JPS58166658A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS58166658A
JPS58166658A JP57049499A JP4949982A JPS58166658A JP S58166658 A JPS58166658 A JP S58166658A JP 57049499 A JP57049499 A JP 57049499A JP 4949982 A JP4949982 A JP 4949982A JP S58166658 A JPS58166658 A JP S58166658A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel cell
supply groove
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049499A
Other languages
Japanese (ja)
Inventor
Toshiki Kahara
俊樹 加原
Kenzo Ishii
石井 謙蔵
Seiji Takeuchi
瀞士 武内
Jinichi Imahashi
甚一 今橋
Akio Honchi
章夫 本地
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP57049499A priority Critical patent/JPS58166658A/en
Publication of JPS58166658A publication Critical patent/JPS58166658A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To equalize current distribution, by both gradually narrowing construction of a groove used as the fuel passage from an inlet side to an outlet side and reversely gradually widening an air passage to eliminate a pressure difference between fuel and air in an electrode base plate. CONSTITUTION:A catalytic layer 6 and grooves 4, 4' are formed to each one side of porous electrode base plates 1, 1'. The groove 4 is passage for hydrogen and the groove 4' is an air passage formed to a shape crossing at a right angle with said hydrogen passage. A width of the hydrogen passage passing through at least one of these grooves is formed to be provided such that the inlet side is, for instance, two times the outlet side. In this way, a pressure difference between fuel and air in the electrode base plate can be eliminated, while current distribution can be equalized.

Description

【発明の詳細な説明】 本!II@は多孔性ガス拡散電極を備えた燃料電池に係
り、%に多孔性ガス拡散電極の片面に最適なSt設けて
、燃料あるいは空気の通路とする構造を有する燃料電池
に関する。
[Detailed description of the invention] Book! II@ relates to a fuel cell equipped with a porous gas diffusion electrode, and relates to a fuel cell having a structure in which an optimum St is provided on one side of the porous gas diffusion electrode to form a passage for fuel or air.

従来、本発明のような多孔性基板の片面に溝を設け、こ
の溝を燃料や空気の通路とし、反対1iiiVc触媒層
を設ける形のガス拡散電極においては、第11iJK示
し友ように溝は幅、深さと4に一定になつていた、第1
図において、1は多孔性ガス拡散電極基板、2は燃料友
び空気通路用の溝である。
Conventionally, in a gas diffusion electrode of the present invention, in which a groove is provided on one side of a porous substrate, this groove is used as a passage for fuel or air, and a 1iiiVc catalyst layer is provided on the opposite side, the groove has a width as shown in 11iJK. , the depth was constant at 4, the first
In the figure, 1 is a porous gas diffusion electrode substrate, and 2 is a groove for fuel and air passages.

この皺の電極基板を用いた場合、燃1pFあるいは空気
の通路が人口側から出口側まで同一流速で設けられるた
めに、これらのガスが通路門流れる途中で徐々に電気化
学的反応によって消費され走り、あるいは生成水ができ
るに伴って、通路内のこれらのガスの圧力が異なってく
るという問題があった。すなわち、ガスの圧力が通路人
口側から出口1i1に向って、徐々に低くなったり、あ
るいは萬くなるものであり、この現象によって(1)燃
料及び空気の圧力差が大となり、電池内でのガスクロス
を発生する、(2)燃料及び空気の圧力が部分的に異っ
てくるので、電気化学的反応速度が異なり、電極基板上
での電流分布が大になる、という欠点が6つ曳。
When this wrinkled electrode substrate is used, because the passage for 1 pF of fuel or air is provided at the same flow rate from the population side to the outlet side, these gases are gradually consumed by electrochemical reactions as they flow through the passage gate. Alternatively, there is a problem in that the pressures of these gases in the passages vary as water is produced. In other words, the pressure of the gas gradually decreases or decreases from the passage side toward the exit 1i1, and due to this phenomenon, (1) the pressure difference between the fuel and air becomes large, and the pressure inside the battery increases. (2) Because the fuel and air pressures differ locally, the electrochemical reaction rate differs, and the current distribution on the electrode substrate becomes large. .

本発明の目的は従来技術の欠点、すなわち燃料及び空気
の圧力分布を電極基板内でなくし、すぐnた性能を有す
る燃料電池を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art, namely the pressure distribution of fuel and air within the electrode substrate, and to provide a fuel cell with improved performance.

本発明の要点は燃料の通路となる溝の構造を入口−から
出口側にかけて徐々に狭くするとともに、空気の通路は
反対に徐々に広くするものである。
The key point of the present invention is that the structure of the groove, which serves as a fuel passage, is gradually narrowed from the inlet to the outlet side, while the air passage, on the contrary, is gradually widened.

この構造を採用することによって、燃料や空気の流速を
電極基板上で常に一定にするものである。
By adopting this structure, the flow velocity of fuel and air is always kept constant on the electrode substrate.

癖の具体的構造としては、(1)溝の幅を人口側から出
口−に向けて徐々に狭くする、(2)溝の深さを入口側
から出口側に向けて徐々に浅くする、ことが燃料通路に
は有効であり、空気通路は生成水ができるので逆にする
ことが有効である。なお、供給するガス圧力の分布によ
って生じる電気化学的反応速度の差、すなわち電流分布
をなくするためには、前記(1)、(2)の方法の他に
ガスの人口側から出口側にかけて、電極基板の気孔率を
燃料側では大にし、空気側では逆に小にすることも有効
である。
The specific structure of the habit is that (1) the width of the groove gradually narrows from the population side toward the exit, and (2) the depth of the groove gradually decreases from the entrance side to the exit side. This is effective for the fuel passage, and since water is produced in the air passage, it is effective to reverse it. In addition to the above methods (1) and (2), in order to eliminate the difference in electrochemical reaction rate caused by the distribution of gas pressure to be supplied, that is, the current distribution, from the gas population side to the outlet side, It is also effective to increase the porosity of the electrode substrate on the fuel side and conversely decrease it on the air side.

本@明はこれらのいずれの方法を用いてもさしつかえな
い。
Book @ Ming may use any of these methods.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例(1) 燃料電池の燃料として水素を、酸化剤として空気を用い
、水素及び空気中の酸素が各々電池内で50%消費され
る条件下で電池を製作した。水素の通路として、第2図
に示すように、#I3の−を入口側が出口側の2倍にな
るように設けた。空気通路は別の多孔性電極基板に入口
側を出口側の1.5倍に幅がなるように溝を設は友、こ
のようにして得九2枚の電極基板上に公知の方法でカー
ボンに白金を少量担持した電極触媒層を設け、リン酸を
含浸させた炭化ケイ素からなる電解質をはさんで組合せ
、第3図に示す単位電池【作つ九。纂3図において、1
および1′が多孔性電極基板であり、各々片面に触媒層
6と#lI4.4’が形成されている。#I4は水素の
通路でめり、4′はこの水素通路に直交する形になって
いる空気通路である。5は電解質、7は黒鉛板、8は絶
縁板、9は締付は用端板、10は締付は用ボルト、11
は締付は用ナツトである。こO電池に各々水素用マニホ
ールド及び空気用マニホールドを付けて、電池にした。
Example (1) A fuel cell was manufactured using hydrogen as a fuel and air as an oxidizing agent under conditions such that 50% of each of hydrogen and oxygen in the air was consumed within the cell. As shown in FIG. 2, the hydrogen passage #I3 was provided so that the inlet side was twice as large as the outlet side. For the air passage, grooves were formed in another porous electrode substrate so that the inlet side was 1.5 times as wide as the outlet side, and carbon was formed on the two electrode substrates by a known method. An electrode catalyst layer supporting a small amount of platinum is provided on the wafer, and an electrolyte made of silicon carbide impregnated with phosphoric acid is sandwiched between the electrode catalyst layer and the unit cell shown in Fig. 3. In Figure 3, 1
and 1' are porous electrode substrates, each of which has a catalyst layer 6 and #lI4.4' formed on one side. #I4 is a hydrogen passage, and 4' is an air passage perpendicular to this hydrogen passage. 5 is an electrolyte, 7 is a graphite plate, 8 is an insulating plate, 9 is an end plate for tightening, 10 is a bolt for tightening, 11
is a nut for tightening. A hydrogen manifold and an air manifold were attached to each O battery to form a battery.

5()OA発電時O水素及び空気の癖人口と出口の圧力
を測定し、各々の差圧をしらべ友ところ、いずれの圧力
も人口側と出口側に差はなく一定でめった。tた、電池
内でのガスクロスも発生しなかった。
5 () During OA power generation, we measured the population and outlet pressures of hydrogen and air, and examined the differential pressures of each.We found that both pressures were constant, with no difference between the population side and the outlet side. Furthermore, no gas cross occurred within the battery.

実施例(2) 水素及び9気の通路となる溝を従来と同様に第・1図に
示したように同一幅で多孔性電極板の片面に各々設は九
。ただし、溝の深さは水素通路の入口側が出口側の2倍
に、また空気通路の出口側が人口−の1.5倍になるよ
うに傾斜をもたせた。次にこれらの電極基板上に触媒層
を設は第3図に示したと同様に電池を組立てて、500
人発電時の水素及び空気の溝の入口及び出口のガス圧力
を測定したが、実施例(1)と同様に差圧は認められな
かつ九。
Example (2) Similarly to the conventional method, as shown in FIG. 1, grooves that serve as passages for hydrogen and gas are provided on one side of a porous electrode plate with the same width. However, the depth of the groove was sloped so that the inlet side of the hydrogen passage was twice as deep as the outlet side, and the depth of the groove was 1.5 times the population - on the outlet side of the air passage. Next, a catalyst layer was provided on these electrode substrates, and a battery was assembled in the same manner as shown in FIG.
The gas pressures at the inlet and outlet of the hydrogen and air grooves during manual power generation were measured, but as in Example (1), no differential pressure was observed.

実施例(3) 水素及び空気の通路となる溝を従来と同様#!l因に示
し九ように同一幅、同−深さで設け、電極基板の気孔率
を燃料側では入口側が40%、出口側が80%になるよ
うに徐々に変化させた。また、空気側では逆に人口側を
80%、出口側を53%になる・↓5Vc徐、今に変化
させた。この電極基板金用いて一3図に示し次電池を作
り、端子′1を流500A放電時の電極面での電比分布
をしらべたところ、いずnの部分でもほぼ同一であった
Example (3) Grooves that serve as passages for hydrogen and air are the same as the conventional #! The porosity of the electrode substrate was gradually changed so that on the fuel side, the porosity was 40% on the inlet side and 80% on the outlet side. In addition, on the air side, the population side was changed to 80% and the exit side to 53%. The following battery as shown in FIG. 13 was made using this electrode substrate gold, and the electric ratio distribution on the electrode surface when the terminal '1 was discharged at a current of 500 A was found to be almost the same in all n parts.

以上の実施例から明らかなようeζ、本開明によれば、
電極基板内での燃料や空気の圧力差をなくすことができ
、ま九゛暖流分布も均一にすることができる。したがっ
て、本発明はその工業的価値が極めて大であるといえる
As is clear from the above examples, eζ, according to the present invention,
It is possible to eliminate the pressure difference between fuel and air within the electrode substrate, and it is also possible to make the warm current distribution uniform. Therefore, it can be said that the present invention has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による#を設は友多孔性′I!他基板の
@視図、第2図は本@明による#llを設けた多孔性電
極基板の斜視図、雄3bIAは本発明で用い次燃料′#
I11?t1!の断面図である。 l・・・多孔性ガス拡散電極基板、2・・・溝、3・・
・溝、4.4′・・・屏、5・・・電解質、6・・・触
媒層、7・・・黒鉛板、8・・・絶縁板、9・・・締付
は用端板、10・・・締第1頁の続き ■出 願 人 日立化成工業株式会社 東京都新宿区西新宿2丁目1番 1号
Figure 1 shows that # is set using the conventional method to achieve porosity 'I! Figure 2 is a perspective view of a porous electrode substrate provided with #ll according to the present invention, and male 3bIA is the next fuel used in the present invention.
I11? t1! FIG. l... Porous gas diffusion electrode substrate, 2... Groove, 3...
・Groove, 4.4'... Screen, 5... Electrolyte, 6... Catalyst layer, 7... Graphite plate, 8... Insulating plate, 9... End plate for tightening, 10...Continued from page 1 ■Applicant Hitachi Chemical Co., Ltd. 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo

Claims (1)

【特許請求の範囲】 1、一対の多孔性ガス拡散電極及び前記電極間に配置さ
れた電解質保持マトリックスを有し、前記電極の一方F
i燃料供給溝な有し、他方の電極は空気を供給する溝を
有する燃料電池において、前記溝の少なくとも一方を通
る燃料あるいは空気の流速が人口側から出口側にかけて
実質的に一定になるように溝形状が投定されていること
を特徴とする燃料電池。 2、特許請求の範囲第1項において、前記燃料供給溝の
幅が燃料の人口側から出口側にかけて徐々に狭くなって
いることt−特徴とする燃料電池。 & 特許請求の範囲]@1lilにおいて、前記燃料供
給溝の深さが燃料の入口側からa口側にかけて徐々に浅
くなっていることt−特徴とする燃料電池。 4、特許請求1の範囲第1項において、前記燃料供給溝
を有する多孔性ガス拡散電極の気孔率を燃料の入口側か
ら出口側にかけて徐々に大にしたことを%黴とする燃料
電池。 & 特許請求の範i81第1項において、前記空気供給
肯の溝の幅が空気の人口側から出口側にかけて徐々に広
くなっていることを!11とする燃料電池。 6、特許請求の範囲第1項において、前記空気供給溝の
深さが空気の人口側から出口側にかけて、徐々に深くな
っていることを%黴とする燃料電池。 7、特許請求の範囲第1項において、前記空気供給溝を
有する多孔性ガス拡散電極の気孔重管空気の入口側から
出口側にかけて徐々に小さくしたことをq#黴とする燃
料電池。
[Scope of Claims] 1. A pair of porous gas diffusion electrodes and an electrolyte holding matrix disposed between the electrodes, one of the electrodes F
i. A fuel cell having a fuel supply groove and the other electrode having an air supply groove, such that the flow rate of the fuel or air through at least one of the grooves is substantially constant from the population side to the outlet side. A fuel cell characterized by having a groove shape. 2. The fuel cell according to claim 1, characterized in that the width of the fuel supply groove gradually narrows from the fuel inlet side to the outlet side. & Claims] A fuel cell according to @1lil, characterized in that the depth of the fuel supply groove gradually becomes shallower from the fuel inlet side to the a-port side. 4. The fuel cell according to claim 1, wherein the porosity of the porous gas diffusion electrode having the fuel supply groove is gradually increased from the fuel inlet side to the fuel outlet side. & In claim i81, paragraph 1, the width of the air supply groove gradually increases from the air intake side to the outlet side! 11 fuel cells. 6. The fuel cell according to claim 1, wherein the depth of the air supply groove gradually becomes deeper from the air intake side to the outlet side. 7. The fuel cell according to claim 1, wherein the pores of the porous gas diffusion electrode having the air supply groove gradually become smaller from the air inlet side to the outlet side.
JP57049499A 1982-03-27 1982-03-27 Fuel cell Pending JPS58166658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049499A JPS58166658A (en) 1982-03-27 1982-03-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049499A JPS58166658A (en) 1982-03-27 1982-03-27 Fuel cell

Publications (1)

Publication Number Publication Date
JPS58166658A true JPS58166658A (en) 1983-10-01

Family

ID=12832829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049499A Pending JPS58166658A (en) 1982-03-27 1982-03-27 Fuel cell

Country Status (1)

Country Link
JP (1) JPS58166658A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189868A (en) * 1984-03-12 1985-09-27 Fuji Electric Corp Res & Dev Ltd Reaction fluid feed structure to fuel cell electrode layer
JPS6290871A (en) * 1985-06-14 1987-04-25 Hitachi Ltd Fuel cell
JPH01320772A (en) * 1988-06-23 1989-12-26 Hitachi Ltd Fuel cell
JPH03276568A (en) * 1990-03-27 1991-12-06 Ngk Insulators Ltd Solid electrolyte fuel cell
JPH0463562U (en) * 1990-10-12 1992-05-29
US6245453B1 (en) 1997-12-18 2001-06-12 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US6921598B2 (en) 2000-03-07 2005-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
JP2012142135A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp Fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189868A (en) * 1984-03-12 1985-09-27 Fuji Electric Corp Res & Dev Ltd Reaction fluid feed structure to fuel cell electrode layer
JPH0544781B2 (en) * 1984-03-12 1993-07-07 Fuji Denki Sogo Kenkyusho Kk
JPS6290871A (en) * 1985-06-14 1987-04-25 Hitachi Ltd Fuel cell
JPH081805B2 (en) * 1985-06-14 1996-01-10 株式会社日立製作所 Fuel cell
JPH01320772A (en) * 1988-06-23 1989-12-26 Hitachi Ltd Fuel cell
JPH03276568A (en) * 1990-03-27 1991-12-06 Ngk Insulators Ltd Solid electrolyte fuel cell
JPH0463562U (en) * 1990-10-12 1992-05-29
US6245453B1 (en) 1997-12-18 2001-06-12 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US6921598B2 (en) 2000-03-07 2005-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
JP2012142135A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp Fuel cell

Similar Documents

Publication Publication Date Title
US8304139B2 (en) Fuel cell fluid flow field plates
CA2256276C (en) Fuel cell and separator for the same
US20090011310A1 (en) Bipolar plate with microgrooves for improved water transport
JPH041469B2 (en)
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
WO2012007998A1 (en) Fuel cell
CA2344377A1 (en) Self-humidifying fuel cell
ZA200608303B (en) Fuel cell gas distribution
US20100183944A1 (en) Fuel cell, fuel cell-equipped vehicle, and membrane electrode unit
US20040214057A1 (en) Air cooled fuel cell module
JPS58166658A (en) Fuel cell
US20030064269A1 (en) Fuel cell stack having a featured interconnect element
JP2006114387A (en) Fuel cell
JP3447875B2 (en) Direct methanol fuel cell
JP2006278247A (en) Fuel cell
JPH07161368A (en) Fuel cell
JPS62163264A (en) Separator for fuel cell
JPS63119166A (en) Fuel battery
JPH0544781B2 (en)
JPH09161828A (en) Fuel cell
JPS5830074A (en) Fuel cell
JP4385761B2 (en) Fuel cell
JPH04322062A (en) Separator of fuel cell and fuel cell using separator
JPS6240169A (en) Fuel cell
JPH09245820A (en) Fuel cell