JP2005093095A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2005093095A
JP2005093095A JP2003320817A JP2003320817A JP2005093095A JP 2005093095 A JP2005093095 A JP 2005093095A JP 2003320817 A JP2003320817 A JP 2003320817A JP 2003320817 A JP2003320817 A JP 2003320817A JP 2005093095 A JP2005093095 A JP 2005093095A
Authority
JP
Japan
Prior art keywords
separator
flow path
gas flow
fuel cell
unit fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003320817A
Other languages
Japanese (ja)
Other versions
JP4713071B2 (en
Inventor
Toru Mizuno
透 水野
Takeshi Nomura
健 野村
Yuichi Yatsugami
裕一 八神
Yasushi Araki
康 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2003320817A priority Critical patent/JP4713071B2/en
Publication of JP2005093095A publication Critical patent/JP2005093095A/en
Application granted granted Critical
Publication of JP4713071B2 publication Critical patent/JP4713071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell, in which mutual projections of separators adjacent in a laminated direction in a unit fuel cell do not cause or hardly cause contact failures or increase in the contact resistance due to mutual positional shift. <P>SOLUTION: (1) In the fuel cell, formed by laminating a plurality of unit cells each of which is formed by sandwiching an MEA with a first separator 13 having a first gas flow path 12 and a second separator 15 having a second gas flow path 14, the first gas flow path 12 of the first separator and the second gas flow path 14 of the second separator are formed into a rugged shape in a direction orthogonal to the cell surface direction and the flow path extending direction so as to mutually cross diagonally. (2) At portions diagonally crossing between the first gas flow path 12 of the first separator and the second gas flow path 14 of the second separator of an adjacent unit fuel cell, the first separator 13 and the second separator 15 of the adjacent unit fuel cell are fixed to each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は燃料電池に関し、とくに金属製セパレータを備え容易にセパレータのガス流路の高さ管理ができる固体高分子電解質型燃料電池に関する。   The present invention relates to a fuel cell, and more particularly to a solid polymer electrolyte fuel cell having a metal separator and capable of easily managing the height of a gas flow path of the separator.

固体高分子電解質型燃料電池は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータとの積層体(ただし、積層方向は任意でよい)からなる。膜−電極アッセンブリは、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置された触媒層からなる電極(アノード、燃料極)および電解質膜の他面に配置された触媒層からなる電極(カソード、空気極)とからなる。膜−電極アッセンブリとセパレータとの間には、アノード側、カソード側にそれぞれ拡散層が設けられる。セパレータには、アノードに燃料ガス(水素)を供給するための燃料ガス流路が形成され、カソードに酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路が形成されている。また、セパレータには冷媒(通常、冷却水)を流すための冷媒流路も形成されている。膜−電極アッセンブリとセパレータを重ねてセル(単位燃料電池、単セルともいう)を構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層方向に延びる締結部材(たとえば、テンションプレート)、ボルト・ナットにて固定して、スタックを構成する。
各セルの、アノード側では、水素を水素イオン(プロトン)と電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水を生成するつぎの反応が行われる。
A solid polymer electrolyte fuel cell is composed of a laminate of a membrane-electrode assembly (MEA) and a separator (however, the lamination direction may be arbitrary). The membrane-electrode assembly includes an electrolyte membrane composed of an ion exchange membrane, an electrode composed of a catalyst layer disposed on one surface of the electrolyte membrane (anode, fuel electrode), and an electrode composed of a catalyst layer disposed on the other surface of the electrolyte membrane ( Cathode, air electrode). Between the membrane-electrode assembly and the separator, diffusion layers are provided on the anode side and the cathode side, respectively. In the separator, a fuel gas passage for supplying fuel gas (hydrogen) to the anode is formed, and an oxidizing gas passage for supplying oxidizing gas (oxygen, usually air) to the cathode. The separator is also formed with a refrigerant flow path for flowing a refrigerant (usually cooling water). A cell (unit fuel cell, also referred to as a single cell) is configured by stacking a membrane-electrode assembly and a separator, a module is configured from at least one cell, the module is stacked to form a cell stack, and the cell stack of the cell stack Terminals, insulators, and end plates are arranged at both ends in the direction, the cell stack is clamped in the cell stacking direction, and is fastened with fastening members (for example, tension plates), bolts and nuts that extend in the cell stacking direction. To do.
In each cell, a reaction for converting hydrogen into hydrogen ions (protons) and electrons is performed on the anode side, and the hydrogen ions move through the electrolyte membrane to the cathode side. On the cathode side, oxygen, hydrogen ions, and electrons (neighboring MEA) Next, the following reaction is performed to generate water from electrons generated at the anode of the first electrode through the separator or electrons generated at the anode of the cell at one end in the cell stacking direction through the external circuit to the cathode of the other cell.

アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
燃料ガスが供給される部分と酸化ガスが供給される部分を電解質を介して対向させ、効率よく発電させるには、電解質を介して燃料ガス流路と酸化ガス流路が並行して延びることが望ましい。また、セパレータを低コストで、生産性よく作製するには、セパレータを金属板とし、この金属板を板厚方向に波状に凹凸するようにプレス成形して、ガス流路をプレス成形の凹部から形成することが望ましい。
これらの要求を満足するために、特開2000−173631号公報は、隣り合う単位燃料電池のセパレータを金属セパレータとし、凹部から流路を構成し、セパレータ間の導電性を高めるために、一方のセパレータの凸部の頂部と他方のセパレータの凸部の頂部とを突き合わせ、その接触部を導電性接着剤で接合したものを提案している。
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O
In order to make the portion to which the fuel gas is supplied and the portion to which the oxidant gas is supplied face each other through the electrolyte and to generate power efficiently, the fuel gas passage and the oxidant gas passage may extend in parallel through the electrolyte. desirable. In addition, in order to manufacture the separator at low cost and with high productivity, the separator is made of a metal plate, the metal plate is press-molded so as to be corrugated in the thickness direction, and the gas flow path is formed from the concave portion of the press molding. It is desirable to form.
In order to satisfy these requirements, Japanese Patent Laid-Open No. 2000-173631 discloses that a separator of an adjacent unit fuel cell is a metal separator, a flow path is formed from the recess, and one of the separators is used to increase the conductivity between the separators. The top part of the convex part of a separator and the top part of the convex part of the other separator are faced | matched, and what contacted with the electroconductive adhesive agent is proposed.

しかし、波板金属セパレータの直線状ガス流路は、波板の特性から寸法を高精度に出すことが難しく、波板と波板の流路軸芯をそろえてセパレータを重ねると、図4に示すように、波板1,2の凸部3,4同志は位置ずれΔwを起こし、場所による高さずれΔhが発生して、セパレータ間およびセパレータと拡散層間の押し付け力が管理困難となり、接触不良による接触抵抗増加を引き起こす。
特開2000−173631号公報
However, the straight gas flow path of the corrugated metal separator makes it difficult to accurately measure the dimensions due to the characteristics of the corrugated sheet. As shown in the figure, the convex portions 3 and 4 of the corrugated plates 1 and 2 cause a positional deviation Δw, a height deviation Δh depending on the location, and the pressing force between the separator and between the separator and the diffusion layer becomes difficult to control, Increases contact resistance due to defects.
JP 2000-173631 A

本発明が解決しようとする問題点は、従来の燃料電池の、単位燃料電池積層方向に隣合う金属セパレータの凸部同志の位置ずれによる、接触不良および接触抵抗増加の問題である。
本発明の目的は、単位燃料電池積層方向に隣合うセパレータの凸部同志が位置ずれによる接触不良および接触抵抗増加を起こさないかまたは起こしにくい燃料電池を提供することにある。
The problem to be solved by the present invention is a problem of contact failure and increase in contact resistance due to misalignment of convex portions of metal separators adjacent to each other in the unit fuel cell stacking direction of a conventional fuel cell.
An object of the present invention is to provide a fuel cell in which the convex portions of separators adjacent to each other in the unit fuel cell stacking direction do not cause or do not easily cause contact failure and contact resistance increase due to misalignment.

上記課題を解決する、そして上記目的を達成する、本発明はつぎの通りである。
(1) MEAを第1のガス流路を有する第1のセパレータと第2のガス流路を有する第2のセパレータとで挟んだ単位燃料電池を複数積層して構成された燃料電池であって、前記第1のセパレータの第1のガス流路と前記第2のセパレータの第2のガス流路は互いに並行して延びる並行流路部分を有し、前記第1のセパレータの第1のガス流路の前記並行流路部分と前記第1のセパレータの隣りの第2のセパレータの第2のガス流路の前記並行流路部分は、互いに斜めに交差するように、セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状に形成されている燃料電池。
(2) 前記第1のセパレータの第1のガス流路と、隣りの単位燃料電池の第2のセパレータの第2のガス流路との前記斜めに交差する部位で、前記第1のセパレータと、隣りの単位燃料電池の第2のセパレータとを互いに固着した(1)記載の燃料電池。
(3) 前記第1のセパレータは単位燃料電池の積層方向に波状に凹凸する部分を有する金属板であり、前記第2のセパレータは単位燃料電池の積層方向に波状に凹凸する部分を有する金属板である(1)または(2)記載の燃料電池。
(4) 前記セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状は波形である(1)または(2)記載の燃料電池。
(5) 前記第1のセパレータの第1のガス流路と、前記第2のセパレータの第2のガス流路におけるガスの流れは対向流である(1)または(2)記載の燃料電池。
The present invention for solving the above problems and achieving the above object is as follows.
(1) A fuel cell configured by stacking a plurality of unit fuel cells in which an MEA is sandwiched between a first separator having a first gas flow path and a second separator having a second gas flow path. The first gas flow path of the first separator and the second gas flow path of the second separator have parallel flow path portions extending in parallel with each other, and the first gas of the first separator The parallel flow path portion of the flow path and the parallel flow flow path portion of the second gas flow path of the second separator adjacent to the first separator are in a cell in-plane direction so as to cross each other diagonally and A fuel cell formed into a shape that is uneven in a direction orthogonal to the flow path extension direction.
(2) The first separator at a site that obliquely intersects the first gas channel of the first separator and the second gas channel of the second separator of the adjacent unit fuel cell; The fuel cell according to (1), wherein the second separator of the adjacent unit fuel cell is fixed to each other.
(3) The first separator is a metal plate having a corrugated portion in the stacking direction of the unit fuel cells, and the second separator is a metal plate having a corrugated portion in the stacking direction of the unit fuel cells. The fuel cell according to (1) or (2).
(4) The fuel cell according to (1) or (2), wherein the shape that is uneven in the cell in-plane direction and in a direction orthogonal to the flow path extension direction is a waveform.
(5) The fuel cell according to (1) or (2), wherein a gas flow in the first gas flow path of the first separator and the second gas flow path of the second separator is a counter flow.

上記(1)の燃料電池によれば、第1のセパレータの第1のガス流路の並行流路部分と隣りの第2のセパレータの第2のガス流路の並行流路部分が、互いに斜めに交差するように、セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状に形成されているので、流路同志がガス流路伸長方向と直交する方向に位置がずれても、凸部同志の接触面積が減少することが抑制される。また、一方のセパレータの凸部が他方のセパレータの凹部に入り込むことがなくなり、凸部同志の重ね高さは予め定めた重ね高さに維持される。その結果、接触不良および接触抵抗増加が起こらないか、または起こりにくい。
上記(2)の燃料電池によれば、第1のセパレータの第1のガス流路と、隣りの単位燃料電池の第2のセパレータの第2のガス流路との、斜めに交差する部位で、第1のセパレータと、隣りの単位燃料電池の第2のセパレータとを互いに固着したので、セパレータ間の交差部での、導電性を向上することができる。
上記(3)の燃料電池によれば、第1、第2のセパレータが単位燃料電池の積層方向に波状に凹凸する部分を有する金属板からなるため、第1のガス流路と第2のガス流路との並行流路構成と、プレスによるセパレータと流路の容易な形成を維持したまま、従来の直線状ガス流路をもつセパレータにおける接触不良および接触抵抗増加の問題を解決することができる。
According to the fuel cell of (1) above, the parallel flow path portion of the first gas flow path of the first separator and the parallel flow path portion of the second gas flow path of the adjacent second separator are oblique to each other. Is formed in a shape that is concave and convex in the cell in-plane direction and in the direction orthogonal to the flow path extension direction, so that even if the positions of the flow paths are shifted in the direction orthogonal to the gas flow path extension direction, It is suppressed that the contact area between the convex portions decreases. Further, the convex portion of one separator does not enter the concave portion of the other separator, and the overlapping height of the convex portions is maintained at a predetermined overlapping height. As a result, contact failure and contact resistance increase do not occur or are unlikely to occur.
According to the fuel cell of the above (2), the first gas flow path of the first separator and the second gas flow path of the second separator of the adjacent unit fuel cell are obliquely intersected with each other. Since the first separator and the second separator of the adjacent unit fuel cell are fixed to each other, the conductivity at the intersection between the separators can be improved.
According to the fuel cell of (3) above, since the first and second separators are made of metal plates having portions that are waved in the stacking direction of the unit fuel cells, the first gas flow path and the second gas While maintaining the parallel flow path configuration with the flow path and the easy formation of the separator and flow path by pressing, it is possible to solve the problem of contact failure and increase in contact resistance in a separator having a conventional linear gas flow path. .

上記(4)の燃料電池によれば、セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状は波形であるため、ガスの流れやその背面の冷却水の流れにほとんど影響を及ぼさず、たとえば、ほとんど圧損を増加させずに、位置ずれによる接触不良を防止することができる。
上記(5)の燃料電池によれば、第1のセパレータの第1のガス流路と第2のセパレータの第2のガス流路におけるガスの流れは対向流であるため、生成水の自己循環を効果的に実現できる。
According to the fuel cell of the above (4), the shape that is uneven in the direction in the cell plane and in the direction perpendicular to the flow path extension direction is a waveform, so it has little effect on the flow of gas and the flow of cooling water on the back side. For example, it is possible to prevent poor contact due to misalignment without increasing the pressure loss.
According to the fuel cell of the above (5), since the gas flows in the first gas flow path of the first separator and the second gas flow path of the second separator are counterflows, self-circulation of generated water Can be realized effectively.

以下に、本発明の燃料電池を図1〜図3を参照して説明する。
本発明の燃料電池10は、たとえば、固体高分子型燃料電池であり、MEA11を第1のガス流路12を有する第1のセパレータ13と第2のガス流路14を有する第2のセパレータ15とで挟んだ単位燃料電池16を複数積層して構成された燃料電池である(ただし、積層方向は任意でよい)。
ここで、MEA11は、電解質17をアノード18とカソード19で挟んだ膜電極アッセンブリである。MEA11とセパレータ13,15の間には、拡散層20,21が設けられてもよい。第1のガス流路12を有する第1のセパレータ13は、燃料ガス流路をもつアノード側セパレータと酸化ガス流路をもつカソード側セパレータのいずれか一方であり、第2のガス流路14を有する第2のセパレータ15は、燃料ガス流路をもつアノード側セパレータと酸化ガス流路をもつカソード側セパレータのいずれか他方である。第1のガス流路12を有する第1のセパレータ13が、燃料ガス流路をもつアノード側セパレータである場合は、第2のガス流路14を有する第2のセパレータ15は、酸化ガス流路をもつカソード側セパレータであり、第1のガス流路12を有する第1のセパレータ13が、酸化ガス流路をもつカソード側セパレータである場合は、第2のガス流路14を有する第2のセパレータ15は、燃料ガス流路をもつアノード側セパレータである。
Below, the fuel cell of this invention is demonstrated with reference to FIGS. 1-3.
The fuel cell 10 of the present invention is, for example, a polymer electrolyte fuel cell, and the MEA 11 includes a first separator 13 having a first gas channel 12 and a second separator 15 having a second gas channel 14. The fuel cell is configured by stacking a plurality of unit fuel cells 16 sandwiched between the two (however, the stacking direction may be arbitrary).
Here, the MEA 11 is a membrane electrode assembly in which an electrolyte 17 is sandwiched between an anode 18 and a cathode 19. Diffusion layers 20 and 21 may be provided between the MEA 11 and the separators 13 and 15. The first separator 13 having the first gas flow path 12 is one of an anode side separator having a fuel gas flow path and a cathode side separator having an oxidizing gas flow path. The second separator 15 is the other of an anode side separator having a fuel gas flow path and a cathode side separator having an oxidizing gas flow path. When the first separator 13 having the first gas flow path 12 is an anode side separator having a fuel gas flow path, the second separator 15 having the second gas flow path 14 is used as the oxidizing gas flow path. When the first separator 13 having the first gas flow path 12 is a cathode side separator having the oxidizing gas flow path, the second separator having the second gas flow path 14 is used. The separator 15 is an anode side separator having a fuel gas flow path.

第1のセパレータ13の第1のガス流路12と第2のセパレータ15(同じ単位燃料電池の第2のセパレータ15でもよいし、あるいは隣りの単位燃料電池の第2のセパレータ15でもよい)の第2のガス流路14は、それらの流路の少なくとも一部分に、互いに並行して延びる並行流路部分22を有している。第1のセパレータ13の第1のガス流路12の並行流路部分22と、第1のセパレータ13の隣りの第2のセパレータ15の第2のガス流路14の並行流路部分22は、互いに斜めに交差するように、セル(単位燃料電池)面内方向でかつ流路伸長方向と直交する方向に凹凸する形状に形成されている。符号23は、交差部を示す。「斜め交差」には、「直交」は含まない。好ましくは45度より小さい角度で交差するとよい。並行流路部分22の、流路伸長方向と直交する方向に凹凸する量Δdは、第1のガス流路12の凸条の頂部と第2のガス流路14の凸条の頂部との、流路伸長方向と直交する方向における最大ずれ量(製作誤差や組み付け誤差による最大ずれ量、すなわち、位置ずれ許容誤差Δa)より大であればよい。   Of the first gas flow path 12 and the second separator 15 of the first separator 13 (may be the second separator 15 of the same unit fuel cell or the second separator 15 of the adjacent unit fuel cell) The second gas flow path 14 has parallel flow path portions 22 extending in parallel with each other in at least a part of the flow paths. The parallel flow path portion 22 of the first gas flow path 12 of the first separator 13 and the parallel flow path portion 22 of the second gas flow path 14 of the second separator 15 adjacent to the first separator 13 are: It is formed in a shape that is uneven in the in-plane direction of the cell (unit fuel cell) and in the direction orthogonal to the flow path extension direction so as to cross each other obliquely. Reference numeral 23 denotes an intersection. “Diagonal intersection” does not include “orthogonal”. It is preferable to intersect at an angle smaller than 45 degrees. The amount Δd of the parallel flow path portion 22 that is uneven in the direction orthogonal to the flow path extension direction is the sum of the top of the ridges of the first gas flow path 12 and the top of the ridges of the second gas flow path 14. It may be larger than the maximum deviation amount in the direction orthogonal to the flow path extension direction (maximum deviation amount due to manufacturing error or assembly error, that is, positional deviation allowable error Δa).

第1のセパレータ13は、単位燃料電池の積層方向に波状に凹凸する部分を有する金属板からなるメタルセパレータである。同様に、第2のセパレータ15は、単位燃料電池の積層方向に波状に凹凸する部分を有する金属板からなるメタルセパレータである。凹凸の凹条と凸条は、流路伸長方向に連続して延びている。流路12,14は、ほぼストレート流路であってもよいし、サーペンタイン流路であってもよい。流路12,14はメタルセパレータをプレス成形する際にプレスにより成形される。並行流路部分22の、流路伸長方向と直交する方向の凹凸は、プレス型の流路形成用の凸条,凹条を、流路伸長方向と直交する方向にうねらせておくことにより、容易に得られる。   The 1st separator 13 is a metal separator which consists of a metal plate which has a part uneven | corrugated in the waveform direction in the lamination direction of a unit fuel cell. Similarly, the 2nd separator 15 is a metal separator which consists of a metal plate which has a part uneven | corrugated in the waveform direction in the lamination direction of a unit fuel cell. The concave and convex ridges and ridges extend continuously in the flow path extending direction. The channels 12 and 14 may be substantially straight channels or serpentine channels. The flow paths 12 and 14 are formed by press when the metal separator is press formed. The unevenness in the direction perpendicular to the flow path extension direction of the parallel flow path portion 22 is obtained by undulating the ridges and depressions for forming the press-type flow path in the direction perpendicular to the flow path extension direction. Easy to get.

第1のガス流路12、第2のガス流路14の、セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状は、望ましくは、波形である。また、1つの並行流路部分22に、複数の交差部23が表れるように、1波の長さを決めることが望ましい。   The shapes of the first gas flow channel 12 and the second gas flow channel 14 that are concave and convex in the direction in the cell plane and in the direction perpendicular to the flow channel extension direction are desirably wavy. Further, it is desirable to determine the length of one wave so that a plurality of intersecting portions 23 appear in one parallel flow path portion 22.

一つの単位燃料電池16の第1のセパレータ13の第1のガス流路12と、隣りの単位燃料電池16の第2のセパレータ16の第2のガス流路14との、斜めに交差する部位(交差部23)で、第1のセパレータ13と、隣りの単位燃料電池16の第2のセパレータ15とを互いに固着してもよい。符号24は交差部23での固着部を示す。ただし、同じ単位燃料電池16内では、第1のセパレータ13と第2のセパレータ15との間には、膜17があるので、交差部23で、第1のセパレータ13と第2のセパレータ15とを固着することはできない。交差部23でのセパレータ間の導電性を上げるために、固着は、ロー付け、溶接、導電性接着剤などの、いずれかによって実施されることが望ましい。   A portion where the first gas flow path 12 of the first separator 13 of one unit fuel cell 16 and the second gas flow path 14 of the second separator 16 of the adjacent unit fuel cell 16 intersect diagonally. At the (intersection portion 23), the first separator 13 and the second separator 15 of the adjacent unit fuel cell 16 may be fixed to each other. Reference numeral 24 denotes a fixing portion at the intersection 23. However, in the same unit fuel cell 16, there is a membrane 17 between the first separator 13 and the second separator 15, so at the intersection 23, the first separator 13 and the second separator 15 Cannot be fixed. In order to increase the electrical conductivity between the separators at the intersection 23, it is preferable that the fixing is performed by any one of brazing, welding, conductive adhesive, and the like.

並行流路部分22において、第1のセパレータ13の第1のガス流路12と、隣りの単位燃料電池16の、または同じ単位燃料電池16で膜17を介して対向する、第2のセパレータ15の第2のガス流路14におけるガスの流れとは、対向流であることが望ましい。対向流は、カソード19側で発電により発生した水をMEA11を通過させてアノード18側に移動させ、アノード側流路の流れにのって水が下流へ移動しながら、カソード19側上流の乾きやすい位置のMEA11にしみ込むことによりMEA11の適正湿り状態を作り出す水分自己循環を実現できる。MEAは乾きすぎると内部抵抗が増大し、損失が過大になり、過度に湿潤状態になると水によりガス拡散阻害や触媒反応サイトを覆って性能低下を引き起こすので、それを水分自己循環で防止する。   In the parallel flow path portion 22, the second separator 15 is opposed to the first gas flow path 12 of the first separator 13 and the adjacent unit fuel cell 16 or the same unit fuel cell 16 through the membrane 17. The gas flow in the second gas flow path 14 is preferably a counter flow. In the counter flow, water generated by power generation on the cathode 19 side passes through the MEA 11 and moves to the anode 18 side, and the water moves downstream along the flow of the anode side flow path, while the upstream of the cathode 19 side is dried. Moisture self-circulation that creates an appropriate wet state of the MEA 11 can be realized by soaking into the MEA 11 at an easy position. When the MEA is too dry, the internal resistance increases and the loss becomes excessive. When the MEA becomes too wet, the gas diffusion is inhibited by water and the catalytic reaction site is covered, thereby causing a deterioration in performance.

つぎに、本発明の燃料電池の作用、効果を説明する。
第1のセパレータ13の第1のガス流路12の並行流路部分22と第2のセパレータ15の第2のガス流路14の並行流路部分22が、交差部23で、互いに斜めに交差するように、セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状に形成されているので、流路12、14同志がガス流路伸長方向と直交する方向に位置がずれても、凸部同志の接触面積が減少することが抑制される。また、一方のセパレータの凸部が他方のセパレータの凹部に入り込むことがなくなる。これによって、凸部同志の重ね高さは予め定めた重ね高さに維持される。その結果、セパレータ同志またはセパレータと拡散層の、接触不良および接触抵抗増加は起こらないか、または起こりにくい。
Next, the operation and effect of the fuel cell of the present invention will be described.
The parallel flow path portion 22 of the first gas flow path 12 of the first separator 13 and the parallel flow path portion 22 of the second gas flow path 14 of the second separator 15 intersect each other at an intersection 23. As shown in the figure, since the concave and convex shapes are formed in the cell in-plane direction and in the direction orthogonal to the flow path extension direction, the positions of the flow paths 12 and 14 are shifted in the direction orthogonal to the gas flow path extension direction. In addition, the contact area between the convex portions is suppressed from decreasing. Moreover, the convex part of one separator does not enter the concave part of the other separator. Thereby, the overlapping height of the convex portions is maintained at a predetermined overlapping height. As a result, contact failure and contact resistance increase between the separators or between the separator and the diffusion layer do not occur or hardly occur.

また、第1のセパレータ13の第1のガス流路12と、隣りの単位燃料電池16の第2のセパレータ15の第2のガス流路14とが斜めに交差する部位(交差部)23で、第1のセパレータ13と、隣りの単位燃料電池の第2のセパレータ15とを互いに固着した場合は、セパレータ13,15間の交差部23での、導電性を向上することができる。その結果、セパレータ同志の、接触不良および接触抵抗増加は起こらないか、または起こりにくい。   Further, at a portion (intersection) 23 where the first gas flow path 12 of the first separator 13 and the second gas flow path 14 of the second separator 15 of the adjacent unit fuel cell 16 intersect obliquely. In the case where the first separator 13 and the second separator 15 of the adjacent unit fuel cell are fixed to each other, the conductivity at the intersection 23 between the separators 13 and 15 can be improved. As a result, contact failure and contact resistance increase between the separators do not occur or hardly occur.

第1、第2のセパレータ13,15を波板メタルセパレータから作製できるため、第1のガス流路12と第2のガス流路14との並行流路構成による燃料電池の性能維持と、プレスによる流路12,14の形成による良好な生産性を維持することができる。また、従来の直線状ガス流路では、接触不良および接触抵抗増加の問題が生じていたが、本発明では、流路12,14の斜め交差により、従来の直線状ガス流路での、接触不良および接触抵抗増加の問題を解決することができる。   Since the first and second separators 13 and 15 can be made of corrugated metal separators, the performance of the fuel cell is maintained by the parallel flow path configuration of the first gas flow path 12 and the second gas flow path 14, and the press Good productivity due to the formation of the flow paths 12 and 14 can be maintained. Further, in the conventional linear gas flow path, there has been a problem of contact failure and contact resistance increase, but in the present invention, the contact in the conventional linear gas flow path is caused by the oblique intersection of the flow paths 12 and 14. The problem of defects and increased contact resistance can be solved.

また、セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状を波形とすることにより、ガスの流れやその背面の冷却水の流れの圧損をほとんど増加させない。
また、第1のセパレータ13の第1のガス流路12と、第2のセパレータ15の第2のガス流路14におけるガスの流れを対向流とすることにより、生成水の自己循環を効果的に実現できる。これによって、加湿タンクを車両に搭載しなくてもよくなるか、または搭載しても小型のタンクですむようになる。
In addition, by forming the corrugated shape in the cell in-plane direction and in the direction orthogonal to the flow path extension direction, the pressure loss of the gas flow and the cooling water flow on the back surface thereof is hardly increased.
Further, the self-circulation of the produced water is effectively achieved by making the gas flow in the first gas flow path 12 of the first separator 13 and the second gas flow path 14 of the second separator 15 counter flow. Can be realized. As a result, it is not necessary to mount the humidifying tank on the vehicle, or a small tank can be used even if it is mounted.

本発明の燃料電池の第1、第2のセパレータの第1、第2のガス流路の位置関係を示すセパレータの一部分の正面図である。It is a front view of a part of the separator showing the positional relationship between the first and second gas flow paths of the first and second separators of the fuel cell of the present invention. 本発明の燃料電池の側面図である。It is a side view of the fuel cell of the present invention. 図2の燃料電池の一部分の断面図である。FIG. 3 is a cross-sectional view of a portion of the fuel cell of FIG. 高さずれを示す、従来の波板金属セパレータをもつ燃料電池の断面図である。1 is a cross-sectional view of a fuel cell with a conventional corrugated metal separator showing a height shift. FIG.

符号の説明Explanation of symbols

10 燃料電池
11 MEA
12 第1のガス流路
13 第1のセパレータ
14 第2のガス流路
15 第2のセパレータ
16 単位燃料電池
17 電解質(電解質膜)
18 アノード
19 カソード
20、21 拡散層
22 並行流路部分
23 交差部
24 固着部
10 Fuel cell 11 MEA
12 1st gas flow path 13 1st separator 14 2nd gas flow path 15 2nd separator 16 Unit fuel cell 17 Electrolyte (electrolyte membrane)
18 Anode 19 Cathode 20, 21 Diffusion layer 22 Parallel flow path portion 23 Crossing portion 24 Adhering portion

Claims (5)

MEAを第1のガス流路を有する第1のセパレータと第2のガス流路を有する第2のセパレータとで挟んだ単位燃料電池を複数積層して構成された燃料電池であって、前記第1のセパレータの第1のガス流路と前記第2のセパレータの第2のガス流路は互いに並行して延びる並行流路部分を有し、前記第1のセパレータの第1のガス流路の前記並行流路部分と前記第1のセパレータの隣りの第2のセパレータの第2のガス流路の前記並行流路部分は、互いに斜めに交差するように、セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状に形成されている燃料電池。   A fuel cell configured by stacking a plurality of unit fuel cells in which an MEA is sandwiched between a first separator having a first gas flow path and a second separator having a second gas flow path, The first gas flow path of one separator and the second gas flow path of the second separator have parallel flow path portions extending in parallel with each other, and the first gas flow path of the first separator The parallel flow path portion and the parallel flow path portion of the second gas flow path of the second separator adjacent to the first separator extend in the cell in-plane direction and the flow path extends so as to obliquely intersect each other. The fuel cell is formed in a shape that is uneven in a direction orthogonal to the direction. 前記第1のセパレータの第1のガス流路と、隣りの単位燃料電池の第2のセパレータの第2のガス流路との前記斜めに交差する部位で、前記第1のセパレータと、隣りの単位燃料電池の第2のセパレータとを互いに固着した請求項1記載の燃料電池。   The first separator is adjacent to the first gas flow path of the first separator and the second gas flow path of the second separator of the adjacent unit fuel cell at the oblique intersection. The fuel cell according to claim 1, wherein the second separator of the unit fuel cell is fixed to each other. 前記第1のセパレータは単位燃料電池の積層方向に波状に凹凸する部分を有する金属板であり、前記第2のセパレータは単位燃料電池の積層方向に波状に凹凸する部分を有する金属板である請求項1または請求項2記載の燃料電池。   The first separator is a metal plate having a corrugated portion in the stacking direction of unit fuel cells, and the second separator is a metal plate having a corrugated portion in the stacking direction of unit fuel cells. The fuel cell according to claim 1 or 2. 前記セル面内方向でかつ流路伸長方向と直交する方向に凹凸する形状は波形である請求項1または請求項2記載の燃料電池。   3. The fuel cell according to claim 1, wherein the shape that is uneven in the in-plane direction of the cell and in a direction perpendicular to the flow path extension direction is a waveform. 前記第1のセパレータの第1のガス流路と、前記第2のセパレータの第2のガス流路におけるガスの流れは対向流である請求項1または請求項2記載の燃料電池。   3. The fuel cell according to claim 1, wherein a gas flow in the first gas flow path of the first separator and the second gas flow path of the second separator is a counter flow.
JP2003320817A 2003-09-12 2003-09-12 Fuel cell and manufacturing method thereof Expired - Fee Related JP4713071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320817A JP4713071B2 (en) 2003-09-12 2003-09-12 Fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320817A JP4713071B2 (en) 2003-09-12 2003-09-12 Fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005093095A true JP2005093095A (en) 2005-04-07
JP4713071B2 JP4713071B2 (en) 2011-06-29

Family

ID=34452662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320817A Expired - Fee Related JP4713071B2 (en) 2003-09-12 2003-09-12 Fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4713071B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043505A1 (en) * 2004-10-18 2006-04-27 Nissan Motor Co., Ltd. Fuel cell stack and separator joining method
JP2007311081A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, and its manufacturing method
JP2010238536A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Fuel cell stack
JP2010251068A (en) * 2009-04-14 2010-11-04 Honda Motor Co Ltd Fuel cell stack
JP2012505525A (en) * 2008-10-23 2012-03-01 スタクセラ・ゲーエムベーハー Fuel cell stack
JP2015022802A (en) * 2013-07-16 2015-02-02 日産自動車株式会社 Fuel cell stack
WO2015041222A1 (en) * 2013-09-17 2015-03-26 本田技研工業株式会社 Fuel cell stack
WO2017196050A1 (en) * 2016-05-09 2017-11-16 주식회사 엘지화학 Method for manufacturing fuel cell porous separator, and fuel cell porous separator
CN108140852A (en) * 2015-10-06 2018-06-08 日产自动车株式会社 Fuel cell pack
CN109286029A (en) * 2018-08-09 2019-01-29 上海治臻新能源装备有限公司 A kind of fuel battery metal cathode-anode plate based on gas-liquid perpendicular flow structure arrangement
US10242989B2 (en) 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151972A (en) * 1984-01-19 1985-08-10 Ishikawajima Harima Heavy Ind Co Ltd Layer-built fuel cell
JPH02129858A (en) * 1988-11-10 1990-05-17 Sanyo Electric Co Ltd Cooling plate for fuel cell
JPH0456075A (en) * 1990-06-22 1992-02-24 Mitsubishi Heavy Ind Ltd Power generating device for flat type solid electrolytic fuel cell
JPH04162364A (en) * 1990-10-24 1992-06-05 Hitachi Ltd Fuel cell and method for molding its corrugated plate
JPH07135001A (en) * 1993-11-12 1995-05-23 Toyota Motor Corp Fuel cell and electrode for fuel cell
JPH08130023A (en) * 1994-10-27 1996-05-21 Aisin Seiki Co Ltd Fuel cell
JPH10308227A (en) * 1997-05-07 1998-11-17 Fuji Electric Co Ltd Solid high molecular electrolyte type fuel cell
JPH11354142A (en) * 1998-06-11 1999-12-24 Toshiba Corp Solid polymer electrolyte type fuel cell
JP2000173631A (en) * 1998-12-08 2000-06-23 General Motors Corp <Gm> Adhesive plate for proton exchange membrane fuel cell
JP2002184428A (en) * 2000-12-11 2002-06-28 Toyota Motor Corp Fuel cell
JP2002367434A (en) * 2001-06-08 2002-12-20 Daido Steel Co Ltd Corrosion resistant metal member and metal separator for fuel cell using the member
JP2003249248A (en) * 2002-02-26 2003-09-05 Nissan Motor Co Ltd Fuel cell
JP2003338300A (en) * 2002-05-17 2003-11-28 Honda Motor Co Ltd Fuel battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151972A (en) * 1984-01-19 1985-08-10 Ishikawajima Harima Heavy Ind Co Ltd Layer-built fuel cell
JPH02129858A (en) * 1988-11-10 1990-05-17 Sanyo Electric Co Ltd Cooling plate for fuel cell
JPH0456075A (en) * 1990-06-22 1992-02-24 Mitsubishi Heavy Ind Ltd Power generating device for flat type solid electrolytic fuel cell
JPH04162364A (en) * 1990-10-24 1992-06-05 Hitachi Ltd Fuel cell and method for molding its corrugated plate
JPH07135001A (en) * 1993-11-12 1995-05-23 Toyota Motor Corp Fuel cell and electrode for fuel cell
JPH08130023A (en) * 1994-10-27 1996-05-21 Aisin Seiki Co Ltd Fuel cell
JPH10308227A (en) * 1997-05-07 1998-11-17 Fuji Electric Co Ltd Solid high molecular electrolyte type fuel cell
JPH11354142A (en) * 1998-06-11 1999-12-24 Toshiba Corp Solid polymer electrolyte type fuel cell
JP2000173631A (en) * 1998-12-08 2000-06-23 General Motors Corp <Gm> Adhesive plate for proton exchange membrane fuel cell
JP2002184428A (en) * 2000-12-11 2002-06-28 Toyota Motor Corp Fuel cell
JP2002367434A (en) * 2001-06-08 2002-12-20 Daido Steel Co Ltd Corrosion resistant metal member and metal separator for fuel cell using the member
JP2003249248A (en) * 2002-02-26 2003-09-05 Nissan Motor Co Ltd Fuel cell
JP2003338300A (en) * 2002-05-17 2003-11-28 Honda Motor Co Ltd Fuel battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043505A1 (en) * 2004-10-18 2006-04-27 Nissan Motor Co., Ltd. Fuel cell stack and separator joining method
JP2007311081A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, and its manufacturing method
JP2012505525A (en) * 2008-10-23 2012-03-01 スタクセラ・ゲーエムベーハー Fuel cell stack
JP2010238536A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Fuel cell stack
JP2010251068A (en) * 2009-04-14 2010-11-04 Honda Motor Co Ltd Fuel cell stack
JP2015022802A (en) * 2013-07-16 2015-02-02 日産自動車株式会社 Fuel cell stack
WO2015041222A1 (en) * 2013-09-17 2015-03-26 本田技研工業株式会社 Fuel cell stack
JP5960366B2 (en) * 2013-09-17 2016-08-02 本田技研工業株式会社 Fuel cell stack
US9548502B2 (en) 2013-09-17 2017-01-17 Honda Motor Co., Ltd. Fuel cell stack
US10242989B2 (en) 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
CN108140852A (en) * 2015-10-06 2018-06-08 日产自动车株式会社 Fuel cell pack
CN108140852B (en) * 2015-10-06 2019-06-21 日产自动车株式会社 Fuel cell pack
WO2017196050A1 (en) * 2016-05-09 2017-11-16 주식회사 엘지화학 Method for manufacturing fuel cell porous separator, and fuel cell porous separator
US10868314B2 (en) 2016-05-09 2020-12-15 Lg Chem, Ltd. Porous separator including plurality of porous patterns, method for preparing the same, and fuel cell using the same
CN109286029A (en) * 2018-08-09 2019-01-29 上海治臻新能源装备有限公司 A kind of fuel battery metal cathode-anode plate based on gas-liquid perpendicular flow structure arrangement

Also Published As

Publication number Publication date
JP4713071B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4678359B2 (en) Fuel cell
JP7414334B2 (en) Fuel cells, bipolar plates and bipolar plate assemblies for fuel cells
JP4245091B2 (en) Fuel cell
US20050064263A1 (en) Flow field plate arrangement for a fuel cell
JP2002175818A (en) Separator for fuel cell, and the fuel cell
JP5226431B2 (en) Fuel cell stack
JP5334469B2 (en) Fuel cell stack
JP4510267B2 (en) Fuel cell stack
JP4713071B2 (en) Fuel cell and manufacturing method thereof
JP6690503B2 (en) Fuel cell single cell
JP2007250353A (en) Fuel cell
JP5449838B2 (en) Fuel cell stack
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
JP5740562B2 (en) Fuel cell stack
JP5042507B2 (en) Fuel cell
JP4259041B2 (en) Fuel cell
JP2003132911A (en) Fuel cell
JP2002367624A (en) Fuel cell
JP4042547B2 (en) Fuel cell seal structure
JP4650424B2 (en) Fuel cell
JP2008293953A (en) Stack for fuel cell
JP4608924B2 (en) Fuel cell stack
JP2007149358A (en) Separator for fuel cell
JP2004342442A (en) Fuel cell separator
JP3981578B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees