogen production system in which fuel is supplied by a pump and air is naturally diffused.
図 1 8は、 燃料、 空気ともに自然拡散させるパッシブ型水素製造装置を用いて 水素を発生させた場合のオープン電圧と水素生成速度との関係を示す図である。 図 1 9は、 パッシブ型水素製造装置をパッシブ型固体高分子型燃料電池と接続 したパッケージ型燃料電池発電装置の一例を示す図である。 Fig. 18 is a diagram showing the relationship between the open voltage and the hydrogen production rate when hydrogen is generated using a passive hydrogen production system that naturally diffuses both fuel and air. FIG. 19 is a diagram showing an example of a packaged fuel cell power generation apparatus in which a passive hydrogen production apparatus is connected to a passive polymer electrolyte fuel cell.
図 2 0は、 パッシブ型水素製造装置をパッシブ型固体高分子型燃料電池 (燃料 極の近傍に二酸化炭素吸収部を設けたもの) と接続したパッケージ型燃料電池発 電装置の一例を示す図である。 Fig. 20 is a diagram showing an example of a packaged fuel cell power generation device in which a passive hydrogen production device is connected to a passive solid polymer fuel cell (with a carbon dioxide absorber in the vicinity of the fuel electrode). is there.
図 2 1は、 パッシブ型水素製造装置をアクティブ型固体高分子型燃料電池と接 続したパッケージ型燃料電池発電装置の一例を示す図である。 FIG. 21 is a diagram showing an example of a packaged fuel cell power generator in which a passive hydrogen production device is connected to an active polymer electrolyte fuel cell.
(符号の説明) (Explanation of symbols)
1 0 水素製造セル 1 1 隔膜 1 2 燃料極
1 2M 燃料極のガス拡散層の一部に設けたマスク 1 0 Hydrogen production cell 1 1 Diaphragm 1 2 Fuel electrode 1 Mask provided on part of gas diffusion layer of 2M fuel electrode
1 3 有機物と水を含む燃料 (メタノール水溶液) を燃料極 1 2に供給するため の流路 1 3 Flow path for supplying fuel (organic methanol solution) containing organic matter and water to the fuel electrode 1 2
14 酸化極 (空気極) 14 Oxidizing electrode (Air electrode)
14M 酸化極 (空気極) のガス拡散層の一部に設けたマスク 14M Mask provided on part of gas diffusion layer of oxidation electrode (air electrode)
1 5 酸化剤 (空気) を酸化極 (空気極) 14に供給するための流路 1 5 Flow path for supplying oxidizing agent (air) to oxidizing electrode (air electrode) 14
16 燃料カートリッジ 1 7 毛管材料 (多孔体) からなる部材 . 16 Fuel cartridge 1 7 Member made of capillary material (porous material).
18 空気取り入れ口 1 9 調整バルブ 18 Air intake 1 9 Adjustment valve
20 スライド部材 21 ファン 20 Slide member 21 Fan
22 パッシブ型固体高分子型燃料電池 22 Passive polymer electrolyte fuel cell
23 パッシブ型固体高分子型燃料電池の隔膜 23 Passive polymer electrolyte fuel cell membrane
24 パッシブ型固体高分子型燃料電池の燃料極 24 Fuel electrode of passive polymer electrolyte fuel cell
25 パッシブ型固体高分子型燃料電池の空気極 26 二酸化炭素吸収部 27 アクティブ型固体高分子型燃料電池 25 Air electrode of passive polymer electrolyte fuel cell 26 Carbon dioxide absorber 27 Active polymer electrolyte fuel cell
28 燃料ポンプ 29 空気ブロア 30 ラジエーター 発明を実施するための最良の形態 28 Fuel Pump 29 Air Blower 30 Radiator BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明を実施するための最良の形態を例示する。 The best mode for carrying out the present invention will be illustrated below.
特に、 本発明のパッシブ型水素製造装置は、 基本的に新規なものであり、 以下 に述べるのは、 あくまでも一形態にすぎず、 これにより本発明が限定されるもの ではない。 In particular, the passive hydrogen production apparatus of the present invention is fundamentally novel, and what is described below is only one form, and the present invention is not limited thereby.
本発明者等は、 従来の直接メタノール型燃料電池と同じ構造のセルを用いて、 有機物を含む燃料を分解し水素を含むガスを製造する水素製造装置 (特願 200 4— 367792号) を開発し、 また、 それを応用したパッシブ型水素製造装置 及びこれを用いたパッケージ型燃料電池発電装置 (特願 2005— 148774 号) を開発した。 The present inventors have developed a hydrogen production device (Japanese Patent Application No. 2004-367792) that uses a cell with the same structure as a conventional direct methanol fuel cell to decompose fuel containing organic matter and produce gas containing hydrogen. In addition, we developed a passive-type hydrogen production system and a packaged fuel cell power generation system (Japanese Patent Application No. 2005-148774) using this.
上記の発明における水素製造装置は、 いずれも、 酸化剤を流すための流路溝を 設けた酸化極セパレータを用いたものであつたが、 セパレータを用いなくても、
酸化極側に酸化剤の供給の不足する領域を設けることにより、 水素が発生するこ とを知見し、 水素製造装置等の発明 (特願 2005— 164145号) を完成さ せたが、 本発明は、 その改良発明に関するものである。 In any of the hydrogen production apparatuses in the above invention, an oxidation electrode separator provided with a flow channel for flowing an oxidant is used, but without using a separator, It was discovered that hydrogen was generated by providing a region where the supply of oxidant was insufficient on the oxidation electrode side, and the invention of a hydrogen production device, etc. (Japanese Patent Application No. 2005-164145) was completed. Relates to the improved invention.
図 1 ( a )〜図 1 ( c )に、 本発明のパッシブ型水素製造装置の例を示す。 Fig. 1 (a) to Fig. 1 (c) show an example of the passive hydrogen production apparatus of the present invention.
この例は、 有機物と水を含む燃料を毛管力によって、 水素製造セルの燃料極に 供給する手段を有するものである。 This example has means for supplying a fuel containing organic matter and water to the fuel electrode of the hydrogen production cell by capillary force.
水素製造セル (10) の構造は、 隔膜 (11) の一方の面に燃料極 (12) を 設け、 燃料極 (12) に有機物と水を含む燃料 (メタノール水溶液) を供給する ための流路 (13) を備え、 かつ、 隔膜 (1 1) の他方の面に酸化極 (14) を 設け、 酸化極 (14) に酸化剤 (空気) を供給するための流路 (15) を備えた ものである。 The structure of the hydrogen production cell (10) has a fuel electrode (12) on one side of the diaphragm (11), and a flow path for supplying fuel (aqueous methanol solution) containing organic matter and water to the fuel electrode (12). (13), an oxidation electrode (14) provided on the other surface of the diaphragm (1 1), and a flow path (15) for supplying oxidant (air) to the oxidation electrode (14) Is.
本発明のパッシブ型水素製造装置においては、 燃料を供給するための流路 (1 3) に、 例えば、 紙、 木綿、 合成繊維、 アスベス ト、 ガラス等の有機あるいは無 機繊維材料を基材とした毛管材料 (多孔体) からなる部材 (17) を配し、 その 毛管材料の毛管力で燃料を燃料カートリッジ (16) から上方向に吸い上げて燃 料極 (12) に供給する。 In the passive hydrogen production apparatus of the present invention, an organic or inorganic fiber material such as paper, cotton, synthetic fiber, asbestos, or glass is used as a base material in the flow path (1 3) for supplying fuel. A member (17) made of the capillary material (porous body) is arranged, and the capillary force of the capillary material sucks up fuel from the fuel cartridge (16) and supplies it to the fuel electrode (12).
図示のように燃料極 (12) 及び空気極 (14) のガス拡散層の一部にマスク (1 2M)、 ( 14M) を、 マスク (1 2M)、 ( 14 M) の一部のみが対向する ように半分ずらして設けているから、 燃料は、 マスク (12M) 以外の部分から 燃料極 (12) に供給され、 後述するように、 空気極 (14) 側に空気の供給の 不足する領域が形成される。 As shown in the figure, masks (12M) and (14M) face only part of the gas diffusion layers of the fuel electrode (12) and air electrode (14), and only parts of the masks (12M) and (14M) face each other. The fuel is supplied from the part other than the mask (12M) to the fuel electrode (12), and the air supply to the air electrode (14) is insufficient as will be described later. Is formed.
燃料を毛管力によって供給する代わりに、 重力落下によって供給することもで さる。 Instead of supplying fuel by capillary force, it can also be supplied by gravity drop.
重力落下の場合には、 燃料カートリッジ (1 6) を上部に設け、 燃料誘導部を 介して、 燃料を落下させることにより燃料極に供給する。 ' 燃料の供給量は、 重力落下の場合には、 燃料タンクの位置を変更したり、 燃料 タンクの出口部分に弁構造を設けること等によって調整することができ、 毛管力 の場合には、毛細管材料の材質を変更すること等によつて調整することができる。 また、 酸化剤として過酸化水素を含む液体を使用する場合にも、 有機物を含む
燃料と水の場合と同様に毛管力又は重力落下によって過酸化水素を含む液体を酸 化極に供給することができる。 In the case of gravity drop, a fuel cartridge ( 16 ) is provided at the top, and the fuel is supplied to the fuel electrode by dropping the fuel through the fuel guide. 'The amount of fuel supply can be adjusted by changing the position of the fuel tank in the case of gravity drop or by providing a valve structure at the outlet of the fuel tank. It can be adjusted by changing the material of the material. Also, when using a liquid containing hydrogen peroxide as an oxidizer, it contains organic matter. As with fuel and water, a liquid containing hydrogen peroxide can be supplied to the oxidation electrode by capillary force or gravity drop.
特に、 過酸化水素を含む液体の場合には、 その供給量が変化することによって 水素を含むガスの発生量が大きく異なるから、 上記のような手段で供給量を調整 することによって最適な水素発生量となるように調整することが好ましい。 In particular, in the case of a liquid containing hydrogen peroxide, the amount of hydrogen-containing gas generated varies greatly depending on the supply amount, so optimal hydrogen generation can be achieved by adjusting the supply amount as described above. It is preferable to adjust so that it may become quantity.
さらに、 本発明のパッシブ型水素製造装置は、 酸化剤が空気の場合には、 図 1 Furthermore, the passive hydrogen production apparatus of the present invention can be used when the oxidant is air.
(&)〜図1 ( 6)に示すょぅに、 自然拡散又は自然対流によって空気を酸化極 (空 気極) に供給することができる。 As shown in (&) to Fig. 1 (6), air can be supplied to the oxidation electrode (air electrode) by natural diffusion or natural convection.
酸化剤ガスとしての空気を大気より自然拡散又は自然対流によって導入するた めの空気取り入れ口 (18) を少なくとも一つ有する。 なお、 図 1 (d)及び(e) には、 多数の空気取り入れ口を有するものが示されている。 It has at least one air intake (18) for introducing air as an oxidant gas from the atmosphere by natural diffusion or natural convection. Figures 1 (d) and 1 (e) show a large number of air intakes.
後述する参考例のように、 空気の供給量が変化することによって水素を含むガ スの発生量が大きく異なるから、 空気取り入れ口 (18) の入口の一部又は全部 に調整バルブ (1 9) を設 る力 \ 又は、 空気取り入れ口 (18) にスライド部 材 (20) を設け、 スライ ド式空気取り入れ口とすることにより、 最適な水素発 生量となるように調整することが好ましい。 As shown in the reference example described later, the amount of hydrogen-containing gas generated varies greatly depending on the air supply amount. Therefore, a regulating valve (19) is installed in part or all of the inlet of the air intake port (18). It is preferable to adjust so that the optimal hydrogen generation amount is obtained by providing a slide member (20) at the air intake (18) and providing a slide-type air intake.
本発明のパッシプ型水素製造装置は、 自然拡散又は自然対流によって空気を空 気極に供給するものであるから、 空気を空気極に供給するためのブロア等の補機 を必要としないものであるが、 図 1 (c)に示すように、 自然拡散又は自然対流を 補助するためのファン (21) を設けてもよい。 Since the passive hydrogen production apparatus of the present invention supplies air to the air electrode by natural diffusion or natural convection, it does not require auxiliary equipment such as a blower for supplying air to the air electrode. However, as shown in Fig. 1 (c), a fan (21) for assisting natural diffusion or natural convection may be provided.
本発明のパッシブ型水素製造装置における水素発生反応メカニズムは以下のよ うに推定される。 The hydrogen generation reaction mechanism in the passive hydrogen production apparatus of the present invention is estimated as follows.
酸化極 (空気極) 側に設けた酸化剤 (酸素) の供給の十分な領域 (以下、 「放 電領域」 という。) では、 以下の通常の燃料電池における放電反応、 すなわち、 図 2に示すように、 燃料極側で (A) の反応、 空気極側で (B) の反応が起きて いる。 ' In the region of sufficient supply of oxidant (oxygen) provided on the oxidation electrode (air electrode) side (hereinafter referred to as “discharge region”), the following discharge reaction in a normal fuel cell, that is, as shown in FIG. Thus, reaction (A) occurs on the fuel electrode side and reaction (B) occurs on the air electrode side. '
(A) CH3OH + H20→6H + + 6 e_+C〇2 (A) CH 3 OH + H 2 0 → 6H + + 6 e_ + C〇 2
(B) 6 H + + 6 e— + 3/2〇2→3H2〇 (B) 6 H + + 6 e— + 3/20 2 → 3H 2 〇
—方、 ナフイオン等のプロトン導電性固体電解質膜を用いた場合に CH3OH
が燃料極から空気極側へ透過するクロスオーバー現象が知られており、 空気極側 に設けた酸素の供給の不足する領域(以下、 「水素発生領域」 という。) では、 (B) の反応が起きず、図 3に示すように、クロスオーバーメタノールが電解酸化され、 (D) の反応が起き、 一方、 燃料極側では、 (C) の水素発生反応が起きている。 —When using proton conductive solid electrolyte membrane such as naphthion, CH 3 OH Is known to pass through the fuel electrode to the air electrode side. In the region where oxygen supply is insufficient on the air electrode side (hereinafter referred to as the “hydrogen generation region”), the reaction (B) As shown in Fig. 3, the crossover methanol is electrolytically oxidized and the reaction (D) occurs. On the other hand, the hydrogen generation reaction (C) occurs on the fuel electrode side.
(C) 6 H + + 6 e—→3 H2 (C) 6 H + + 6 e— → 3 H 2
(D) CH3OH + H2〇→6H + + 6 e— +C〇2 (D) CH 3 OH + H 2 0 → 6H + + 6 e— + C 0 2
本願請求の範囲第 1 9項に係る発明の水素製造装置 (以下、 「開回路条件」 と いう。) の場合は、 (A) 及び (D) の反応により生成した e—が外部回路を通つ て対極に供給されないから、 燃料極で (A) の反応により生成した H+と e—の空 気極への移動と、 空気極で (D) の反応により生成した H+と e—の燃料極への移 動は見かけ上打ち消されていると考えられる。 In the case of the hydrogen production apparatus of the invention according to claim 19 of the present application (hereinafter referred to as “open circuit conditions”), e-generated by the reactions (A) and (D) passes through the external circuit. Therefore, H + and e- produced by the reaction (A) at the fuel electrode move to the air electrode and the H + and e- fuel electrode produced by the reaction (D) at the air electrode. The move to is apparently counteracted.
• すなわち、 図 4に示すように、 燃料極側の放電領域で (A) の反応により生 成した H+と e—が、 同じ燃料極側の水素発生領域に移動して、 (C) の反応が起 き、 水素が発生し、 一方、 空気極側の水素発生領域で (D) の反応により生成し た H+と e—は、 同じ空気極側の放電領域に移動して、 (B) の反応が起きている と推定さ^^る。 • That is, as shown in Fig. 4, H + and e- produced by the reaction (A) in the discharge region on the fuel electrode side move to the hydrogen generation region on the same fuel electrode side, and the reaction (C) H, and hydrogen is generated. On the other hand, H + and e- produced by the reaction (D) in the hydrogen generation region on the air electrode side move to the same discharge region on the air electrode side, and (B) It is estimated that this reaction is occurring.
燃料極上で (A) の反応と (C) の反応が進行し、 酸化極上で (B) の反応と (D) の反応が進行すると仮定すると、 トータルとして、 以下の反応が成立する。 Assuming that the reactions (A) and (C) proceed on the fuel electrode and the reactions (B) and (D) proceed on the oxidation electrode, the following reactions are established as a whole.
2CH3〇H+2H20+3/202→2C02+3H20+3H2 2CH 3 〇_H + 2H 2 0 + 3/20 2 → 2C0 2 + 3H 2 0 + 3H 2
この反応の理論効率は、 59% (水素 3モルの発熱量 Zメタノール 2モルの発 熱量) となる。 The theoretical efficiency of this reaction is 59% (3 mol of hydrogen exothermic Z 2 mol of methanol generated heat).
本願請求の範囲第 20項に係る発明の 「前記燃料極を負極とし前記酸化極を正 極として外部に電気エネルギーを取り出す手段を有する」 水素製造装置 (以下、 The invention according to claim 20 of the present application “having means for taking out electric energy to the outside with the fuel electrode as a negative electrode and the oxidation electrode as a positive electrode”
「放電条件」 という。) の場合も、 開回路条件での水素発生メカニズムと類似の メカニズムで水素が発生すると考えられる。 但し、 開回路条件の場合と異なり、 放電電流相当分の H +が燃料極から空気極に移動することでセル全体の電気的中 性条件を保つ必要があるため、 燃料極では (C) の反応より (A) の反応が、 空 気極では (D) の反応より (B) の反応がより速く (多く) 進行するものと考え られる。
本願請求の範囲第 2 1項に係る発明の 「前記燃料極を力ソードとし前記酸化極 をアノードとして外部から電気エネルギーを印加する手段を有する」 水素製造装 置 (以下、 「充電条件」 という。) の場合も、 開回路条件での水素発生メカニズ ムと類似のメカニズムで水素が発生すると考えられる。 伹し、 開回路条件の場合 と異なり、 電解電流相当分の H +が空気極から燃料極に移動することでセル全体 の電気的中性条件を保つ必要があるため、 燃料極では (A) の反応より (C) の 反応が、 空気極では (B) の反応より (D) の反応がより速く (多く) 進行する ものと考えられる。 This is called “discharge condition”. In the case of), hydrogen is considered to be generated by a mechanism similar to the hydrogen generation mechanism under open circuit conditions. However, unlike in the case of open circuit conditions, it is necessary to maintain the electrical neutral conditions of the entire cell by moving H + corresponding to the discharge current from the fuel electrode to the air electrode. The reaction (A) is likely to proceed faster (more) than the reaction (D) at the air electrode than the reaction (D). The invention according to claim 21 of the present application “having means for applying electric energy from the outside with the fuel electrode as a force sword and the oxidation electrode as an anode” Hydrogen production apparatus (hereinafter referred to as “charging condition”). In this case, hydrogen is considered to be generated by a mechanism similar to the hydrogen generation mechanism under open circuit conditions. However, unlike open circuit conditions, it is necessary to maintain the electrical neutral conditions of the entire cell by moving H + corresponding to the electrolysis current from the air electrode to the fuel electrode. The reaction (C) is faster than the reaction (C), and the reaction (D) is faster (more) than the reaction (B) at the air electrode.
本発明の水素製造装置を製造する場合は、 まず、 従来の直接メタノール型燃料 電池と同様に ME A (膜一電極接合体) を作製する。 ' 図 5〜図 9に示されるような ME Aの作製方法は限定されるものではないが、 燃料極触媒層及びガス拡散層からなる燃料極 (1 2) と空気極触媒層及びガス拡 散層からなる空気極 (1 4) をホットプレスによって隔膜 (1 1 ) の両面に接合 する従来と同様の方法で作製することができる。 When producing the hydrogen production apparatus of the present invention, first, ME A (membrane-electrode assembly) is produced in the same manner as in the conventional direct methanol fuel cell. '' The manufacturing method of ME A as shown in Fig. 5 to Fig. 9 is not limited, but the anode (1 2) consisting of the anode catalyst layer and gas diffusion layer, the air electrode catalyst layer and gas diffusion The air electrode (14) composed of layers can be manufactured by a method similar to the conventional method in which both sides of the diaphragm (11) are bonded by hot pressing.
空気極 (1 4) に酸化剤 (空気) の供給の不足する領域を設けるためには、 空 気極のガ 拡散層 (ME Aのガス拡散層) の一部に、 図 5に示すようにマスク (1 4M) を設ける (マスキングを行う) ことが好ましい。' In order to provide the air electrode (1 4) with a region where the supply of oxidant (air) is insufficient, a part of the gas diffusion layer (ME A gas diffusion layer) of the air electrode, as shown in FIG. It is preferable to provide a mask (14 M) (masking is performed). '
また、 図 6に示すように、 燃料極 (1 2) のガス拡散層 (ME Aのガス拡散層) の一部にマスク (1 2M) を設けても、 後述する参考例に示すように、 わずかで はあるが水素が発生する。 これは燃料極の一部にマスキングをすることにより、 マスキングをしなかつた部分で電解質を介してメタノールと水の空気極側への拡 散が多くなり、 マスキングをした部分でメタノールと水の空気極側への拡散が少 なくなり、 その結果、 メタノールが拡散した空気極側においてはメタノールの酸 化によつて酸素が消費されて空気極側で酸素が不足する領域が形成されるのに対 し、 メタノールが拡散しなかった空気極側においては酸素が消費されずに空気極 側で酸素が十分存在する領域が形成されることになり、 空気極側の一部をマスキ ングしたのと同じ作用効果を奏していることが考えらえる。 Also, as shown in Fig. 6, even if a mask (12M) is provided on part of the gas diffusion layer (MEA gas diffusion layer) of the fuel electrode (12), A small amount of hydrogen is generated. By masking a part of the fuel electrode, the unmasked part increases the diffusion of methanol and water to the air electrode side through the electrolyte, and the masked part of the methanol and water air Diffusion to the pole side is reduced, and as a result, on the air electrode side where methanol has diffused, oxygen is consumed due to oxidation of methanol, and a region where oxygen is insufficient on the air electrode side is formed. On the air electrode side where methanol did not diffuse, oxygen is not consumed, but a region where oxygen exists sufficiently on the air electrode side is formed, which is the same effect as masking a part of the air electrode side. It can be considered that there is an effect.
燃料極 (1 2) 及ぴ空気極 (1 4) のガス拡散層の一部に、 それぞれマスク (1 2M) 及び (1 4M) を設けた場合は、 後述する参考例に示すように、 水素が発
生する場合と、 発生しない場合がある。 When masks (1 2M) and (1 4M) are provided respectively in part of the gas diffusion layer of the fuel electrode (1 2) and air electrode (1 4), as shown in the reference example described later, hydrogen Depart May or may not occur.
図 7に示すように、 燃科極 (1 2) 及び空気極 (14) のガス拡散層の一部に マスクを同じ位置に対向するように設けた場合には、 水素は発生しない。 この理 由は、 空気極 (14) のガス拡散層の一部にマスク (14M) を設けることによ り水素発生領域が形成されているが、燃料極(1 2) の対応する領域にマスク (1 2M) が設けられているので、 (D) の反応のためのメタノールの拡散がされず、 水素生成反応 (C) が起きないためと考えられる。 . 図 8に示すように、 燃料極 (1 2) 及び空気極 (14) のガス拡散層の一部に マスクを反対位置に対向しないように設けた場合には、 水素は発生しない。 この 理由は、 燃料極 (1 2) の放電領域にマスク (1 2M) が設けられており、 メタ ノールの供給がなく、 (A) の反応が起きず、 H+と e—の生成がないので、 H + と e_が、 放電領域から水素発生領域に供給されず、 水素生成反応 (C) が起き ないためと考えられる。 As shown in Fig. 7, hydrogen is not generated when a mask is provided in part of the gas diffusion layer of the fuel electrode (12) and air electrode (14) so as to face the same position. This is because a hydrogen generation region is formed by providing a mask (14M) in a part of the gas diffusion layer of the air electrode (14), but a mask is formed in the corresponding region of the fuel electrode (12). (1 2M) is provided, so it is thought that methanol does not diffuse for the reaction of (D), and hydrogen generation reaction (C) does not occur. As shown in Fig. 8, hydrogen is not generated when a mask is provided in part of the gas diffusion layer of the fuel electrode (12) and air electrode (14) so as not to face the opposite positions. The reason for this is that a mask (1 2M) is provided in the discharge region of the fuel electrode (1 2), no methanol is supplied, the reaction of (A) does not occur, and H + and e- are not generated. Therefore, it is thought that H + and e_ are not supplied from the discharge region to the hydrogen generation region, and the hydrogen generation reaction (C) does not occur.
図 9に示すように、 燃料極 (1 2) 及ぴ空気極 (14) のガス拡散層の一部に マスク (1 2M)、 ( 1 4 M) を、 マスク ( 1 2 M)、 ( 1 4 M) の一部のみが対 向するように半分ずらして設けた場合には、 放電領域 (1)、 水素発生領域 (2) が形成され、 (1) の領域で放電反応が起き、 (2) の領域で水素発生反応が起 きるので、 水素が発生する。 As shown in Fig. 9, masks (1 2M) and (1 4 M) are applied to part of the gas diffusion layer of the fuel electrode (1 2) and air electrode (14), and masks (1 2 M) and (1 If only a part of (4 M) is placed in the opposite direction, a discharge region (1) and a hydrogen generation region (2) are formed, and a discharge reaction occurs in the region (1). Since hydrogen generation reaction occurs in the region of 2), hydrogen is generated.
マスキング (マスク) の形状は限定されるものではないが、 図 10に示すよう に帯状に行うことができる。 マスキングを斑点状に行ってもよい。 The shape of the masking (mask) is not limited, but it can be formed in a strip shape as shown in Fig. 10. Masking may be performed in spots.
帯状のマスクの幅、 間隔、 本数等、 斑点状のマスクの大きさ、 数等を適宜設定 することにより、 水素を含むガスの発生量を調整することができる。 The amount of gas containing hydrogen can be adjusted by appropriately setting the width, interval, number, etc., of the strip-shaped masks, the size, number, etc. of the speckled masks.
マスキングの材料としてはエポキシ樹脂等の樹脂を使用することができる。 . また、 マスキングの手段としては、 ガス拡散層への含浸、 塗布、 スクリーン印 刷、 シールの貼付等により簡便に行うことが可能である。 A resin such as an epoxy resin can be used as the masking material. Further, as a masking means, it is possible to carry out simply by impregnating the gas diffusion layer, coating, screen printing, sticking a seal, and the like.
さらに、 上記のようなマスキングだけではなく、 ガス拡散層を疎密に形成した り、 ガス拡散層を材質の異なるものを組み合わせたり、 ガス拡散層の表面に凹凸 を形成すること等の手段で、酸化極のガス拡散層を不均一にすることによつても、 酸化極側に酸化剤の供給の不足する領域を設けることができる。
発明の水素製造装置における ME Aの隔膜 (1 1 ) としては、 燃料電池におい て高分子電解質膜として使用されているプロトン導電性固体電解質膜を用いるこ とができる。 プロトン導電性固体電解質膜としては、 デュポン社のナフィオン膜 等のスルホン酸基を持つパーフルォロカーボンスルホン酸系膜が好ましい。 燃料極及び酸化極 (空気極) は、 導電性を有し、 触媒活性を有する電極である ことが好ましく、 例えば、 ガス拡散層に、 炭素粉末等からなる担体上に担持させ た触媒と P T F E樹脂等の結着剤とナフイオン溶液等のイオン導電性を付与する ための物質とを含有する触媒ペーストを塗布し乾燥して作製することができる。 ガス拡散層としては、 撥水処理を行ったカーボンペーパー等からなるものが好 ましい。 In addition to the masking as described above, the gas diffusion layer may be formed densely, the gas diffusion layer may be combined with different materials, or irregularities may be formed on the surface of the gas diffusion layer. By making the electrode gas diffusion layer non-uniform, a region where the supply of the oxidizing agent is insufficient can be provided on the oxidation electrode side. As the ME A membrane (11) in the hydrogen production apparatus of the invention, a proton conductive solid electrolyte membrane used as a polymer electrolyte membrane in a fuel cell can be used. The proton conductive solid electrolyte membrane is preferably a perfluorocarbon sulfonic acid-based membrane having a sulfonic acid group, such as a DuPont Nafion membrane. The fuel electrode and the oxidation electrode (air electrode) are preferably electrodes having conductivity and catalytic activity. For example, a catalyst and PTFE resin supported on a carrier made of carbon powder or the like in a gas diffusion layer. It can be prepared by applying and drying a catalyst paste containing a binder such as a naphthoion solution and a substance for imparting ionic conductivity. The gas diffusion layer is preferably made of carbon paper that has been subjected to water repellent treatment.
燃料極触媒としては、 任意のものを使用できるが、 白金一ルテニウム合金を炭 素粉末に担持したものが好ましい。 Any fuel electrode catalyst can be used, but a catalyst in which a platinum-ruthenium alloy is supported on carbon powder is preferable.
空気極触媒としては、 任意のものを使用できるが、 白金を炭素粉末に担持した ものが好ましい。 Any air electrode catalyst can be used, but a catalyst in which platinum is supported on carbon powder is preferred.
上記のような構成の水素製造装置において、 燃料極にメタノール水溶液等の有 機物を含む燃料を供給し、 酸化極 (空気極) に空気、 酸素、 過酸化水素等の酸化 剤を供給すると、 特定の条件下で、 燃料極に水素を含むガスが発生する。 In the hydrogen production apparatus configured as described above, when a fuel containing organic matter such as a methanol aqueous solution is supplied to the fuel electrode, and an oxidizing agent such as air, oxygen or hydrogen peroxide is supplied to the oxidation electrode (air electrode), Under certain conditions, gas containing hydrogen is generated at the anode.
本発明の水素製造装置において、 水素を含むガスの発生量は、 燃料極と酸化極 (空気極) との間の電圧に依存する傾向があるから、 開回路条件、 放電条件、 充 電条件のいずれの場合においても、 燃料極と酸化極 (空気極) との間の電圧 (開 回路電圧又は運転電圧) を調整することにより、 水素を含むガスの発生量を調整 することができる。 · In the hydrogen production apparatus of the present invention, the amount of gas containing hydrogen tends to depend on the voltage between the fuel electrode and the oxidation electrode (air electrode). Therefore, the open circuit conditions, discharge conditions, and charge conditions In either case, the amount of gas containing hydrogen can be adjusted by adjusting the voltage (open circuit voltage or operating voltage) between the fuel electrode and the oxidation electrode (air electrode). ·
開回路条件の場合には、 実施例に示されるように、 開回路電圧が 4 0 0〜 6 0 O mVで水素が発生しているから、 この範囲で、 開回路電圧を調整することによ り、 水素を含むガスの発生量を調整することができる。 In the case of an open circuit condition, as shown in the examples, hydrogen is generated at an open circuit voltage of 400 to 60 O mV. Therefore, by adjusting the open circuit voltage within this range, Therefore, the amount of gas containing hydrogen can be adjusted.
開回路電圧若しくは運転電圧及び Z又は水素を含むガスの発生量 (水素生成速 度) は、 酸化剤 (空気、 酸素等) の供給量を調整すること、 酸化剤の濃度を調整 すること、 有機物を含む燃料の供給量を調整すること、 有機物を含む燃料の濃度 を調整することにより調整することができる。
また、 上記以外に、 放電条件の場合は、 外部に取り出す電気エネルギーを調整 すること (外部に取り出す電流を調整すること、 さらには定電圧制御が可能な電 源、 いわゆるポテンシヨスタッドを用いることによつて外部に取り出す電圧を調 整すること) によって、 充電条件の場合は、 印加する電気エネルギーを調整する こと (印加する電流を調整すること、 さらには定電圧制御が可能な電源、 いわゆ るポテンシヨスタツドを用いることによって印加する電圧を調整すること) によ つて、 運転電圧及びノ又は水素を含むガスの発生量を調整することができる。 . 本発明の水素製造装置においては、 有機物を含む燃料を 1 o o °c以下で分解す ることができるから、 水素製造装置の運転温度を 1 0 o °c以下にすることができ る。 運転温度は、 3 0〜9 0 °Cとすることが好ましい。 運転温度を 3 0〜9 0 °C の範囲で調整することにより、 以下の実施例に示すとおり、 開回路電圧若しくは 運転電圧及び Z又は水素を含むガスの発生量を調整することができる。 The open circuit voltage or operating voltage and the amount of gas containing Z or hydrogen (hydrogen generation rate) can be adjusted by adjusting the supply of oxidant (air, oxygen, etc.), adjusting the concentration of oxidant, and organic matter. It can be adjusted by adjusting the amount of fuel containing fuel and adjusting the concentration of fuel containing organic matter. In addition to the above, in the case of discharge conditions, adjust the electrical energy extracted outside (adjust the current extracted outside, and use a power source capable of constant voltage control, a so-called potentio stud. Therefore, in the case of charging conditions, adjust the electric energy to be applied (by adjusting the applied current, and further, the power supply capable of constant voltage control). By adjusting the voltage applied by using a potentiostat), the operating voltage and the amount of gas containing hydrogen or hydrogen can be adjusted. In the hydrogen production apparatus of the present invention, the fuel containing organic matter can be decomposed at 1 oo ° C. or lower, so that the operating temperature of the hydrogen production apparatus can be made 10 ° C. or lower. The operating temperature is preferably 30 to 90 ° C. By adjusting the operating temperature in the range of 30 to 90 ° C, the open circuit voltage or operating voltage and the amount of gas containing Z or hydrogen can be adjusted as shown in the following examples.
なお、 1 0 0 °C以上での運転が必要であった従来の改質技術では、 水は水蒸気 になり、有機物を含む燃料はガス化し、このような条件下で水素を発生させても、 水素を分離する手段を別途用いる必要があるため、 本発明は、 この点において有 利である。 In the conventional reforming technology that required operation at 100 ° C or higher, water turns into steam, fuel containing organic matter gasifies, and even if hydrogen is generated under such conditions, The present invention is advantageous in this respect because it is necessary to separately use a means for separating hydrogen.
しかし、 有機物を含む燃料を 1 0 0 °C以上の温度で分解すると、 上記のような デメリットはあるが、 本発明は、 本発明の水素製造装置を 1 0 0 °Cを若干超える 温度で運転させることを否定するものではない。 However, when the fuel containing organic matter is decomposed at a temperature of 100 ° C or higher, there are the above-mentioned disadvantages, but the present invention operates the hydrogen production apparatus of the present invention at a temperature slightly exceeding 100 ° C. It is not a denial of making it happen.
推定される原理から考えて、 有機物を含む燃料としては、 プロ トン導電性の隔 膜を透過し、 電気化学的に酸化されてプロ トンを生成する液体又は気体燃料であ ればよく、 メタノール、 エタノール、 エチレングリコール、 2—プロパノールな どのアルコール、 ホルムアルデヒ ドなどのアルデヒ ド、 蟻酸などのカルボン酸、 ジェチルエーテルなどのエーテルを含む液体盤料が好ましい。 有機物を含む燃料 は水と共に供給されるから、 アルコールと水を含む溶液、 その中でも、 メタノー ルを含む水溶液が好ましい。 なお、 上記した燃料の一例としてのメタノールを含 む水溶液は、 少なくともメタノールと水を含む溶液であり、 水素を含むガスを発 生する領域において、 その濃度は任意に選択することができる。 Considering the presumed principle, the fuel containing organic matter may be a liquid or gaseous fuel that passes through a Proton conductive membrane and is oxidized electrochemically to produce Proton, such as methanol, A liquid plate containing an alcohol such as ethanol, ethylene glycol or 2-propanol, an aldehyde such as formaldehyde, a carboxylic acid such as formic acid, or an ether such as jetyl ether is preferred. Since fuel containing organic matter is supplied together with water, a solution containing alcohol and water, and an aqueous solution containing methanol is preferred. Note that the aqueous solution containing methanol as an example of the fuel described above is a solution containing at least methanol and water, and the concentration thereof can be arbitrarily selected in a region where a gas containing hydrogen is generated.
酸化剤としては、 気体又は液体の酸化剤を使用することができる。 気体の酸化
剤としては、酸素を含む気体又は酸素が好ましい。酸素を含む気体の酸素濃度は、As the oxidant, a gas or liquid oxidant can be used. Gas oxidation As the agent, a gas containing oxygen or oxygen is preferable. The oxygen concentration of the gas containing oxygen is
1 0 %以上が特に好ましい。 液体の酸化剤としては、 過酸化水素を含む液体が好 ましい。 10% or more is particularly preferable. A liquid containing hydrogen peroxide is preferred as the liquid oxidant.
本発明においては、 パッシブ型水素製造装置に投入した燃料が該装置内で一回 で消費され、 水素に分解される割合は低いので、 燃料の循環手段を設けて、 水素 への変換率を高めることが好ましい。 In the present invention, since the fuel input to the passive hydrogen production apparatus is consumed once in the apparatus and decomposed into hydrogen is low, a fuel circulation means is provided to increase the conversion rate to hydrogen. It is preferable.
本発明のパッシブ型水素製造装置は、 燃料極側から水素を含むガスを取り出す 手段を備えており、 水素を回収するものであるが、 二酸化炭素も回収することが 好ましい。 1 0 o °c以下という低い温度で運転するものであるから、 水素を含む ガスに含まれる二酸化炭素を吸収する二酸化炭素吸収部を、 簡便な手段により設 けることができる。 次に、 本発明の参考例 (水素製造例) を示すが、 触媒、 P T F E、 ナフイオン の割合等、触媒層、ガス拡散層、電解質膜の厚さ等は適宜変更し得るものであり、 参考例により限定されるものではない。 The passive hydrogen production apparatus of the present invention includes means for extracting a gas containing hydrogen from the fuel electrode side, and recovers hydrogen, but it is also preferable to recover carbon dioxide. Since it operates at a temperature as low as 10 ° C. or less, a carbon dioxide absorption part that absorbs carbon dioxide contained in a gas containing hydrogen can be provided by simple means. Next, reference examples of the present invention (hydrogen production examples) will be shown. The ratio of the catalyst, PTFE, naphthion, etc., the thickness of the catalyst layer, gas diffusion layer, electrolyte membrane, etc. can be appropriately changed. It is not limited by.
なお、 参考例 1〜4、 比較例 1及び 2は、 空気極側に空気の供給の不足する領 域を設けたアクティブ型水素製造装置 (燃料ポンプにより燃料を供給し、 空気ブ ロアにより空気を供給する水素製造装置) を用いて開回路条件で水素を製造する 例を示すものである。 In Reference Examples 1 to 4 and Comparative Examples 1 and 2, active hydrogen production equipment with a region where air supply is insufficient on the air electrode side (fuel is supplied by a fuel pump, and air is supplied by an air blower. This shows an example of producing hydrogen under an open circuit condition using a hydrogen production apparatus to be supplied.
(参考例 1 ) (Reference Example 1)
水素製造セルを以下のように作製した。 A hydrogen production cell was prepared as follows.
すなわち、電解質にデュポン社製プロトン導電性電解質膜(ナフイオン 1 1 5 ) を用い、 空気極にはカーボンペーパー (東レ製) を 5 %濃度のポリテトラフルォ 口エチレン分散液に浸漬したのち、 3 6 0 °Cで焼成して撥水処理し、 その片面に 空気極触媒 (白金担持カーボン: 田中貴金属製) と P T F E'微粉末と 5 %ナフィ オン溶液 (アルドリッチ製) を混合して作製した空気極触媒ペーストを塗布して 空気極触媒付きガス拡散層を構成した。 ここで、 空気極触媒、 P T F E、 ナフィ オンの重量比は 6 5 % : 1 5 % : 2 0 %とした。 このようにして作製した空気極
の触媒量は白金換算で l mgZcm2であった。 In other words, a DuPont proton conductive electrolyte membrane (Nafion 1 115) was used as the electrolyte, and carbon paper (Toray) was immersed in the 5% polytetrafluoroethylene dispersion at the air electrode. An air electrode catalyst prepared by mixing the air electrode catalyst (platinum-supported carbon: made by Tanaka Kikinzoku), PTF E 'fine powder, and 5% Nafion solution (made by Aldrich) on one side. The paste was applied to form a gas diffusion layer with an air electrode catalyst. Here, the weight ratio of the air electrode catalyst, PTFE, and Nafion was set to 65%: 15%: 20%. Air electrode produced in this way The amount of the catalyst was 1 mgZcm 2 in terms of platinum.
さらに同じ方法を用いてカーボンペーパーを撥水処理し、 さらにその片面に燃 料極触媒 (白金ルテニウム担持カーボン : 田中貴金属製) と PTFE微粉末と 5 %ナフィォン溶液を混合して作製した燃料極触媒ぺース トを塗布して燃料極触媒 付きガス拡散層を構成した。 ここで、 燃料極触媒、 PTFE、 ナフイオンの重量 比は 55% : 1 5% : 30 %とした。 このようにして作製した燃料極の触媒量は 白金一ルテニウム換算で lmg/cm2であった。 . 上記、 電解質膜、 空気極触媒付きガス拡散層、 燃料極触媒付きガス拡散層を 1 40。C、 1 OMP aでホットプレスによって接合して ME Aを作製した。 このよ うにして作製した ME Aの有効電極面積は 60. 8 cm2 (縦 80mm、 横 76 mm) あった。 作製後の空気極及ぴ燃料極の触媒層、 空気極及び燃料極のガス拡 散層の厚さは、 それぞれ、 約 30 μπι、 および 1.70 |imでほぼ同じであった。 作製した ME Aの概略を図 1 1に示す。 Furthermore, using the same method, carbon paper was treated with water repellency, and on one side, a fuel electrode catalyst (platinum ruthenium-supported carbon: manufactured by Tanaka Kikinzoku), PTFE fine powder, and a 5% Nafion solution were mixed. A paste was applied to form a gas diffusion layer with a fuel electrode catalyst. Here, the weight ratio of the fuel electrode catalyst, PTFE, and naphthion was 55%: 1 5%: 30%. The catalyst amount of the fuel electrode produced in this way was lmg / cm 2 in terms of platinum-ruthenium. The above electrolyte membrane, gas diffusion layer with air electrode catalyst, and gas diffusion layer with fuel electrode catalyst. ME A was prepared by hot pressing with C, 1 OMPa. The effective electrode area of MEA produced in this way was 60.8 cm 2 (80 mm long and 76 mm wide). The thickness of the catalyst layer of the air electrode and fuel electrode after fabrication, and the thickness of the gas diffusion layer of the air electrode and fuel electrode were approximately the same at about 30 μπι and 1.70 | im, respectively. The outline of the prepared ME A is shown in Fig. 11.
上記のように作製した ME Aの空気極ガス拡散層上のみにエポキシ樹脂を塗布 することによって、 図 5及び図 10に示すように、 幅 5 mmの帯状マスクを 5 m mの間隔で 8本設けた。 このようにして作成した MEAを、 その空気極側に空気 導入ロ及ぴ空気排出口を設けた空気極側エンドプレ トをシリコンゴムを介して 配し、 その燃料極側に燃料導入口及び燃料排出口を設けた燃料極側ェンドブレー 'トをシリコンゴムを介して配して積層、 挟持し、 前記燃料極の表面に燃料が供給 されるように、 前記空気極の表面に空気が供給されるようにスペースを設けた。 さらに、 燃料及び空気のリークを防止するために、 燃料極及び空気極の周辺部に はシリコンゴム製のパッキングを設けた。また、各電極の電位を測定するために、 電極に接するステンレス製の箔を前記パッキングと M E Aの間に挿入した。 By applying epoxy resin only on the air electrode gas diffusion layer of MEA produced as described above, as shown in Fig. 5 and Fig. 10, eight strip masks with a width of 5 mm are provided at intervals of 5 mm. It was. The MEA created in this way is provided with an air electrode side end plate with an air inlet and an air outlet on the air electrode side through silicon rubber, and the fuel inlet and fuel exhaust on the fuel electrode side. A fuel electrode side end braid provided with an outlet is arranged via silicon rubber, stacked and sandwiched so that fuel is supplied to the surface of the fuel electrode, so that air is supplied to the surface of the air electrode. A space was provided. In addition, in order to prevent fuel and air leakage, silicon rubber packing was provided around the fuel and air electrodes. In order to measure the potential of each electrode, a stainless steel foil in contact with the electrode was inserted between the packing and MEA.
このようにして作製した水素 S造セルを熱風循環型の電気炉内に設置し、 セル 温度 (運転温度) 50°Cで、 空気極側に空気を 1 0〜50m l /分の流量、 燃料 極側に 1Mのメタノール水溶液 (燃料) を 5. 0m 1ノ分の'流量で流し、 その時 の燃料極と空気極の電圧差 (オープン電圧)、 燃料極側で発生するガス発生量を 測定した。 · ガス発生量の測定には水中置換法を用いた。 また、 発生ガス中の水素濃度をガ
スクロマトグラフィーで分析し、 水素生成速度を求めた。 The hydrogen S cell made in this way is installed in a hot air circulation type electric furnace, the cell temperature (operating temperature) is 50 ° C, the air is supplied to the air electrode side at a flow rate of 10-50 ml / min, fuel A 1M aqueous methanol solution (fuel) was flowed to the pole side at a flow rate of 5.0 m 1 min, and the voltage difference (open voltage) between the fuel electrode and the air electrode at that time and the amount of gas generated on the fuel electrode side were measured. . · Underwater displacement method was used to measure the amount of gas generated. In addition, the hydrogen concentration in the generated gas The hydrogen production rate was determined by analysis by S-chromatography.
その結果を表 1に示す。 The results are shown in Table 1.
表 1 table 1
表 1に示されるように、 空気流量を少なくすることによって、 セルの燃料極側 から、 水素の発生が確認された。 また、 空気流量とセルの開回路電圧 (O C V) との関係を調べると、 空気流量を少なくすると、 それに伴って、 セルの開回路電 圧が低下する傾向が認められた。 As shown in Table 1, generation of hydrogen was confirmed from the fuel electrode side of the cell by reducing the air flow rate. In addition, when the relationship between the air flow rate and the open circuit voltage (OCV) of the cell was examined, it was found that the cell open circuit voltage tended to decrease with decreasing air flow rate.
水素生成速度 (水素発生量) は開回路電圧に依存する傾向を示し、 開回路電圧 The rate of hydrogen generation (hydrogen generation amount) tends to depend on the open circuit voltage.
4 0 0〜6 0 O mVで水素が発生することが分かった。 また、 水素生成速度のピ ークは 5 0 O mV付近で観察された。 It was found that hydrogen was generated at 4 0 0 to 6 0 O mV. The peak of the hydrogen production rate was observed at around 50 O mV.
(参考例 2 ) (Reference Example 2)
M E Aの燃料極ガス拡散層上のみにエポキシ樹脂を塗布することによって、 図 6及び図 1 0に示すように、 幅 5 mmの帯状マスクを 5 mmの間隔で 8本設けた 以外は、 参考例 1と同様に水素製造セルを作製し、 参考例 1と同様に燃料極側で 発生するガス発生量を測定した。 ' Reference Example, except that eight strip masks with a width of 5 mm were provided at intervals of 5 mm as shown in Fig. 6 and Fig. 10 by applying an epoxy resin only on the fuel electrode gas diffusion layer of MEA A hydrogen production cell was prepared in the same manner as in 1, and the amount of gas generated on the fuel electrode side was measured in the same manner as in Reference Example 1. '
その結果を表 2に示す。 . The results are shown in Table 2. .
表 2 Table 2
表 2に示されるように、 空気流量を少なくすることによって、 開回路電圧 5 0 O mV付近で、 セルの燃料極側から、 少量の水素の発生が確認された。 As shown in Table 2, the generation of a small amount of hydrogen was confirmed from the anode side of the cell at an open circuit voltage of about 50 O mV by reducing the air flow rate.
(比較例 1 ) (Comparative Example 1)
ME Aの燃料極及び空気極のガス拡散層上にエポキシ樹脂を塗布することによ つて、 図 7及び図 1 0に示すように、 幅 5 mmの帯状マスクを 5 mmの間隔で 8 本、 同じ位置に対向するように設けた以外は、 参考例 1と同様に水素製造セルを 作製し、 参考例 1と同様に燃料極側で発生するガス発生量を測定した。 By applying an epoxy resin on the gas diffusion layers of the fuel electrode and air electrode of ME A, as shown in Fig. 7 and Fig. 10, eight strip masks with a width of 5 mm, A hydrogen production cell was prepared in the same manner as in Reference Example 1 except that it was placed so as to face the same position, and the amount of gas generated on the fuel electrode side was measured as in Reference Example 1.
その結果を表 3に示す。 The results are shown in Table 3.
表 3 · Table 3
表 3に示されるように、 空気流量を少なくしても、 セルの燃料極側から、 水素 の発生は確認されなかった。 As shown in Table 3, generation of hydrogen was not confirmed from the fuel electrode side of the cell even when the air flow rate was reduced.
これは、 前述したように、 燃料極の水素発生領域がマスクされており、 水素発 生反応のためのメタノール拡散ができないためである。 This is because, as described above, the hydrogen generation region of the fuel electrode is masked, and methanol diffusion for the hydrogen generation reaction cannot be performed.
(比較例 2 ) (Comparative Example 2)
M E Aの燃料極及び空気極のガス拡散層上にェポキシ樹脂を塗布することによ つて、 図 8及び図 1 ' 0に示すように、 幅 5 mmの帯状マスクを 5 mmの間隔で、 '燃料極に 8本、 空気極に 6本、 反対位置に対向しないように設けた以外は、 参考 例 1と同様に水素製造セルを作製し、 参考例 1と同様に燃料極側で発生するガス 発生量を測定した。 ' By applying epoxy resin on the gas diffusion layers of the fuel electrode and air electrode of the MEA, as shown in Fig. 8 and Fig. 1 '0, a strip mask with a width of 5 mm is spaced at intervals of 5 mm. A hydrogen production cell was prepared in the same manner as in Reference Example 1 except that 8 electrodes were provided on the electrode and 6 electrodes were provided on the air electrode so as not to face each other, and gas generated on the fuel electrode side as in Reference Example 1 The amount was measured. '
その結果を表 4に示す。
表 4 The results are shown in Table 4. Table 4
表 4に示されるように、 空気流量を少なくしても、 セルの燃料極側から、 水素 の発生は確認されなかった。 As shown in Table 4, generation of hydrogen was not confirmed from the fuel electrode side of the cell even when the air flow rate was reduced.
これは、 前述したように、 燃料極の放電反応が生じるべき領域がマスクされて おり、 放電反応のためのメタノール供給ができないためである。 This is because, as described above, the region where the discharge reaction of the fuel electrode should occur is masked, and methanol cannot be supplied for the discharge reaction.
(参考例 3 ) (Reference Example 3)
別口ットで作製した ME Aを用いて、参考例 1と同様に水素製造セルを作製し、 参考例 1と同様に燃料極側で発生するガス発生量を測定した。 A hydrogen production cell was prepared in the same manner as in Reference Example 1 using ME A prepared in a separate outlet, and the amount of gas generated on the fuel electrode side was measured in the same manner as in Reference Example 1.
その結果を表 5に示す。 . 表 5 The results are shown in Table 5. Table 5
表 5に示されるように、 参考例 1よりはやや多い空気流量で、 セルの燃料極側 から、 水素の発生が確認された。 また、 空気流量とセルの開回路電圧との関係を 調べると、 空気流量を少なくすると、 それに伴って、 セルの開回路電圧が低下す る傾向が認められた。 As shown in Table 5, hydrogen generation was confirmed from the fuel electrode side of the cell at a slightly higher air flow rate than in Reference Example 1. In addition, when the relationship between the air flow rate and the open circuit voltage of the cell was examined, it was found that the cell open circuit voltage tended to decrease with decreasing air flow rate.
水素生成速度 (水素発生量) は開回路電圧に依存する傾向を示し、 開回路電圧 4 0 0〜6 0 O mVで水素が発生することが分かった。 また、 水素生成速度のピ ークは 4 7 O mV付近で観察された。
(参考例 4 ) The hydrogen generation rate (hydrogen generation amount) tended to depend on the open circuit voltage, and it was found that hydrogen was generated at an open circuit voltage of 400 to 60 mV. The peak of hydrogen production rate was observed around 47 mV. (Reference Example 4)
M E Aの燃料極及び空気極のガス拡散層上にエポキシ樹脂を塗布することによ つて、 図 9及び図 1 0に示すように、 幅 5 mmの帯状マスクを 5 mmの間隔で 8 本設け、 マスクの一部のみが対向するように半分ずらすようにした以外は、 参考 例 3と同様に水素製造セルを作製し、 参考例 1と同様に燃料極側で発生するガス 発生量を測定した。 By applying an epoxy resin on the gas diffusion layer of the fuel electrode and air electrode of the MEA, as shown in Fig. 9 and Fig. 10, eight strip masks with a width of 5 mm are provided at intervals of 5 mm. A hydrogen production cell was fabricated in the same manner as in Reference Example 3 except that only a part of the mask was shifted so as to face each other, and the amount of gas generated on the fuel electrode side was measured in the same manner as in Reference Example 1.
その結果を表 6に示す。 . 表 6 The results are shown in Table 6. Table 6
表 6に示されるように、 空気流量を少なくすることによって、 開回路電圧 5 0 O mV付近で、 セルの燃料極側から、 水素の発生が確認された。 As shown in Table 6, hydrogen generation was confirmed from the fuel electrode side of the cell at an open circuit voltage of around 50 O mV by reducing the air flow rate.
マスクをずらした場合には、 前述したように、 放電領域と水素発生領域が形成 され、. 水素が発生する。 When the mask is shifted, as described above, a discharge region and a hydrogen generation region are formed, and hydrogen is generated.
(参考例 5 ) (Reference Example 5)
次に、 ガス拡散層の一部にマスキングを行う代わりに、 空気極のガス拡散層を 異なる素材の組み合わせにより不均一にして、 空気極側に空気の供給の不足する 領域を設けた参考例を示す。 Next, instead of masking a part of the gas diffusion layer, a reference example in which the gas diffusion layer of the air electrode is made non-uniform by a combination of different materials and an area where air supply is insufficient is provided on the air electrode side. Show.
電解質膜の空気極側に、 幅 1 O mmのポリイミ ドシート (空気遮断層) と幅 1 O mmのカーボンペーパー (空気透過層:空気極触媒付きガス拡散層) とを、 図 1 2に示すように、 交互に配すると共に、 電解質膜の燃料極側には、 カーボンぺ 一パー (燃料極触媒付きガス拡散層) を配して、 1 4 0 °C、 ' 1 O M P aでホット プレスすることによつて接合した以外は、 実施例 1と同様に M E Aを作製した。 ポリイミドシートの厚さはプレス前後ともに 1 3 0 μ m、 カーボンペーパーの厚 さはプレス前が 2 8 0 μ πι、 プレス後が 1 6 5 μ mであった (ポリイミ ドシート
はプレスしても元に戻る)。 プレス後の空気極及び燃料極の触媒層の厚さは、 そ れぞれ、 約 3 0 μ mであった。 Fig. 12 shows a polyimide sheet (air blocking layer) with a width of 1 O mm and carbon paper (air permeable layer: gas diffusion layer with an air electrode catalyst) with a width of 1 O mm on the air electrode side of the electrolyte membrane. In addition, the carbon film (gas diffusion layer with fuel electrode catalyst) is placed on the fuel electrode side of the electrolyte membrane, and hot-pressed at 140 ° C and '1 OMPa. A MEA was prepared in the same manner as in Example 1 except that bonding was performed using The thickness of the polyimide sheet was 1 30 μm before and after pressing, and the thickness of the carbon paper was 2 80 μ πι before pressing and 1 65 μm after pressing (polyimide sheet). Can be restored by pressing). The thickness of the catalyst layer of the air electrode and fuel electrode after pressing was about 30 μm, respectively.
このようにして作製した ME Aを用いて、 参考例 1と同様に水素製造セルを作 製し、 参考例 1と同様に燃料極側で発生するガス発生量を測定した。 Using the ME A thus produced, a hydrogen production cell was produced in the same manner as in Reference Example 1, and the amount of gas generated on the fuel electrode side was measured in the same manner as in Reference Example 1.
その結果を表 7に示す。 The results are shown in Table 7.
表 7 Table 7
空気極のガス拡散層を異なる素材の組み合わせにより不均一にした場合も、 表 Even if the gas diffusion layer of the air electrode is made uneven by combining different materials,
7に示されるように、 空気流量を少なくすることによって、 開回路電圧 5 0 0 m V付近で、 セルの燃料極側から、 水素の発生が確認された。 As shown in Fig. 7, generation of hydrogen was confirmed from the fuel electrode side of the cell at an open circuit voltage of about 50 mV by reducing the air flow rate.
(参考例 6 ) (Reference Example 6)
. 次に、 ガス拡散層の一部にマスキングを行う代わりに、 空気極のガス拡散層を 疎密の組合せにより不均一にして、 空気極側に空気の供給の不足する領域を設け た参考例を示す。 Next, instead of masking part of the gas diffusion layer, a reference example in which the gas diffusion layer of the air electrode is made non-uniform by the combination of density and an area where air supply is insufficient is provided on the air electrode side. Show.
電解質膜の空気極側に、 幅 1 O mm、 厚さ 1 9 0 μ mの薄いカーボンペーパー (空気極触媒付きガス拡散層) と幅 1 O mm、 厚さ 3 3 5 μ πιの厚いカーボンぺ 一パー (空気極触媒付きガス拡散層) とを交互に並べると共に、 電解質膜の燃料 極側には、厚さ 1 9 0 μ mの薄いカーボンペーパー(燃料極触媒付きガス拡散層) を酉己して、 1 4 0 °C、 同じプレス圧 (l O M P a ) でホットプレスすること (同 時プレス) によって接合した以外は、 実施例 1と同様に M E Aを作製した。 空気 極のガス拡散層であるカーボンペーパーのプレス前後の厚さ'は 1 9 0 β ΐΆ→1 6 5 m、 3 3 5 μ πι→1 8 5 μ ηιであり、 ほぼ同じ厚さになっていることから、 図 1 3に示すような疎密 (薄いカーボンぺーパ一"疎、 厚いカーボンぺーパ一 ~ 密) が組み合わされたカーボンペーパーになっている。 プレス後の空気極及び燃
料極の触媒層の厚さは、 それぞれ、 約 30 μηιであった。 A thin carbon paper (gas diffusion layer with air electrode catalyst) with a width of 1 O mm and a thickness of 190 μm and a thick carbon paper with a width of 1 O mm and a thickness of 3 3 5 μπι on the air electrode side of the electrolyte membrane. A thin carbon paper (a gas diffusion layer with a fuel electrode catalyst) with a thickness of 190 μm is placed on the fuel electrode side of the electrolyte membrane. Then, MEA was produced in the same manner as in Example 1 except that bonding was performed by hot pressing (simultaneous pressing) at 140 ° C. and the same pressing pressure (l OMP a). The thickness of the carbon paper that is the gas diffusion layer of the air electrode before and after pressing is 1 90 β 0 → 1 65 m, 3 3 5 μ πι → 1 8 5 μ ηι, which is almost the same thickness. Therefore, the carbon paper is a combination of sparse and dense (thin carbon paper, sparse, thick carbon paper ~ dense) as shown in Fig. 13. Air electrode and fuel after pressing Each of the electrode catalyst layers had a thickness of about 30 μηι.
このようにして作製した ME Αを用いて、 参考例 1と同様に水素製造セルを作 製し、 空気極側に流す空気の流量を 1 0〜90m 1 /分の範囲とした以外は、 参 考例 1と同様の条件を採用して、 燃料極側で発生するガス発生量を測定した。 その結果を表 8に示す。 A hydrogen production cell was produced using ME ME thus produced in the same manner as in Reference Example 1, except that the flow rate of air flowing to the air electrode side was in the range of 10 to 90 m 1 / min. Using the same conditions as in Example 1, the amount of gas generated on the fuel electrode side was measured. The results are shown in Table 8.
表 8 Table 8
空気極のガス拡散層を疎密の組合せにより不均一にした場合も、 表 8に示され るように、 空気流量を少なくすることによって、 開回路電圧 50 OmV付近で、 セルの燃料極側から、 水素の発生が確認された。 空気極のガス拡散層を異なる素 材の組み合わせにより不均一にした参考例 5の場合よりも、 やや空気流量の多い ところで、 水素が発生した。 ' Even if the gas diffusion layer of the air electrode is made non-uniform by the combination of density, as shown in Table 8, by reducing the air flow rate, the open circuit voltage is around 50 OmV from the fuel electrode side of the cell. Generation of hydrogen was confirmed. Hydrogen was generated where the air flow rate was slightly higher than in Reference Example 5 where the gas diffusion layer of the air electrode was made non-uniform by combining different materials. '
(参考例 7) (Reference Example 7)
次に、 ガス拡散層の一部にマスキングを行う代わりに、 空気極のガス拡散層を 表面の凹凸により不均一にして、 空気極側に空気の供給の不足する領域を設けた 参考例を示す。 Next, instead of masking part of the gas diffusion layer, a reference example is shown in which the gas diffusion layer of the air electrode is made non-uniform due to surface irregularities and an area where air supply is insufficient is provided on the air electrode side. .
電解質膜の空気極側に、 幅 1 Omm、 厚さ 1 90 μ mの薄いカーボンペーパー (空気極触媒付きガス拡散層) を 1 Ommの隙間を設けて並べると共に、 電解質 膜の燃料極側には、 厚さ 1 90 μπιの薄いカーボンペーパー (燃料極触媒付きガ ス拡散層) を全面に配して、 140°C、 1 0 MP aのプレス圧でホットプレスし た後、 1 Ommの隙間に厚さ 335 μ mの厚いカーボンペーパー (空気極触媒付 きガス拡散層) を並べて、 140°C、 1 OMP aのプレス圧でホッ トプレスする こと (二段階プレス) によって接合した以外は、 実施例 1と同様に ME Aを作製 した。 空気極のガス拡散層であるカーボンペーパーのプレス前後の厚さは 1 90
m→ 1 4 0 m , 3 3 5 μ m→ 2 1 5 μ mであること力 ら、 図 1 4に示すよう な凹凸 (薄いカーボンぺーパ一 ~ ^凹、 厚いカーボンぺーパ一"" >凸) が形成された カーボンペーパーになっている。プレス後の空気極及ぴ燃料極の触媒層の厚さは、 それぞれ、 約 3 0 μ ιηであった。 On the air electrode side of the electrolyte membrane, a thin carbon paper (gas diffusion layer with an air electrode catalyst) with a width of 1 Omm and thickness of 1 90 μm is arranged with a gap of 1 Omm, and on the fuel electrode side of the electrolyte membrane. A thin carbon paper (gas diffusion layer with fuel electrode catalyst) with a thickness of 1 90 μπι is placed on the entire surface, hot-pressed at 140 ° C and 10 MPa pressure, and then into the 1 Omm gap. Example except that thick carbon paper (gas diffusion layer with air electrode catalyst) with a thickness of 335 μm was lined up and bonded by hot pressing with a press pressure of 140 ° C and 1 OMPa (two-stage pressing) ME A was prepared as in 1. The thickness of the carbon paper that is the gas diffusion layer of the air electrode before and after pressing is 1 90 m → 1 40 m, 3 3 5 μm → 2 1 5 μm, and the unevenness (thin carbon paper ~ ^ concave, thick carbon paper ""> It is a carbon paper with protrusions. The thickness of the catalyst layer of the air electrode and fuel electrode after pressing was about 30 μιη respectively.
このようにして作製した M E Αを用いて、 参考例 1と同様に水素製造セルを作 製し、 空気極側に流す空気の流量を 1 0〜9 O m 1 Z分の範囲とした以外は、 参 考例 1と同様の条件を採用して、 燃料極側で発生するガス発生量を測定した。 . その結果を表 9に示す。 A hydrogen production cell was produced using MEΑ thus produced in the same manner as in Reference Example 1, except that the flow rate of air flowing to the air electrode side was in the range of 10 to 9 O m 1 Z. The amount of gas generated on the fuel electrode side was measured using the same conditions as in Reference Example 1. The results are shown in Table 9.
表 9 Table 9
空気極のガス拡散層を表面の凹凸により不均一にした場合も、 表 9に示される ように、 空気流量を少なくすることによって、 開回路電圧 5 0 O m V付近で、 セ ルの燃料極側から、 水素の発生が確認された。 空気極のガス拡散層を疎密の組合 せにより不均一にした参考例 6の塲合と同様に、 空気極のガス拡散層を異なる素 材の組み合わせにより不均一にした参考例 5の場合よりも、 やや空気流量の多い ところで、 水素が発生した。 実施例 Even if the gas diffusion layer of the air electrode is made uneven due to unevenness on the surface, as shown in Table 9, by reducing the air flow rate, the cell fuel electrode is near the open circuit voltage of 50 O m V. From the side, generation of hydrogen was confirmed. Similar to the combination of Reference Example 6 in which the gas diffusion layer of the air electrode is made non-uniform by a combination of density, compared to the case of Reference Example 5 in which the gas diffusion layer of the air electrode is made non-uniform by a combination of different materials Hydrogen was generated at a slightly higher air flow rate. Example
参考例 5と同じ M E A (空気遮断層としてポリイミ ドシートを採用)を用いて、 それぞれ、 空気を流すため、 および燃料を流すための流路を設け、 燃料、 空気と もに自然拡散 (図 1 5 )、 燃料は自然拡散、 空気はブロアで供給 (図 1 6 )、 燃 料はポンプで供給、 空気は自然拡散 (図 1 7 ) の 3種類のパッシブ型水素製造装 置を作製した。 燃料自然拡散の手段としては、. 図 1 5及び図 1 6に示すように、 燃料を供給するための流路に毛管材料からなる部材を配し、 その毛管材料の毛管
力で燃料を燃料カートリッジから上方向に吸い上げて燃料極に供給する手段を採 用した。 また、 空気自然拡散の手段としては、 図 1 5及び図 1 7に示すように、 空気極に面して多数の空気取り入れ口を形成し、 空気を自然拡散する手段を採用 した。 Using the same MEA as in Reference Example 5 (with a polyimide sheet as the air barrier layer), a flow path is provided to allow air to flow and fuel to flow, respectively. Natural diffusion with fuel and air (Fig. 15) ), Three types of passive hydrogen production equipment were prepared: natural diffusion of fuel, supply of air by blower (Fig. 16), supply of fuel by pump, and natural diffusion of air (Fig. 17). As a means of natural fuel diffusion, as shown in FIGS. 15 and 16, a member made of a capillary material is arranged in a flow path for supplying fuel, and the capillary of the capillary material is arranged. A means was used to suck up fuel from the fuel cartridge by force and supply it to the fuel electrode. As a means of natural air diffusion, as shown in Fig. 15 and Fig. 17, we adopted a means to naturally diffuse air by forming a number of air intakes facing the air electrode.
このようにして作製した図 1 5に示す水素製造装置により、運転温度 3 0 °Cで、 空気ブロア、 燃料ポンプは用いずに、 空気極側に、 空気取り入れ口から空気を自 然拡散によって供給し、 燃料極側に、 燃料カートリッジ中の 1 . O Mのメタノー ル水溶液 (燃料) を供給し、 その時の燃料極と空気極の電圧差 (オープン電圧)、 燃料極側で発生する水素生成速度について検討を行った。 The hydrogen production device shown in Fig. 15 was used to supply air from the air intake port to the air electrode side by natural diffusion at an operating temperature of 30 ° C, without using an air blower or fuel pump. Then, the 1.OM methanol aqueous solution (fuel) in the fuel cartridge is supplied to the fuel electrode side, the voltage difference between the fuel electrode and the air electrode (open voltage) at that time, and the hydrogen generation rate generated on the fuel electrode side Study was carried out.
その結果を図 1 8に示す。 The results are shown in Figure 18.
開回路電圧 (オープン電圧) 5 0 0 mV付近で、 セルの燃料極側から、 水素の 発生が確認された。 Open circuit voltage (open voltage) Hydrogen generation from the fuel electrode side of the cell was confirmed at around 50 mV.
なお、 空気を自然拡散させる図 1 5及び図 1 7に示すようなパッシブ型水素製 造装置では、 連続的に水素を発生させるのは困難であつたが、 空気はブロアで供 給し、 燃科は自然拡散させる図 1 6に示すようなパッシブ型水素製造装置では、 連続的に水素を発生させることができると考えられる。 以上のように、空気極側に空気の供給の不足する領域を設けた水素製造装置は、 有機物を含む燃料を 1 0 0 °C以下で分解して水素を含むガスを製造することがで きるものであるから、 これをパッシブ型水素製造装置とした場合には、 有機物と 水を含む燃料を燃料極に供給するためのポンプや空気を空気極に供給するための ブロアが不要になり、 補機エネルギーが節約でき、 水素製造装置をさらに小型に することができるものである。 次に、 このパッシブ型水素製造装置の応用について説明する。 In the passive hydrogen production system shown in Fig. 15 and Fig. 17 that diffuses air naturally, it was difficult to generate hydrogen continuously, but air was supplied by a blower and burned. In the passive hydrogen production system as shown in Fig. 16 where natural gas diffuses naturally, it is thought that hydrogen can be generated continuously. As described above, the hydrogen production apparatus provided with a region where air supply is insufficient on the air electrode side can produce a gas containing hydrogen by decomposing a fuel containing organic matter at 100 ° C. or lower. Therefore, if this is a passive hydrogen production system, a pump for supplying fuel containing organic matter and water to the fuel electrode and a blower for supplying air to the air electrode are not necessary. This saves energy and makes the hydrogen production system even smaller. Next, application of this passive hydrogen production apparatus will be described.
本発明のパッシブ型水素製造装置は、 図 1 9に示されるように、 パッシブ型固 体高分子型燃料電池 (2 2 ) と接続して、 パッシブ型固体高分子型燃料電池の燃 科極 (2 4 ) にパッシブ型水素製造装置で製造した水素を含むガスを供給するこ とにより、 パッケージ型燃料電池発電装置とすることができる。 パッシブ型固体
高分子型燃料電池 (2 2 ) としては、 隔膜 (2 3 ) の一方の面に燃料極 (2 4 ) を設け、 隔膜 (2 3 ) の他方の面に空気極 (2 5 ) を設けた従来のものを採用す ることができる。 As shown in FIG. 19, the passive hydrogen production apparatus of the present invention is connected to a passive solid polymer fuel cell (2 2) to connect the fuel electrode of the passive solid polymer fuel cell (2 By supplying a gas containing hydrogen produced by a passive hydrogen production device to 4), a package type fuel cell power generation device can be obtained. Passive solid The polymer fuel cell (2 2) has a fuel electrode (2 4) on one side of the diaphragm (2 3) and an air electrode (2 5) on the other side of the diaphragm (2 3). Conventional ones can be used.
このパッシブ型固体高分子型燃料電池 (2 2 ) の燃料極 (2 4 ) の近傍には、 図 2 0に示されるように、 水素を含むガスに含まれる二酸化炭素を吸収するため のアルカリ、 ゼォライ ト等からなる二酸化炭素吸収部 (2 6 ) を設けることが好 ましい。 In the vicinity of the anode (2 4) of the passive polymer electrolyte fuel cell (2 2), as shown in FIG. 20, an alkali for absorbing carbon dioxide contained in the gas containing hydrogen, It is preferable to provide a carbon dioxide absorption part (2 6) made of zeolite.
また、 本発明のパッシブ型水素製造装置は、 図 2 1に示されるように、 燃料ポ ンプ (2 8 ) 及び空気ブロア (2 9 ) を有する従来のアクティブ型固体高分子型 燃料電池 (2 7 ) と接続して、 アクティブ型固体高分子型燃料電池の燃料極にパ ッシブ型水素製造装置で製造した水素を含むガスを供給することにより、 パッケ 一ジ型燃料電池発電装置とすることができる。 In addition, as shown in FIG. 21, the passive hydrogen production apparatus of the present invention has a conventional active solid polymer fuel cell (2 7) having a fuel pump (2 8) and an air blower (2 9). ) And supplying a gas containing hydrogen produced by a passive hydrogen production device to the fuel electrode of an active solid polymer fuel cell, thereby providing a packaged fuel cell power generator. .
なお、 図示していないが、 アクティブ型固体高分子型燃料電池と組み合わせた 場合には、 パッシブ型水素製造装置の水素製造セル (1 0 ) とラジエーター (3 0 ) との間に二酸化炭素吸収部を設けることもできる。 産業上の利用可能性 Although not shown in the figure, when combined with an active solid polymer fuel cell, a carbon dioxide absorption section is provided between the hydrogen production cell (1 0) and the radiator (3 0) of the passive hydrogen production apparatus. Can also be provided. Industrial applicability
上記のような本発明のパッシブ型水素製造装置を用いたパッケージ型燃料電池 発電装置は、 パッケージに内蔵した制御装置を水素製造装置の発生する熱から保 護するための特別な手段を必要とせず、 さらに、 燃料電池も含めて装置全体とし ての発熱も少ないものであるから、 移動用電源あるいはオンサイ ト用電源として 使用する場合等に極めて有利である。
The package type fuel cell power generation apparatus using the passive hydrogen production apparatus of the present invention as described above does not require any special means for protecting the control device built in the package from the heat generated by the hydrogen production apparatus. Furthermore, since the entire device including the fuel cell does not generate much heat, it is extremely advantageous when used as a mobile power source or an on-site power source.
Claims
1 .有機物を含む燃料を分解し水素を含むガスを製造する水素製造装置において、 隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む 料 を毛管力又は熏カ落下によって供給する手段、 前記隔膜の他方の面に設けた酸化 極、 前記酸化極に酸化剤を供給する手段、 燃料極側から水素を含むガスを発生さ せて取り出す手段を備えてなり、 かつ、 酸化極側に前記酸化剤の供給の不足する 領域を設けたことを特徴とするパッシブ型水素製造装置。 1. In a hydrogen production apparatus for decomposing a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, and a material containing organic matter and water in the fuel electrode is subjected to capillary force or soot A means for supplying by dropping, an oxidation electrode provided on the other surface of the diaphragm, a means for supplying an oxidant to the oxidation electrode, and a means for generating and taking out a gas containing hydrogen from the fuel electrode side, And the passive-type hydrogen production apparatus characterized by providing the area | region where supply of the said oxidizing agent is insufficient on the oxidation electrode side.
2 .有機物を含む燃料を分解し水素を含むガスを製造する水素製造装置において、 隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む燃料 を供給する手段、 前記隔膜の他方の面に設けた酸化極、 前記酸化極に酸化剤とし て空気を自然拡散又は自然対流によつて供給する手段、 燃料極側から水素を含む ガスを発生させて取り出す手段を備えてなり、 かつ、 酸化極側に前記酸化剤の供 給の不足する領域を設けたことを特徴とするパッシブ型水素製造装置。 2. In a hydrogen production apparatus for decomposing a fuel containing organic matter and producing a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, means for supplying a fuel containing organic matter and water to the fuel electrode, An oxidizing electrode provided on the other surface of the diaphragm; means for supplying air as an oxidizing agent to the oxidizing electrode by natural diffusion or natural convection; and means for generating and taking out a gas containing hydrogen from the fuel electrode side A passive hydrogen production apparatus characterized in that a region where the supply of the oxidizing agent is insufficient is provided on the oxidation electrode side.
3 . 前記空気を自然拡散又は自然対流によって供給する手段が、 前記酸化極であ る空気極に面して空気取り入れ口を有し、 前記空気取り入れ口に調整バルブを有 するものであることを特徴とする請求の範囲第 2項に記載のパッシブ型水素製造 装置。 3. The means for supplying the air by natural diffusion or natural convection has an air intake facing the air electrode that is the oxidation electrode, and an adjustment valve at the air intake. The passive hydrogen production apparatus according to claim 2, characterized in that it is characterized in that
4 . 前記空気を自然拡散又は自然対流によって供給する手段が、 前記酸化極であ る空気極に面してスライド式空気取り入れ口を有するものであることを特徴とす る請求の範囲第 2項に記載のパッシブ型水素製造装置。 4. The means according to claim 2, wherein the means for supplying the air by natural diffusion or natural convection has a sliding air intake facing the air electrode as the oxidation electrode. The passive-type hydrogen production apparatus described in 1.
5 . 前記空気の自然拡散又は自然対流を補助するためのファンを有することを特 徴とする請求の範囲第 2項〜第 4項のいずれか一項に記載のパッシブ型水素製造 装置。 5. The passive hydrogen production apparatus according to any one of claims 2 to 4, further comprising a fan for assisting natural diffusion or natural convection of the air.
6 .有機物を含む燃料を分解し水素を含むガスを製造する水素製造装置において、 隔膜、 前記隔膜の一方の面に設けた燃料極、 前記燃料極に有機物と水を含む燃料 を供給する手段、 前記隔膜の他方の面に設けた酸化極、 前記酸化極に酸化剤とし て過酸化水素を含む液体を毛管力又は重力落下によって供給する手段、 燃料極側
から水素を含むガスを発生させて取り出す手段を備えてなり、 かつ、 酸化極側に 前記酸化剤の供給の不足する領域を設けたことを特徴とするパッシブ型水素製造 装置。 6. In a hydrogen production apparatus for decomposing a fuel containing organic matter to produce a gas containing hydrogen, a diaphragm, a fuel electrode provided on one surface of the diaphragm, means for supplying a fuel containing organic matter and water to the fuel electrode, An oxidation electrode provided on the other surface of the diaphragm; means for supplying a liquid containing hydrogen peroxide as an oxidant to the oxidation electrode by capillary force or gravity drop; fuel electrode side A passive hydrogen production apparatus comprising: means for generating and taking out a gas containing hydrogen from a gas; and a region where supply of the oxidant is insufficient is provided on the oxidation electrode side.
7 . 前記酸化剤の供給の不足する領域を、 前記酸化剤を流すための流路溝を設け た酸化極セパレータを用いないで設けたことを特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素製造装置。 7. The region according to claim 1, wherein the region where the supply of the oxidizing agent is insufficient is provided without using an oxidation electrode separator provided with a channel groove for flowing the oxidizing agent. And a passive hydrogen production apparatus according to any one of items 6 to 6.
8 . 前記酸化剤の供給の不足する領域を、 前記酸化極のガス拡散層に設けたこと を特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記载のパッ シブ型水素製造装置。 8. The region described in any one of claims 1, 2, and 6, wherein a region where the supply of the oxidizing agent is insufficient is provided in the gas diffusion layer of the oxidation electrode. Passive hydrogen production equipment.
9 . 前記酸化剤の供給の不足する領域を、 前記酸化極のガス拡散層の一部にマス キングを行うことによって設けたことを特徴とする請求の範囲第 8項に記載のパ ッシブ型水素製造装置。 9. The passive hydrogen according to claim 8, wherein the region where the supply of the oxidant is insufficient is provided by masking a part of the gas diffusion layer of the oxidation electrode. Manufacturing equipment.
1 0 . 前記酸化剤の供給の不足する領域を、 前記燃料極のガス拡散層のみの一部 にマスキングを行うことによって設けたことを特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素製造装置。 10. The region in which the supply of the oxidant is insufficient is provided by masking only a part of the gas diffusion layer of the fuel electrode. The passive-type hydrogen production apparatus according to any one of claims 6.
1 1 . 前記酸化剤の供給の不足する領域を、 前記酸化極及び前記燃料極の両極の ガス拡散層の一部にマスキングを行うとともに、 その対向する両側のマスキング の少なくとも一部をずらして行うことによって設けたことを特徴とする請求の範 囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素製造装置。 1 1. Mask the region where the oxidant is insufficiently supplied to a part of the gas diffusion layer on both the oxidation electrode and the fuel electrode, and shift at least a part of the masking on both sides facing each other. The passive hydrogen production apparatus according to any one of claims 1, 2, and 6, wherein the passive hydrogen production apparatus is provided.
1 2 . 前記酸化剤の供給の不足する領域を、 前記酸化極及び/又は前記燃料極の ガス拡散層の一部にマスキングを帯状に行うことによって設けたことを特徴とす る請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素 製造装置。 + 12. The region where the supply of the oxidant is insufficient is provided by masking a part of the gas diffusion layer of the oxidation electrode and / or the fuel electrode in a band shape. The passive-type hydrogen production apparatus according to any one of items 1, 2, and 6. +
1 3 . 前記酸化剤の供給の不足する領域を、 前記酸化極及び Z又は前記燃料極の ガス拡散層の一部にマスキングを斑点状に行うことによって設けたことを特徴と する請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシプ型水 素製造装置。 13. The region where the supply of the oxidant is insufficient is provided by performing spotting on a portion of the gas diffusion layer of the oxidation electrode and Z or the fuel electrode. The passive-type hydrogen production apparatus according to any one of items 1, 2, and 6.
1 4 . 前記酸化剤の供給の不足する領域を、 前記酸化極及び Z又は前記燃料極の · ガス拡散層の一部に樹脂を含浸又は前記ガス拡散層の表面の一部に樹脂を塗布す
るマスキングによって設けたことを特徴とする請求 範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素製造装置。 14. In the region where the supply of the oxidant is insufficient, impregnate resin in part of the gas diffusion layer of the oxidation electrode and Z or the fuel electrode, or apply resin to part of the surface of the gas diffusion layer. 7. The passive hydrogen production apparatus according to claim 1, wherein the passive hydrogen production apparatus is provided by masking.
1 5 . 前記酸化剤の供給の不足する領域を、 前記酸化極及び Z又は前記燃料極の ガス拡散層の一部にスクリーン印刷するマスキングによって設けたことを特徴と する請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水 素製造装置。 15. The region where the supply of the oxidant is insufficient is provided by masking screen-printed on a part of the gas diffusion layer of the oxidation electrode and Z or the fuel electrode. The passive hydrogen production apparatus according to any one of items 2 and 6.
1 6 . 前記酸化剤の供給の不足する領域を、 前記酸化極のガス拡散層を不均一に して設けたことを特徴とする請求の範囲第 8項に記載のパッシブ型水素製造装 置。 16. The passive hydrogen production apparatus according to claim 8, wherein the region where the supply of the oxidant is insufficient is provided by making the gas diffusion layer of the oxidation electrode non-uniform.
1 7 . 前記酸化極のガス拡散層を、 疎密に形成するか、 材質の異なるものを組み 合わせることによつて不均一にしたことを特徴とする請求の範囲第 1 6項に記載 のパッシブ型水素製造装置。 17. The passive type according to claim 16, wherein the gas diffusion layer of the oxidation electrode is made non-uniform by forming it densely or by combining different materials. Hydrogen production equipment.
1 8 . 前記酸化極のガス拡散層を、 表面に凹凸を形成することによって不均一に したことを特徴とする請求の範囲第 1 6項に記載のパッシブ型水素製造装置。 18. The passive hydrogen production apparatus according to claim 16, wherein the gas diffusion layer of the oxidation electrode is made uneven by forming irregularities on the surface.
1 9 . 水素製造装置を構成する水素製造セルから外部に電気エネルギーを取り出 す手段及び前記水素製造セルに外部から電気エネルギーを印加する手段を有しな い開回路であることを特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれ か一項に記載のパッシブ型水素製造装置。 1 9. An open circuit having no means for extracting electric energy from a hydrogen production cell constituting the hydrogen production apparatus and means for applying electric energy from the outside to the hydrogen production cell. The passive hydrogen production apparatus according to any one of claims 1, 2, and 6.
2 0 . 前記燃料極を負極とし前記酸化極を正極として外部に電気エネルギーを取 り出す手段を有することを特徴とする請求の範囲第 1項、 第 2項及び第 6項のい ずれか一項に記載のパッシブ型水素製造装置。 20. Any one of claims 1, 2, and 6, further comprising means for taking out electric energy to the outside using the fuel electrode as a negative electrode and the oxidation electrode as a positive electrode. The passive-type hydrogen production apparatus according to item.
2 1 . 前記燃料極を力ソードとし前記酸化極をアノードとして外部から電気エネ ルギーを印加する手段を有することを特徴とする請求の範囲第 1項、 第 2項及び 第 6項のいずれか一項に記載のパッシブ型水素製造装置。 21. The method according to claim 1, further comprising means for applying electric energy from the outside with the fuel electrode as a force sword and the oxidation electrode as an anode. The passive-type hydrogen production apparatus according to item.
2 2 . 前記燃料極と前記酸化極との間の電圧が 4 0 0〜6 0 O m Vであることを 特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシ ブ型水素製造装置。 2. The voltage between the fuel electrode and the oxidation electrode is 400 to 60 OmV, and any one of claims 1, 2 and 6 Passive hydrogen production system as described in the section.
2 3 . 前記燃料極と前記酸化極との間の電圧を調整することにより、 前記水素を 含むガスの発生量を調整することを特徴とする請求の範囲第 1項、 第 2項及び第
6項のいずれか一項に記載のパッシブ型水素製造装置。 2. The amount of generation of the gas containing hydrogen is adjusted by adjusting the voltage between the fuel electrode and the oxidation electrode. The passive-type hydrogen production apparatus according to any one of claims 6.
2 4 . 前記酸化剤の供給量を調整することにより、 前記燃料極と前記酸化極との 間の電圧及び Z又は前記水素を含むガスの発生量を調整することを特徴とする請 求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素製造 装置。 24. Range of claim characterized in that by adjusting the supply amount of the oxidant, the voltage between the fuel electrode and the oxidation electrode and the generation amount of gas containing Z or hydrogen are adjusted. The passive-type hydrogen production apparatus according to any one of items 1, 2, and 6.
2 5 . 運転温度が 1 0 0 °C以下であることを特徴とする請求の範囲第 1項、 第 2 項及び第 6項のいずれか一項に記載のパッシブ型水素製造装置。 . 25. The passive hydrogen production apparatus according to any one of claims 1, 2, and 6, wherein the operating temperature is 100 ° C. or lower. .
2 6 .前記燃料極に供給する前記有機物がアルコール、 アルデヒド、カルボン酸、 及ぴェ一テルよりなる群から選択される一種又は二種以上の有機物であることを 特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシ ブ型水素製、造装置。 . 26. The organic material supplied to the fuel electrode is one or more organic materials selected from the group consisting of alcohol, aldehyde, carboxylic acid, and ether. The passive-type hydrogen-made production apparatus according to any one of items 2 and 6. .
2 7 . 前記アルコールがメタノールであることを特徴とする請求の範囲第 2 6項 に記載のパッシブ型水素製造装置。 27. The passive hydrogen production apparatus according to claim 26, wherein the alcohol is methanol.
2 8 . 前記隔膜がプロトン導電性固体電解質膜であることを特徴とする請求の範 囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素製造装置。 28. The passive hydrogen production apparatus according to any one of claims 1, 2, and 6, wherein the diaphragm is a proton conductive solid electrolyte membrane.
2 9 . 前記プロトン導電性固体電解質膜がパーフルォロカーボンスルホン酸系固 体電解質膜であることを特徴とする請求の範囲第 2 8項に記載のパッシブ型水素 製造装置。 ' 29. The passive hydrogen production apparatus according to claim 28, wherein the proton conductive solid electrolyte membrane is a perfluorocarbon sulfonic acid solid electrolyte membrane. '
3 0 . 前記燃料極の触媒が白金一ルテニウム合金を炭素粉末に担持したものであ ることを特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載 のパッシブ型水素製造装置。 30. The fuel electrode catalyst according to any one of claims 1, 2, and 6, wherein the catalyst of the fuel electrode is a platinum-ruthenium alloy supported on carbon powder. Passive hydrogen production equipment.
3 1 . 前記酸化極の触媒が白金を炭素粉末に担持したものであることを特徴とす る請求の範囲第 ί項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素 製造装置。 31. The passive-type hydrogen according to any one of claims ί, 及 び, 及 び, and 極, wherein the catalyst of the oxidation electrode is platinum supported on carbon powder. Manufacturing equipment.
3 2 . 前記有機物を含む燃料の循環手段を設けたことを特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型水素製造装置。 3. The passive hydrogen production apparatus according to any one of claims 1, 2, and 6, wherein a circulation means for fuel containing the organic matter is provided.
3 3 . 前記水素を含むガスに含まれる二酸化炭素を吸収する二酸化炭素吸収部を 設けたことを特徴とする請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に 記載のパッシプ型水素製造装置。
3 3. The carbon dioxide absorption part which absorbs the carbon dioxide contained in the gas containing the said hydrogen was provided, The range of Claim 1 characterized by the above-mentioned Passive hydrogen production system.
3 4 . 請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型 水素製造装置をパッシブ型固体高分子型燃料電池と接続して、 パッシブ型固体高 分子型燃料電池の燃料極にパッシブ型水素製造装置で製造した前記水素を含むガ スを供給することを特徴とするパッケージ型燃料電池発電装置。 3 4. Connecting the passive hydrogen production apparatus according to any one of claims 1, 2 and 6 to a passive solid polymer fuel cell, to form a passive solid polymer type A package type fuel cell power generator characterized by supplying a gas containing hydrogen produced by a passive hydrogen production device to a fuel electrode of a fuel cell.
3 5 . 前記水素を含むガスに含まれる二酸化炭素を吸収する二酸化炭素吸収部を 設けたことを特徴とする請求の範囲第 3 4項に記載のパッケージ型燃料電池発電 装置。 · 3 6 . 前記二酸化炭素吸収部をパッシブ型固体高分子型燃料電池の燃料極の近傍 に設けたことを特徴とする請求の範囲第 3 5項に記載のパッケージ型燃料電池発 電装置。 35. The package type fuel cell power generator according to claim 34, further comprising a carbon dioxide absorbing section that absorbs carbon dioxide contained in the gas containing hydrogen. 36. The package type fuel cell power generator according to claim 35, characterized in that the carbon dioxide absorption part is provided in the vicinity of a fuel electrode of a passive solid polymer fuel cell.
3 7 . 請求の範囲第 1項、 第 2項及び第 6項のいずれか一項に記載のパッシブ型 水素製造装置をァクティブ型固体高分子型燃料電池と接続して、 アクティブ型固 体高分子型燃料電池の燃料極にパッシブ型水素製造装置で製造した前記水素を含 むガスを供給することを特徴とするパッケージ型燃料電池発電装置。 3 7. Connecting the passive hydrogen production apparatus according to any one of claims 1, 2 and 6 to an active solid polymer fuel cell to form an active solid polymer type A package type fuel cell power generator characterized in that a gas containing hydrogen produced by a passive hydrogen production device is supplied to a fuel electrode of a fuel cell.
3 8 . 前記水素を含むガスに含まれる二酸化炭素を吸収する二酸化炭素吸収部を 設けたことを特徴とする請求の範囲第 3 7'項に記載のパッケージ型燃料電池発電 装置。
38. The package-type fuel cell power generator according to claim 37, further comprising a carbon dioxide absorber that absorbs carbon dioxide contained in the gas containing hydrogen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-211578 | 2005-07-21 | ||
JP2005211578 | 2005-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007011073A1 true WO2007011073A1 (en) | 2007-01-25 |
Family
ID=37668940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314944 WO2007011073A1 (en) | 2005-07-21 | 2006-07-21 | Passive hydrogen generator and packaged fuel cell power generation system using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007011073A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005038738A (en) * | 2003-07-16 | 2005-02-10 | Mitsubishi Rayon Co Ltd | Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell |
WO2005063614A1 (en) * | 2003-12-26 | 2005-07-14 | Gs Yuasa Corporation | Method for producing hydrogen and hydrogen-producing apparatus used therefor |
-
2006
- 2006-07-21 WO PCT/JP2006/314944 patent/WO2007011073A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005038738A (en) * | 2003-07-16 | 2005-02-10 | Mitsubishi Rayon Co Ltd | Gas diffusion layer electrode base material, its manufacturing method, and polymer electrolyte fuel cell |
WO2005063614A1 (en) * | 2003-12-26 | 2005-07-14 | Gs Yuasa Corporation | Method for producing hydrogen and hydrogen-producing apparatus used therefor |
Non-Patent Citations (1)
Title |
---|
YE Q. ET AL.: "Electrochemical Reactions in a DMFC under Open-Circuit Conditions", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 8, no. 1, 29 November 2004 (2004-11-29), pages A52 - A54, XP003002724 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5403198B2 (en) | Hydrogen production apparatus, fuel cell power generation apparatus, electric vehicle, submarine, and hydrogen supply system using the same | |
US20030170524A1 (en) | Direct methanol cell with circulating electrolyte | |
JP2004536419A (en) | System with fuel cell membrane and integrated gas separation | |
JP4121491B2 (en) | Liquid fuel mixing apparatus and direct liquid fuel cell using the same | |
KR100877273B1 (en) | Fuel cell | |
JP2004342489A (en) | Fuel cell | |
KR20070097050A (en) | Stand-alone hydrogen production system | |
US20060240311A1 (en) | Membrane-electrode unit for direct methanol fuel cells and method for the production thereof | |
WO2006070908A1 (en) | Fuel cell power generation device | |
WO2007004714A1 (en) | Hydrogen production apparatus | |
US20090042091A1 (en) | Supported catalyst layers for direct oxidation fuel cells | |
WO2010084753A1 (en) | Fuel cell | |
JP4894385B2 (en) | Passive hydrogen production apparatus and package type fuel cell power generation apparatus using the same | |
JP2002056856A (en) | Fuel cell using liquid fuel | |
JP4947338B2 (en) | Stand-alone hydrogen production system | |
JP5403199B2 (en) | Honeycomb type hydrogen production apparatus, fuel cell power generation apparatus using the same, electric vehicle, submarine ship and hydrogen supply system, and reaction tube for hydrogen production cell | |
KR100717747B1 (en) | Method of recovering stack for direct oxidation fuel cell | |
JP2009231195A (en) | Fuel cell and electronic device | |
JP4811704B2 (en) | Passive type hydrogen production apparatus and package type fuel cell power generation apparatus using the same | |
JP2007042600A (en) | Fuel cell | |
WO2007011073A1 (en) | Passive hydrogen generator and packaged fuel cell power generation system using same | |
WO2011052650A1 (en) | Fuel cell | |
JP2011096468A (en) | Fuel cell | |
JPWO2012001839A1 (en) | Direct oxidation fuel cell system | |
JP4863099B2 (en) | Stack type fuel cell power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781854 Country of ref document: EP Kind code of ref document: A1 |